Articles

MARINE PHYTOPLANKTON SPECIFIC GROWTH RATE

  • SUN Jun ,
  • NING Xiu-ren
Expand
  • 1.Key Laboratory of Marine Ecology & Environmental Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;  2.Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China

Received date: 2004-06-07

  Revised date: 2005-05-30

  Online published: 2005-09-25

Abstract

The concept of marine phytoplankton community specific growth rate (μ) and its related concepts were discussed. The four basic methods for estimating μ, frequency of dividing cells, biochemical indices, model approaches, and dilution incubations without grazers were reviewed, among them the dilution method was recommend as standard method for preliminary investigations of μ in China seas. After preliminary comparing and analyzing the μ around the world, we found that (1) μ depends on taxa composition of target phytoplankton community, (2) μ is relatively higher in offshore waters than in open seas and oligotrophic waters, (3) μ is even higher in mesotrophic areas than in eutrophic areas in offshore waters, and (4) μ is higher in smallcelldominated community than in big-cell-dominated community. Many things still poorly understand and more studies on μ are needed in China.

Cite this article

SUN Jun , NING Xiu-ren . MARINE PHYTOPLANKTON SPECIFIC GROWTH RATE[J]. Advances in Earth Science, 2005 , 20(9) : 939 -945 . DOI: 10.11867/j.issn.1001-8166.2005.09.0939

