PROGRESSES IN THE STUDY OF CARBON ISOTOPES TRACING OF THE SOIL CARBON DYNAMICS
Received date: 2003-10-16
Revised date: 2004-03-19
Online published: 2004-10-01
Soils are the largest carbon reservoir in terrestrial ecosystems. Soil organic matter contains generally three identifiable carbon pools: “active” pool; “slow” pool and “passive” pool. The dynamics of the soil carbon cycle focus on mostly carbon turnover times and input rates and size of soil carbon pools on various time scales. Many researchers indicated that natural abundance of carbon isotopes, in particular radiocarbon,is useful tracers in the study of the soil carbon cycle. δ13C values of soil organic matter provide a unique tool for quantifying historical shifts between C3 and C4 ecosystems over decadal to millennial time scales. 14C signature, the combination of 14C dating and 13C signature can be used to determine the size and turnover rates of the labile and stable soil organic matter pools. Despite the advances in the study of the soil carbon cycle by means of carbon isotopes signature in recent decades, the isotopic approaches to the study of the soil carbon cycle have limitations. Tremendous uncertainties exist in the estimation of sizes and turnover times of soil carbon pools as well as the amount of 14C content of SOM derived CO2 because of a lack of reliable global database and a lack of standard methods available to quantify labile and stable soil organic matter pools. It is very difficult to estimate any change in the size of the soil C pool that could potentially alter the atmospheric CO2concentration and the global climate.
TAO Zhen,SHEN Cheng-de,YI Wei-xi,GAO Quan-zhou . PROGRESSES IN THE STUDY OF CARBON ISOTOPES TRACING OF THE SOIL CARBON DYNAMICS[J]. Advances in Earth Science, 2004 , 19(5) : 793 -801 . DOI: 10.11867/j.issn.1001-8166.2004.05.0793
[1]Vitousek P M, Mooney H A, Lubchenco J, et al. Human domination of Earth’s ecosystems[J].Science,1997, 277: 494-499.
[2]Rodhe H. A comparison of the contribution of various gases to the greenhouse effect[J].Science,1990, 248: 1 217-1 219.
[3]Sommerfeld R A, Mosier A R, Musselman R C. CO2, CH4and N2O flux through a Wyoming snow pack and implications for global budgets[J].Nature,1993, 361: 140-142.
[4]Rastetter E B, McKane R B, Shaver, G R. Changes in C storage by terrestrial ecosystems: How C N interactions restrict responses to CO2and temperature[J].Water, Air and Soil Pollution, 1992, 64: 327-344.
[5]Schimel D S. Terrestrial ecosystems and the carbon cycle[J]. Global Change Biology, 1995, 1: 77-91.
[6]Fan S, Gloor M, Mahlman J, et al. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models[J].Science, 1998, 282: 442-446.
[7]Tanaka Masayuki(田中正之). The Earth is Warming Up[M]. Shi Guangyu(石广玉), Li Changming(李昌明),translated.Beijing: Meteorologic Press,1992.132(in Chinese).
[8]Guo Liping(郭李萍), Lin Erda(林而达).Research advances on mitigating global warming and greenhouse gas sequestration[J].Advances in Earth Science(地球科学进展),1999,14(4): 384-390(in Chinese).
[9]Schindler D W. Carbon cycling: The mysterious missing sink[J]. Nature, 1999, 398: 105-107.
[10]Dixon R K, Brown S, Houghton R A,et al. Carbon pools and flux of global forest ecosystems[J].Science,1994, 263: 185-190.
[11]Cao M K, Woodward F I. Dynamics responses of terrestrial ecosystem carbon cycling to global climate change[J].Nature, 1998, 393: 249-252.
[12]Prentice I C, Lioyd J. C-quest in the Amazon Basin[J].Nature,1998, 396: 619-620.
[13]Gifford R M. The global carbon cycle: A viewpoint on the missing sink[J].Australian Journal of Plant Physiology, 1994, 21: 1-15.
[14]Keeling C D, Chin J F S, Whorf T P. Increased activity of northern vegetation inferred from atmospheric CO2 measurements[J].Nature,1996, 382: 146-149.
[15]Robert B M, Edward B R, Gaius R S,et al. Reconstruction and analysis of historical changes in carbon storage in Arctic tundra[J].Ecology, 1997, 78(4): 1 188-1 198.
