Articles

A Distributed Water-Heat Coupled (DWHC) Model for Mountainous Watershed of An Inland River Basin (Ⅰ): Model Structure and Equations

  • KANG Er-si ,
  • ZHANG Ji-shi ,
  • YANG Yong ,
  • CHEN Ren-sheng ,
  • JI Xi-bin ,
  • LvShi-hua
Expand
  • Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China

Received date: 2006-03-18

  Revised date: 2006-06-29

  Online published: 2006-08-15

Abstract

In the headwater regions of most large rivers in China, the glacier, permafrost and seasonal frozen soil have degraded largely, and the snowline has also risen in the recent 50 years, under global warming, especially in an inland river basin, where the main water resources come from mountainous river basin. Thus, it is very necessary to quantify the hydrological processes in these mountainous river basins, according to the fieldwork results and using hydrological modeling. However, the distributed hydrological model that describes the water-heat coupled processes is very rare, at the present time. Took the mountainous watershed of Heihe river basin, with an area of 10009km2, as an example, the authors designed a distributed water-heat coupled (DWHC) model. The minimal computing unit is a DEM (Digital elevation model) grid, with a spatial resolution of 1 km×1 km, and the reference frame is Alberts. The time step of the model is one day. The soil and vegetation of the watershed is divided into 18 and 9 types, respectively. In each computing grid, the soil is divided into 3~5 layers, according to the landuse types. The DWHC model included 8 sub-models, which were meteorological model, vegetation interception model, snow and glacier melting model, soil water-heat coupled model evapotranspiration model, runoff production model, infiltration model and flow concentration model. The water-heat coupled processes, based on the continuous water and heat equation, runs through the runoff production processes, infiltration processes and evapotranspiration processes. The DWHC model gave a simple numerical solution to the continuous water and heat equation, according to the soil frozen states. The meteorological inputs are daily precipitation, daily averaged air temperature, and potential evapotranspiration, which come from the meteorological stations, or from the climatic models such as MM5. The soil and vegetation characters should also be described. At that time, the model could calculate the soil temperature, soil liquid water content, soil solid water content, sense heat, latent heat, soil water tension and runoff amount, etc., given the initial soil water content and soil temperature. This paper just described the model principles, and the model results using the data at the meteorological stations as inputs, or using the MM5 results as inputs, would be discussed in the following papers.

Cite this article

KANG Er-si , ZHANG Ji-shi , YANG Yong , CHEN Ren-sheng , JI Xi-bin , LvShi-hua . A Distributed Water-Heat Coupled (DWHC) Model for Mountainous Watershed of An Inland River Basin (Ⅰ): Model Structure and Equations[J]. Advances in Earth Science, 2006 , 21(8) : 806 -818 . DOI: 10.11867/j.issn.1001-8166.2006.08.0806

References

[1] Chen Rensheng, Kang Ersi, Wu Lizong, et al. Cold regions in China [J]. Journal of Glaciology and Geocryology, 2005, 27(4): 469-475. [陈仁升,康尔泗,吴立宗,. 中国寒区分布探讨 [J]. 冰川冻土,2005,27(4):469-475.]

[2] Li Zhongqin. A glacier melt water pool was discovered at summit of east branch of glacier No. 1 at ürümqi river head, Tianshan Mts., Xinjiang [J]. Journal of Glaciology and Geocryology, 2005, 27(1): 150-152. [李忠勤. 天山乌鲁木齐河源1号冰川东支顶部出现冰面湖 [J]. 冰川冻土,2005, 27(1): 150-152.]

[3] Michael B A, Refsgaard J C. Distributed Hydrological Modeling [M]. Boston: Kluwer Academic Publishers. 1996.

[4] Li Jiren. Application of remote sensing and geographic information system in research of distributed hydrological model [J]. Hydrology, 1997(3): 8-12. [李纪人. 遥感和地理信息系统在分布式水文模型研制中的应用 [J]. 水文,1997(3): 8-12.]

[5] Xiong Lihua, Guo Shenglian. Three layers coupled watershed hydrological model (I) model structure and equation [J]. Journal of Wuhan University of Hydraulic & Electric Engineering, 1998,31(1):28-31. [熊立华,郭生练. 三层耦合流域水文模型(I)模型结构和数学方程 [J]. 武汉水利电力大学学报,1998,31(1):28-31.]

[6] He Yanbo, Yang Kun. Remote sensing and geographic information system applied to hydrologic modeling [J]. Geology-Geochemistry,1999,27(2):99-103. [何延波,杨琨. 遥感和地理信息系统在水文模型中的应用 [J]. 地质地球化学,1999,27(2):99-103.]