References

[1]Sarmiento J L, Toggweiler J R, Najjar R.  Ocean carbon-cycle dynamics and atmospheric pCO2 [J]. Philosophical Transactions of the Royal Society of London, 1988, 325:3-21.
[2]Charlson R J, Lovelock J E, Andreae M O, et al.  Oceanic phytoplankton, atmospheric sulphur, cloud abedo and climate [J]. Nature, 1987, 326:655-661.
[3]Sathyendranath S, Gouveia A D, Shetya S R, et al.  Biological control of surface temperature in the Arabian Sea [J]. Nature, 1991, 349:54-56.
[4]Fan Yuanbing, Pu Shuzhen. Research progress in oceanographic sciences of China relevant to global change [J]. Advances in Earth Science, 1998, 13(1):62-71.[范元炳, 蒲书箴. 我国海洋科学领域的全球变化研究进展[J]. 地球科学进展, 1998, 13(1):62-71.]
[5]Tang Qisheng, Su Jilan.Study on marine ecosystem dynamics and living resources sustainable utilization [J]. Advances in Earth Science, 2001, 16(1):5-11. [唐启升, 苏纪兰. 海洋生态系统动力学研究与海洋生物资源可持续利用[J]. 地球科学进展, 2001, 16(1):5-11.]
[6]Chen Jianfang. New geochemical proxies in paleoceanography studies [J]. Advances in Earth Science, 2002, 17(3):402-410. [陈建芳. 古海洋研究中的地球化学新指标[J]. 地球科学进展, 2002, 17(3):402-410.]
[7]Sommer U.  Competition and coexistence[J]. Nature, 1999, 402:366-367.
[8]Eppley R W.  Temperature and phytoplankton growth in the sea [J]. Fishery Bulletin, 1972, 70:1 063-1 085.
[9]Leftley J W, Bonin D J, Maestrini S Y. Problems in estimating marine phytoplankton growth, productivity and metabolic activity in nature: an overview of methodology [J]. Oceanography and Marine Biology(An Annual Review),1983, 21:23-66.
[10]Sun Jun, Liu Dongyan, Qian Shuben. Study on phytoplankton biomass I. Phytoplankton measurement biomass from cell volume or plasma volume [J]. Acta Oceanologica Sinica, 1999, 21(2):75-85. [孙军, 刘东艳, 钱树本. 浮游植物生物量研究I.浮游植物生物量细胞体积转换法[J]. 海洋学报, 1999, 21(2):75-85.]
[11]Furnas M. In situ growth rates of marine phytoplankton: Approaches to measurement, community and species growth rates [J]. Journal of Plankton Research, 1990, 12: 1 117-1 151.
[12]Swift E, Stuart M, Meunier V.  The in situ growth rates of some deep-living oceanic dinoflagellates: Pyrocystis fusiformis and Pyrocystis noctiluca [J]. Limnology and Oceanography, 1976, 21:418-426.
[13]Weiler C S, Chisholm S W.  Phased cell division in natural populations of marine dinoflagellates from ship-board cultures [J]. Journal of Experimental Marine Biology and Ecology, 1976, 25:239-247.
[14]McDuff R E, Chisholm S W. The calculation of in situ growth rates of phytoplankton populations from fractions of cells undergoing mitosis: A clarification [J]. Limnology and Oceanography, 1982, 27:783-788.
[15]Rivkin R B.  Radioisotopic method for measuring cell division rates of individual species of diatoms from natural populations [J]. Applied and Environmental Microbiology, 1986, 51:769-775. 
[16]Rivkin R B, Seliger H H. Liquid scintillation counting for 14C uptake of single algal cells isolated from natural samples [J]. Limnology and Oceanography, 1981, 26:780-785.
[17]Rivkin R B, Voytek M A. Cell division rates of eucaryotic algae measured by tritiated thymidine incorporation into DNA: Coincident measurements of photosynthesis and cell division of individual species of phytoplankton isolated from natural populations [J]. Journal of Phycology, 1986, 22:199-205.
[18]Vaulot D. Estimate of phytoplankton division rates by the mitotic index method: The fmax approach revisited [J]. Limnology and Oceanography, 1992, 37:644-649.
[19]Braunwarth C, Sommer U.  Analyses of the in situ growth rates of Cryptophyceae by use of the mitotic index technique [J]. Limnology and Oceanography, 1985, 30:893-897.
[20]Campbell L, Carpenter E J.  Diel patterns of cell division in marine Synechococcus spp.(Cyanobacteria): Use of the frequency of dividing cells technique to measure growth rate [J]. Marine Ecology Progress Series, 1986, 32:139-148.
[21]Lin S J, Chang J, Carpenter E J. Can a non-terminal event of the cell cycle be used for phytoplankton species-specific growth rate estimation? [J]. Marine Ecology Progress Series, 1997, 151(1~3):283-290.
[22]Chang J, Carpenter E J.  Species-specific phytoplankton growth rates via diel DNA synthesis cycles. II. DNA quantification and model verification in the dinoflagellate Heterocapsa triquetra [J]. Marine Ecology Progress Series, 1988, 44:287-296.