[16]Dai Minhan(戴民汉), Zhai Weidong(翟惟东), Lu Zhongming(鲁中明),et al. Regional studies of carbon cycles in China: Progress and perspectives[J]. Advances in Earth Science(地球科学进展), 2004, 19(1): 120-130(in Chinese).
[17]Schlesinger W H. Evidence from chronosequence studies for a low carbon-storage potential of soils[J].Nature, 1990, 348: 232-234.
[18]Schlesinger W H. An overview of the global carbon cycle[A]. In: Lal R, Kimble J, Levine E,et al,eds. Soils and Global Change[C]. Boca Raton: Lewis Publishers,1995. 9-25.
[19]Kimble L R J, Stewart B A. World soils as a source or sink for radiatively active gases[A]. In: Lal R, Kimble J, Levine E,et al, eds. Soils and Global Change[C]. Boca Raton: Lewis Publishers,1995.1-7.
[20]Post W M, Izaurralde R C, Mann L K, et al. Monitoring and verifying soil organic carbon sequestration[A]. In: Rosenberg N, Izaurralde R, Malone E, eds. Carbon Sequestration in Soils: Science, Monitoring, and Beyond:Proceedings of the St. Michaels Workshop[C]. Columbus: Battelle Press,1999. 41-66.
[21]Metting F B, Smith J L, Amthor J S. Science needs and new technology for soil carbon sequestration[A]. In: Rosenberg N, Izaurralde R, Malone E, eds. Carbon Sequestration in Soils: Science, Monitoring, and Beyond:Proceedings of the St. Michaels Workshop[C]. Columbus: Battelle Press,1999. 1-34.
[22]Trumbore S E. Potential responses of soil organic carbon to global environmental change[J].Proceedings of the National Academy Science, 1997, 94: 8 284-8 291
[23]Post W M, Emanuel W R, Zinke P J, et al. Soil carbon pools and world life zones[J].Nature, 1982, 298:156-159.
[24]Eswaran H, Berg E V D, Reich P. Organic carbon in soils of the world[J].Soil Science Society of America Journal, 1993, 57: 192-194.
[25]German Advisory Council on Global Change. WBGU Special Report: The Accounting of Biological Sinks and Sources Under the Kyoto Protocol—A Step Forwards or Backwards for Global Environmental Protection? [R]. 1998.
[26]Saine G R. Organic metter as a measure of bulk density of soil[J].Nature, 1966, 210: 1 295-1 296.
[27]Bolin B. The carbon cycle[J].American Scientist, 1970, 223: 136-146.
[28]Schlesinger W H. Carbon balance in terrestrial detritus[J].Annual Review of Ecology and Systematics, 1977, 8: 51-81.
[29]Post W P, Pastor J, Zinke P J,et al. Global patterns of soil nitrogen storage[J].Nature, 1985, 317: 613-616.
[30]Bohn H. Estimate of organic carbon in world soil[J].Soil Science Society of America Journal, 1976, 40: 468-470.
[31]Monger H D, Martinez Rios J J. Inorganic carbon sequestration in grazing lands[A]. In: Follett R F, Kimble J M, Lal R , eds. The Potential of US Grazing Lands to Sequester Carbon and Mitigate the Greenhouse Effect[C]. Boca Raton: Lewis Publishers, 2001. 87-118.
[32]Burke I C, Laurenroth W K, Milchunas D G. Biogeochemistry of managed grasslands in central North America[A]. In: Paul E A, Paustian K, Elliott E T,et al, eds. Soil Organic Matter in Temperate Agro-ecosystems: Long term Experiments in North America[C]. Boca Raton: CRC Press, Inc,1997.85-102.
[33]Reeder J D, Schuman G E. Influence of livestock grazing on C sequestration in semi arid mixed grass and short grass rangelands[J].Environmental Pollution, 2002, 116(3): 457-463.
[34]Thorp J. How soils develop under grass[A]. In: Anderson C P, ed. Grass: The Yearbook of Agriculture[C].Washington: United States Department of Agriculture, US Government Printing Office,1948.
[35]Paul E A, Clark F E. Soil Microbiology and Biochemistry(2nd)[M]. San Diego CA: Academic Press,1996.