[7] Guo Fang, Liu Xinren, Ren Liliang. A topography based hydrological model: TOPMODEL and its widened application [J]. Advance in Water Science,2000,11(3):296-301. [郭方,刘新仁,任立良. 以地形为基础的流域水文模型——Topmodel及其拓宽应用 [J]. 水科学进展,2000,11(3):296-301.]

[8] Guo Shenglian, Xiong Lihua, Yang Jing. A DEM and physically based distributed hydrological model [J]. Journal of Wuhan University of Hydraulic & Electric Engineering,2000,33(6):1-5. [郭生练,熊立华,杨井. 基于DEM的分布式流域水文物理模型 [J]. 武汉水利电力大学学报,2000,33(6):1-5.]

[9] Ren Liliang. A study on digital hydrological modeling [J]. Journal of Hehai University,2000,28(4):1-7. [任立良. 流域数字水文模型研究 [J]. 河海大学学报,2000,28(4):1-7.]

[10] Chen Rensheng, Kang Ersi, Yang Jianping, et al. A distributed runoff model for inland river mountainous basin of northwest china [J]. Journal of Geographical Sciences, 2003, 13(3): 363-372.

[11] Yu Xinying, Liu Xinren. Distributed hydrological model for watersheds supplemented with melted snow and glacier water and rainfall [J]. Journal of Hehai University,2002,30(5):23-27. [俞鑫颖,刘新仁. 分布式冰雪融水雨水混合水文模型 [J]. 河海大学学报,2002,30(5):23-27.]

[12] Wang Zhonggen, Zheng Hongxing, Liu Changming, et al. A distributed hydrological model with its application to the Jinghe watershed in the Yellow River Basin [J]. Science in China(Series E), 2004, 47(suppl.):60-71.

[13] Huang Qinghua, Zhang Wanchang. Improvement and application of GIS-based distributed SWAT hydrological modeling on high altitude, cold, semi-arid catchment of Heihe river basin,China [J]. Journal of Nanjing Forestry University,2004,28(2):22-26. [黄清华,张万昌. SWAT分布式水文模型在黑河干流山区流域的改进及应用 [J]. 南京林业大学学报,2004,28(2):22-26.]

[14] Huangping, Zhao Jiguo. A study on distributed hydrological mathematical model of basin and applied prospect [J]. Hydrology,1997,(5):5-10. [黄平,赵吉国. 流域分布型水文数学模型的研究及应用前景展望[J]. 水文,1997,(5):5-10.]

[15] Ren Liliang, Liu Xinren. A review of the digital elevation model extraction and digital hydrological modeling [J]. Advance in Water Science,2000,11(4):463-469. [任立良,刘新仁. 数字高程模型信息提取与数字水文模型研究进展 [J]. 水科学进展,2000,11(4):463-469.]

[16] Chen Rensheng, Kang Ersi, Yang Jianping, et al. Research review of hydrological modeling [J]. Journal of Desert Research,2003,23(3):221-229. [陈仁升,康尔泗,杨建平,. 水文模型研究综述 [J]. 中国沙漠,2003,23(3):221-229.]

[17] Wang Zhonggen, Liu Changming, Wu Xianfeng. A review of the studies on distributed hydrological model based on DEM [J]. Journal of Natural Resources,2003,28(2):168-173. [王中根,刘昌明,吴险峰. 基于DEM的分布式水文模型研究综述 [J]. 自然资源学报,2003,28(2):168-173.]

[18] Wang Shugong, Kang Ersi, Lixin. Progress and perspective of distributed hydrological models [J]. Journal of Glaciology and Geocryology,2004,26(1):61-65. [王书功,康尔泗,李新. 分布式水文模型的进展及展望 [J]. 冰川冻土,2004,26(1):61-65.]

[19] Rui Xiaofang, Huang Guoru. Actuality and future of the distributed hydrological models [J]. Advances in Science and Technology of Water Resources,2004,24(2):55-58. [芮孝芳,黄国如. 分布式水文模型的现状与未来 [J]. 水利水电科技进展,2004,24(2):55-58.]

[20] Campbell G S. An Introduction to Environmental Biophysics [M]. New York:Springer-Verlag. 1977.

[21] Allen R G, Smith M, Perrier A. An update for the definition of reference evaporation [J]. ICID Bulletin,1994, 43(2): 1-34.