[23]Antia A N, Carpenter E J, Chang J. Species-specific phytoplankton growth rates via diel DNA synthesis cycles. III. Accuracy of growth rate measurement in the dinoflagellate Prorocentrum minutum [J]. Marine Ecology Progress Series, 1990, 63:273-279.
[24]Chang J, Dam H G.  The influence of grazing on the estimation of phytoplankton growth rate via cell cycle analysis: Modeling and experimental evidences [J]. Limnology and Oceanography, 1993, 38:202-212.
[25]Carpenter E J, Chang J. Species-specific phytoplankton growth rates via diel DNA synthesis cycles. I. Concept of the method [J]. Marine Ecology Progress Series,1988, 43:105-111.
[26]Chang J, Carpenter E J.  Species-specific phytoplankton growth-gates via diel DNA-synthesis cycles .IV. Evaluation of the magnitude of error with computer-simulated cell-populations [J]. Marine Ecology Progress Series, 1990, 65:293-304.
[27]Chang J, Carpenter E J.  Species-specific phytoplankton growth rates via diel DNA synthesis cycles. V. Application to natural populations in Long Island Sound [J]. Marine Ecology Progress Series,1991, 78:115-122.
[28]Chang J, Carpenter E J.  Active growth of the oceanic dinoflagellate Ceratium teres in the Caribbean and Sargasso Seas estimated by cell cycle analysis [J]. Journal of Phycology, 1994, 30:375-381.
[29]Binder B J, DuRand M D.  Diel cycles in surface waters of the equatorial Pacific [J]. Deep-Sea Research II, 2002, 49:2 601-2 617.
[30]Redalje D G, Laws E A. A new method for estimating phytoplankton growth rates and carbon biomass [J]. Marine Biology, 1981, 62:73-79.
[31]Gieskes W W, Kraay G W.  Estimating the carbon-specific growth rate of the major algal species in eastern Indonesian waters by 14C labeling of taxon-specific carotenoids [J]. Deep-Sea Research II, 1989, 36:1 127-1 139.
[32]DiTullio G R, Laws E A.  Diel periodicity of nitrogen and carbon assimilation in five species of marine phytoplankton: Accuracy of methosdology for predicting N-assimilation rates and N/C composition ratios [J].Marine Ecology Progress Series, 1986, 32:123-132.
[33]Laws E A.  Improved estimates of phytoplankton carbon based on 14C incorporation into chlorophyll a [J]. Journal of Theoretical Biology, 1984, 110: 425-434. 
[34]Redalje D G. The labeled chlorophyll a technique for determining photoautotrophic carbon specific growth rates and biomass [A]. In: Kemp P F ed. Handbook of Methods in Aquatic Microbial Ecology [C]. Boca Raton: Lewis Publishers, 1993. 563-572.
[35]Gould D G, Gallagher E D.  Field measurement of specific growth rate, biomass and primary production of benthic diatoms of Savin Hill Cove, Boston [J]. Limnology and Oceanography, 1990, 35:1 757-1 770.
[36]Redalje D G.  Phytoplankton carbon biomass and specific growth rates determined with the labeled chlorophyll a technique [J].Marine Ecology Progress Series, 1983, 11: 217-225.
[37]Goericke R, Welschmeyer N A. The chlorophyll-labeling method: measuring specific rates of chlorophyll a synthesis in cultures and in the open ocean [J]. Limnology and Oceanography, 1993, 38: 80-95.
[38]Jesperson A M, Nielsen J, Riemann B, et al. Carbon-specific phytoplankton growth rates: A comparison of methods [J]. Journal of Plankton Research, 1992, 14: 637-648.
[39]Welschmeyer N A, Lorenzen C J. Carbon-14 labeling of phytoplankton carbon and chlorophyll a carbon: Determination of specific growth rates [J]. Limnology and Oceanography, 1984, 29: 135-145.
[40]Gieskes W W, Kraay G W. Floristic and physiological differences between the shallow and the deep nanophytoplankton community in the euphotic zone of the open tropical Atlantic revealed by HPLC analysis of pigments [J]. Marine Biology, 1986, 91: 567-576. 
[41]Laws E A, Redalje D J, Haas L W, et al. High phytoplankton growth and production rates in oligotrophic Hawaiian coastal waters [J]. Limnology and Oceanography,1884, 29: 1 161-1 169.
[42]Strom S L, Welschmeyer N A. Pigmentspecific rates of phytoplankton growth and microzooplankton grazing in the open subarctic Pacific Ocean [J]. Limnology and Oceanography, 1991, 36: 50-63.
[43]Goericke R, Welschmeyer N A.  The carotenoid-labeling method: Measuring specific rates of carotenoid synthesis in natural phytoplankton communities [J]. Marine Ecology Progress Series, 1993, 98: 157-171.