[36]Weaver J E, Hougen V H, Weldon M D. Relation of root distribution to organic matter in prairie soil[J].The Botanical Gazette, 1935,96(3): 389-420.
[37]Gill R A. Biotic controls over the depth distribution of soil organic matter[D].Colorado State University, Fort Collins, CO,1998.
[38]Reeder J D, Franks C D, Milchunas D G. Root biomass and microbial processes[A]. In: Follett R F, Kimble J M, Lal R, eds. The Potential of US Grazing Lands to Sequester Carbon and Mitigate the Greenhouse Effect[C]. Boca Raton: Lewis Publishers, 2001. 139-166.
[39]Cheng Genwei(程根伟), Luo Ji(罗辑).The carbon accumulation and dissipation features of sub-alpine woodland in Mt. Gongga[J].Acta Geographica Sinica(地理学报),2003, 58(2): 179-185(in Chinese).
[40]Trumbore S E, Davidson E A, Barbosa de Camargo,et al. Belowground cycling of carbon in forest and pastures of Eastern Amazonia[J].Global Biogeochemical Cycles, 1995, 9: 515-528.
[41]Shen Chengde, Liu Dongsheng, Peng Shaolin,et al. A study on 14C measurements of the forest soils in Dinghushan Biosphere Reserve[J].Chinese Science Bulletin, 1999, 44(3): 251-256.
[42]Veldkamp E. Organic carbon turnover in three tropical soils under pasture after deforestation[J].Soil Science Society of America Journal,1994, 58: 175-180.
[43]Detwiler R P. Land use change and the global carbon cycle: The role of tropical soils[J].Biogeochemistry, 1986, 2: 67-93.
[44]Campbell C A, Paul E A, Rennie D A,et al. Applicability of the carbon dating method of analysis to soil humus studies[J].Soil Science, 1967, 104: 217-224.
[45]O'Brien B J, Stout J D. Movement and turnover of soil organic matter as indicated by carbon isotope measurements[J].Soil Biology & Biochemistry, 1978, 10: 309-317.
[46]O’Leary M H. Carbon isotope fractionation in plants[J].Phytochemistry, 1981, 20: 553-567.
[47]Mook W G.13C in atmospheric CO2[J].Netherlands Journal of Sea Research, 1986, 20: 221-223.
[48]Deines P. The isotopic composition of reduced organic carbon[A]. In: Fritz P, Fontes J C, eds. Handbook of Environmental Isotope Geochemistry(vol.1):The Terrestrial Environment[C]. Amsterdam: Elsevier,1980. 329-406.
[49]O'Leary M H. Carbon isotopes in photosynthesis[J].Biosciences, 1988, 38: 328-336.
[50]Chen Jinshi(陈锦石), Chen Wenzheng(陈文正). Survey of Carbon Isotopic Geology [M]. Beijing: Geologic Press, 1983(in Chinese).
[51]Dzurec R S, Boutton T W, Caldwell M M,et al. Carbon isotope ratios of soil organic matter and their use in assessing community composition changes in Carlew Valley, Utah[J].Oecologia, 1985, 66: 17-24.
[52]Gulliet B, Faivre P, Mariotti A,et al. The 14C dates and 13C/12C ratios of soil organic matter as a means of studying the past vegetation in intertropical regions: Examples from Colombia (South America)[J].Palaeogeography, Palaeoclimatology and Palaeoecology, 1988, 65: 51-58.
[53]Schwartz D, Mariotti A, Lanfranchi R,et al. 13C/12C ratios of soil organic matter as indicators of vegetation changes in the Congo[J].Geoderma, 1986, 39: 97-103.
[54]Balesdent J, Mariotti A, Guillet B. Natural 13C abundance as a tracer for studies of soil organic matter dynamics[J].Soil Biology & Biochemistry, 1987, 19: 25-30.
[55]Ehleringer J, Buchmann N, Flanagan L. Carbon isotope ratios in belowground carbon cycle processes[J].Ecological Applications,2000, 10: 412-422.
[56]Balesdent J, Wagner G H, Mariotti A. Soil organic matter turnover in long term field experiments as revealed by carbon 13 natural abundance[J].Soil Science Society of America Journal,1988, 52: 118-124.
[57]Stuiver M, Polach H. Reporting of 14C data[J].Radiocarbon, 1977, 19: 355-363.