[22] Priestley C H B, Taylor R J. On the assessment of surface heat flux and evaporation using larger-scale parameters [J]. Monthly Weather Review, 1972(100):81-92.

[23] Hou Xueyu. Vegetation Atlas in China (11000000) [M]. Beijing: Science Press. 2001. [侯学煜. 中国植被图集(11000000)[M]. 北京:科学出版社. 2001.]

[24] Kang Ersi, Cheng Guodong, Song Kechao, et al. Simulation of energy and water balance in Soil-Vegetation- Atmosphere Transfer system in the mountain area of Heihe River Basin at Hexi Corridor of northwest Chin[J]. Science in China(Series D), 2005, 48(4): 538-548.

[25] Wang Xinping, Kang Ersi, Zhang Jingguang, et al. Comparison of interception loss in shrubby and sub.2.shrubby communities in the Tengger desert of northwest China [J]. Journal of Glaciology and Geocryology,2004,26(1):89-94. [王新平,康尔泗,张景光,. 荒漠地区主要固沙灌木的降水截留特征 [J]. 冰川冻土,2004,26(1):89-94.]

[26] Du Zhanchi, Yang Zonggui, Cui Xiaoyong. A comparative study on leaf area index of five plant communities in typical steppe region of Inner Mongolia [J]. Grassland of China,2001,23(5):13-18. [杜占池,杨宗贵,崔骁勇. 内蒙古典型草原地区5类植物群落叶面积指数的比较研究 [J]. 中国草地,2001,23(5):13-18.]

[27] Chen Longheng, Qu Yaoguang. Water and Land Resources and Their Rational Development and Utilization in the Hexi Region [M]. Beijing: Science Press,1992.[陈隆亨,曲耀光. 河西地区水土资源及其合理开发利用 [M]. 北京:科学出版社,1992.]

[28] Chen Longheng, Xiao Honglang. Mountainous Soil and Its Utilization in Hexi Region [M]. Beijing: Ocean Press,2003.[陈隆亨,肖洪浪. 河西土地土壤及其利用 [M]. 北京:海洋出版社,2003.]

[29] Soil Reconnaissance Office of Gansu Province. Gansu Soil [M]. Beijing: Chinese Agriculture Press,1993. [甘肃省土壤普查办公室. 甘肃土壤 [M]. 北京:农业出版社,1993.]

[30] Soil Reconnaissance Office of Gansu Province. Gansu Soil Type [M]. Lanzhou: Gansu Science and Technology Press,1993.[甘肃省土壤普查办公室. 甘肃土种志 [M]. 兰州:甘肃科学技术出版社,1993.]

[31] Zhu Zuxiang. Soil Sciences [M]. Beijing: Chinese Agriculture Press,1983.[朱祖祥. 土壤学 [M]. 北京:农业出版社,1983.]

[32] Zhu Anning, Zhang Jiabao, Cheng Zhuhua. A simple method to estimate water retention curves of light-textured soil [J]. Chinese Journal of Soil Science,2003,34(4):253-258. [朱安宁,张佳宝,程竹华. 轻质土壤水分特征曲线估计的简便方法 [J]. 土壤通报,2003,34(4):253-258.]

[33] Zhang Xiying, Zhang Lu, Liu Changming. On describing the hydraulic properties of unsaturated soil in piedmont of Mt. Taihang [J]. Acta Agriculturae Boreali-Sinica,2001,16(2):75-82. [张喜英,张橹,刘昌明. 太行山前平原土壤水分特征曲线拟合参数的确定 [J]. 华北农业学报,2001,16(2):75-82.]

[34] Xu Shaohui, Liu Jianli. Fractal approach for estimating soil water retention curves of various textures [J]. Journal of Hydraulic Engineering,2003,(1):78-82. [徐绍辉,刘建立. 估计不同质地土壤水分特征曲线的分形方法 [J]. 水利学报,2003,(1):78-82.]

[35] Liu Jianli, Xu Shaohui. Figuring soil water characteristic curve based on particle size distribution data: Application of fractal models [J]. Acta Pedologica Sinica,2003,40(1):46-52. [刘建立,徐绍辉. 根据颗粒大小分布估计土壤水分特征曲线:分形模型的应用 [J]. 土壤学报,2003,40(1):46-52.]

[36] Liu Jianli, Xu Shaohui. Estimation of soil water retention characteristics with a non-similar-media method [J]. Journal of Hydraulic Engineering,2003, (4):80-84. [刘建立,徐绍辉. 非相似介质方法在估计土壤水分特征曲线中的应用 [J]. 水利学报,2003,(4):80-84.]