[44]Pinckney J L, Millie D F, Howe K E, et al. Flow scintillation counting of 14C-labeled microalgal photosynthetic pigments [J]. Journal of Plankton Research, 1996, 18:1 867-1 880.
[45]Pinckney J L, Tammi L R, David F M, et al. Application of photopigment biomarkers for quantifying microalgal community composition and in situ growth rates [J]. Organic Geochemistry, 2001, 32:585-595.
[46]Goldman J. On phytoplankton growth rates and particulate C∶N∶P ratios at low light [J]. Limnology and Oceanography, 1986, 31:1 358-1 363.
[47]Laws E A, DiTullio G R, Redalje D J.  High phytoplankton growth and production rates in the North Pacific subtropical gyre [J]. Limnology and Oceanography, 1987, 34: 905-918.
[48]Goldman J C, McCarthy J J, Peavey D G. Growth rate influence on the chemical composition of phytoplankton in oceanic waters [J]. Nature, 1979, 279: 210-215.
[49]Steele J H. Environmental control of photosynthesis in the sea [J]. Limnology and Oceanography, 1962, 7:137-150.
[50]Geider R J, MacIntyre H L, Kana T M.  A dynamic model of phytoplankton growth and acclimation: Responses of the balanced growth rate and the chlorophyll a: Carbon ratio to light, nutrient-limitation, and temperature [J]. Marine Ecology Progress Series, 1997, 148:187-200.
[51]Parker A.  Empirical functions relating metabolic processes in aquatic systems to environmental variables [J]. Journal of the Fisheries Research Board of Canada, 1972, 31: 1 550-1 552.
[52]Lehman J T, Botkin D B, Likens G E.  The assumptions and rationales of a computer model of phytoplankton population dynamics [J]. Limnology and Oceanography,1975, 20:343-364.
[53]Bierman Jr V J. Mathematical model of the selective enhancement of blue green algae by nutrient enrichment [A]. In: Canale R P. ed.Modelling Biochemical Processes in Aquatic Ecosystems [C]. Ann Arbor: Ann Arbor Sciences, 1976. 1-31.
[54]Bannister T T.  Quantitative description of steady state, nutrient-saturated algal growth, including adaptation [J]. Limnology and Oceanography, 1979, 24:76-96.
[55]Laws E A, Bannister T T.  Nutrient- and light-limited growth of Thalassiosira fluviatilis in continuous culture, with implications for phytoplankton growth in the oceans [J]. Limnology and Oceanography, 1980, 25:457-473.
[56]Landry M R, Hassett R P.Estimating the grazing impact of marine microzooplankton [J]. Marine Biology, 1982, 67:283-288. 
[57]Landry M R, Kirshtein J, Constantinou J. A refined dilution technique for measuring the community grazing impact of microzooplankton, with experimental tests in the central equatorial Pacific [J]. Marine Ecology Progress Series, 1995, 120:53-63.
[58]Gallegos C L, Vant W N.  An incubation procedure for estimating carbon-to-chlorophyll ratios and growth irradiance relationships of estuarine phytoplankton [J]. Marine Ecology Progress Series, 1996, 138:275-291. 
[59]Brown S L, Landry M R, Barber R T, et al.  Picophytoplankton dynamics and production in the Arabian Sea during the 1995 Southwest Monsoon [J]. Deep-Sea Research Part II, 1999, 46(8~9):1 745-1 768.
[60]Wolfe G V, Levasseur M, Cantin G, et al.  DMSP and DMS dynamics and microzooplankton grazing in the Labrador Sea: Application of the dilution technique [J]. Deep-Sea Research Part I, 2000, 47(12): 2 243-2 264.
[61]Sun Jun, Liu Dongyan, Wang Zongling, et al.  Microzooplankton herbivory during red tide frequent occurrence period in Spring in the East China Sea [J]. Chinese Journal of Applied Ecology, 2003, 14(7):1 073-1 080. [孙军, 刘东艳, 王宗灵,等. 春季赤潮频发期东海微型浮游动物摄食研究[J]. 应用生态学报, 2003, 14(7):1 073-1 080.]
[62]Edwards E S, Burkill P H, Stelfox C E.  Zooplankton herbivory in the Arabian Sea during and after the SW monsoon, 1994 [J]. Deep-Sea Research Part II, 1999, 46(3~4):843-863.
[63]Stelfox-Widdicombe C E, Archer S D, Burkill P H, et al.  Microzooplankton grazing in Phaeocystis and diatom-dominated waters in the southern North Sea in spring [J]. Journal of Sea Research, 2004, 51(1):37-51.
[64]Rivkin R B, Putland J N, Anderson M R, et al. Microzooplankton bacterivory and herbivory in the NE subarctic Pacific [J]. Deep-Sea Research II, 1999, 46:2 579-2 618.
[65]Bertalanffy L von.  Metabolic types and growth types [J]. American naturalist, 1951, 85:111-117.

Outlines

/