[58]Cherkinsky A E, Brovkin V A. Dynamics of radiocarbon in soils[J].Radiocarbon, 1993, 35(3): 363-367.
[59]Trumbore S, Chadwick O, Amundson R. Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change[J].Science, 1996, 272: 393-396.
[60]Chen Q Q, Sun Y M, Shen C D,et al. Organic matter turnover rates and CO2flux from organic matter decomposition of mountain soil profiles in the subtropical area, south China[J].Catena, 2002, 49: 217-229.
[61]Chen Qingqiang(陈庆强), Shen Chengde(沈承德), Yi Weixi(易惟熙),et al. Progresses in soil carbon cycles researches[J].Advances in Earth Science(地球科学进展), 1998, 13(6): 555-563(in Chinese).
[62]Wang Y, Amundson R, Trumbore S. The impact of land use change on C turnover in soils[J].Global Biogeochemical Cycles, 1999, 13: 47-57.
[63]Hsieh Y P. Radiocarbon signatures of turnover rates in active soil organic carbon pools[J].Soil Science Society of America Journal, 1993, 57: 1 020-1 022.
[64]Suess H. Radiocarbon concentration in modern wood[J].Science, 1955, 122: 415-417.
[65]Stuiver M. Carbon 14 content of 18th and 19th century wood: Variations correlated with sunspot activity[J].Science,1965, 149: 533-535.
[66]Levin I, Kromer B, Schoch Fischer H,et al. 25 years of tropospheric 14C observations in central Europe[J].Radiocarbon, 1985, 27: 1-19.
[67]Manning M R, Melhuish W H, Wallace G,et al. The use of radiocarbon measurements in atmospheric studies[J].Radiocarbon, 1990, 32: 37-58.
[68]Wang Y, Jahren H, Amundson R. Potential for 14C dating of biogenic carbonate in Hackberry (Celtis) Endocarps[J]. Quaternary Research, 1997, 47: 337-343.
[69]Trumbore S E. Comparison of carbon dynamics in tropical and temperate soils using radiocarbon measurements[J].Global Biogeochemical Cycles, 1993, 7: 275-290.
[70]Harrison K, Broecker W, Bonani G. The effect of changing land use on soil radiocarbon[J].Science, 1993, 262: 725-726.
[71]Trumbore S E, Vogel J S, Southon J R. AMS 14C measurements of fractionated soil organic matter: An approach to deciphering the soil carbon cycle[J].Radiocarbon, 1989, 31: 644-654.
[72]Wang Y, Hsieh Y P. Uncertainties and novel prospects in the study of the soil carbon dynamics[J].Chemosphere, 2002, 49: 791-804.
[73]Hsieh Y P. Size and mean age of stable soil organic carbon in cropland[J].Soil Science Society of America Journal, 1992, 56: 460-464.
[74]Jenkinson D S, Rayner J H. The turnover of soil organic matter in some of the Rothamsted classical experiments[J].Soil Science, 1977, 123: 298-305.
[75]Hsieh Y P. Soil organic carbon pools of two tropical soils inferred by carbon signatures[J]. Soil Science Society of America Journal, 1996, 60: 1 117-1 121.
[76]Douwe van Dam, Edzo Veldkamp, Nico van Breemen. Soil organic carbon dynamics: Variability with depth in forested and deforested soils under pasture in Costa Rica[J].Biogeochemistry, 1997, 39: 343-375.
[77]Wang Y, Amundson R, Niu X F. Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurements of soil CO2 flux[J].Global Biogeochemical Cycles,2000, 14: 199-211.
[78]Zhang Jinxia(张金霞), Cao Guangmin(曹广民), Zhou Dangwei(周党卫),et al. Diel and seasonal changes of carbon dioxide emission from mollic cryic cambisols on degraded grassland[J].Acta Pedologica Sinica(土壤学报), 2001, 38(1): 32-39(in Chinese).
[79]Houghton R A, Davidson E A, Woodwell G M. Missing sinks, feedbacks, and understanding the role of terrestrial ecosystems in the global carbon balance[J].Global Biogeochemical Cycles,1998, 12: 25-34.
[80]Melillo J M, Steudler P A, Aber J D,et al. Soil warming and carbon cycle feedbacks to the climate system[J].Science, 1993, 298: 2 173-2 175.
/
〈 |
|
〉 |