[37] Kang Eris, Ohmura. Energy, water amount and runoff balance model in a glacier watershed, Tian Shan[J]. Science in China(Series B),1994,24(9),983-991. [康尔泗,A.Ohmura. 天山冰川作用流域能量、水量和物质平衡及径流模型 [J]. 中国科学:B,1994,24(9),983-991.]

[38] Kang Ersi, Cheng Guodong, Lan Yongchao, et al. A model for simulating the response of runoff from the mountainous watershed of inland river basins in the arid area of northwest China to climatic changes [J]. Science in China(Series D),1999, 42(suppl.): 52-63.

[39] Jansson P E,Karlberg L. Coupled Heat and Mass Transfer Model for Soil-Plant-Atmosphere systems [M]. Stockholm: Royal Institute of Technology, Dept of Civil and Environmental Engineering,2001.

[40] Yang Daqing, Barry E G, John R M, et al. Quantification of precipitation measurement discontinuity induced by wind shields on national gauges [J]. Water Resources Reaserach,1999, 35(2):491-508.

[41] Neilsch S L, Arnold J G, Kiniry J R, et al. Soil and water assessment tool theoretical documentation, version 2002. http://www.brc.larrus.edu/swat/.

[42] Xiong Lihua, Guo Shengliang. Distributed Hydrological Model [M]. Beijing: China WaterPower Press,2004.[熊立华,郭生练. 分布式流域水文模型 [M]. 北京:中国水利水电出版社,2004.]

[43] Mualem Y. A new model for predicting the hydraulic conductivity of unsaturated porous media [J]. Water Resource Research,1976(12): 513-522.

[44] Wang Chunhe. Relationship between groundwater and upper limit of permafrost in north Daxing'anling[C]Lanzhou Institute of Glaciology and Geocryology, Chinese Academy of Sciences, eds. Proceeding of Glaciology and Geocryology, the Geographical Society of China. Beijing: Science Press,1982:31-37.[王春鹤. 大兴安岭北部多年冻土上限和地下水[C]中国科学院兰州冰川冻土研究所编辑. 中国地理学会冰川冻土学术会议论文选集. 北京:科学出版社,1982:31-37.]

[45] http://www.pep.com.cn/200307/ca253531.htm

[46] de Vries D A. Heat transfer in soils[C]de Vries D A, Afgan N H, eds. Heat and Mass Transfer in the Biophere. I. Transfer Processes in Plant Environment. Washington DC: Scripta Book Co. 1975:5-28.

[47] Kersten M S. Thermal properties of soils [M]. Institute of Technology, Engineering Exp Station, Bulletin No. 28, Minneapolis: University of Minnesota,1949.

[48] Zhang Guanghui, Shao Mingan. Using soil physical properties to determine the absorptive parameter Sf in Green-Ampt infiltration model [J]. Acta Pedologica Sinica,2000,37(4):553-557. [张光辉,邵明安. 用土壤物理特性推求GreenAmpt入渗模型中吸力参数Sf [J]. 土壤学报,2000,37(4):553-557.]

[49] Zhou Zefu, Hong Lingxia. Studies on infiltration and infiltration simulation of soil water in different woodlands [J]. Scientia Silvae Sinicae,1997,33(1):9-17. [周择福,洪玲霞. 不同林地土壤水分入渗和入渗模拟的研究 [J]. 林业科学,1997,33(1):9-17.]

[50] Yang Dawen, Lichong, Ni Guanghen, et al. Application of a distributed hydrological model to the Yellow river basin [J]. Acta Geographica Sinica,2004,59(1):143-154. [杨大文, 羽中,倪广恒,. 分布式水文模型在黄河流域的应用 [J]. 地理学报,2004,59(1):143-154.]

[51] Zhao Renjun. Watershed Hydrological Simulation-Xin’anjiang Model and Shanbei Model [M]. Beijing: Water and Electric Power Press,1984. [赵人俊. 流域水文模拟——新安江模型和陕北模型 [M]. 北京:水利电力出版社,1984.]

[52] Rui Xiaofeng. Hydrological Principles [M]. Beijing: China WaterPower Press,2004.[芮孝芳. 水文学原理 [M]. 北京:中国水利水电出版社,2004.]

[53] Fairfield J, Leymarie P. Drainage network from grid digital elevation models[J]. Water Resources Research,1991, 27(4): 29-61.]

Outlines

/