Articles

Nb-ENRICHED BASALT: THE PRODUCT OF THE PARTIAL MELTING OF THE SLAB-DERIVED MELTMETASOMATIZED MANTLE PERIDOTITE

  • NIU He-cai ,
  • ZHANG Hai-xiang ,
  • ZHANG Bo-you
Expand
  • Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640,China

Received date: 2005-03-04

  Revised date: 2005-07-04

  Online published: 2005-11-25

Abstract

Nb-enriched basalt is a kind of arc basalt that has special geochemical characteristics. It is silicasaturated with high Na2O contents and differs from the typical arc basalt by the extremely high Nb (>7×10-6), TiO2 (1%~2%) and P contents with HFSE enrichment. In the primitive mantle-normalized trace element spider diagram, Nb-enriched basalts show weakly negative (sometime positive) Nb, Ta anomalies. The primitive mantle-normalized La/Nb ratios of the Nb-enriched basalts are smaller than 2 (but smaller than 0.7, occasionally). It is derived from the partial melting of mantle peridotite metasomatized by slab melts. Since Nbenriched basalts and adakites are the direct products of subducted oceanic slab, the characteristics of magma activity and interaction between slab melts and mantle wedge can be demonstrated by the studies of this association and the nature of the relative fluids and melts.

Cite this article

NIU He-cai , ZHANG Hai-xiang , ZHANG Bo-you . Nb-ENRICHED BASALT: THE PRODUCT OF THE PARTIAL MELTING OF THE SLAB-DERIVED MELTMETASOMATIZED MANTLE PERIDOTITE[J]. Advances in Earth Science, 2005 , 20(11) : 1234 -1242 . DOI: 10.11867/j.issn.1001-8166.2005.11.1234

References

[1]Sajona F G, Maury R C, Bellon H, et al. Initiation of subduction and the generation of slab melts in western and eastern mindanao, Philippines [J]. Geology, 1993, 21: 1 007-1 010.
[2]Tatsumi Y. Migration of fluid phases and genesis of basalt magmas in subduction zones [J]. Journal of Geophysical Research,1989, 94(B4): 4 697-4 707.
[3]Hawkesworth C J, Hergt J M, Ellam R M, et al. Element fluxes associated with subduction related magmatism [J]. Philosophical transactions of the Royal Society of London, 1991, 335: 393-405.
[4]McCulloch M T, Gamble J A. Geochemical and geodynamical constraints on subduction zone magmatism [J]. Earth and Planetary Science Letter,1991, 102: 358-374.
[5]Reagan M K, Gill J B. Coexsiting calcalkaline and high niobium basalts from Turrialba volcano, Costa Rica: Implications for residual titanates in arc magma sources [J]. Journal of Geophysical Research, 1989, 94: 4 619-4 633.
[6]Verma S P, Nelson S A. Isotopic and trace element constraints on the origin and evolution of alkaline and calc-alkaline magmas in the northwestern Mexican volcanic belt [J]. Journal of Geophysical Research, 1989, 94: 4 531-4 544.
[7]Leeman W P, Smith D R, Hildreth W, et al. Compositional diversity of Late Cenozoic basalts in a transect across the southern Washington Cascades: Implications for subduction zone magmatism [J]. Journal of Geophysical Research, 1990, 95: 19 561-19 582.
[8]Defant M J, Drummond M S. Mount St. Helens: Potential example of the partial melting of the subducted lithosphere in a volcanic arc [J]. Geology, 1993, 21: 547-550.
[9]Defant M J, Jackson T E, Drummond M S, et al. The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: An overview [J]. Journal of Geological Society of London, 1992, 149: 569-579.
[10]Defant M J, Richerson M, de Boer J Z, et al. Dacite genesis via both slab melting and differentiation: Petrogenesis of La Yeguada volcanic complex, Panama [J]. Journal of Petrology, 1991, 32: 1 101-1 142.
[11]Sajona F G, Bellon H, Maury R C, et al. Magmatic response to abrupt changes in geodynamic settings: Pliocene-Quaternary calc-alkaline lavas and Nb enriched basalts of Leyte and Mindanao (Philippines) [J]. Tectonophysics, 1994, 237: 47-72.
[12]Kepezhinskas P, Defant M J, Drummond M S, et al. Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths [J]. Geochimica et Cosmochimica Acta, 1996, 60: 1 217-1 229.
[13]Sajona F G, Maury R C, Bellon H, et al. High field strength element enrichment of Pliocene -Pleistocene island arc basalts, Zamboanga Peninsula, western Mindanao (Philippines) [J]. Journal of Petrology, 1996, 37: 693-726.
[14]Sajona F G, Maury R C, Pubellier M, et al. Magmatic source enrichment by slab-derived melts in a young post-collisional setting, central Mindanao (Philippines) [J]. Lithos,2000, 54: 173-206.
[15]Robles A A, Caimus T, Benoit M, et al. Late Miocene adakites and Nb-enriched basalts from Vizcaino Peninsula, Mexico: Indicators of East Pacific Rise subduction below southern Baja California? [J].Geology,2001, 29: 531-534.
[16]Hollings P, Kerrich R. An Archean arc basalt-Nb-enriched basalt-asakite association: The 2.7 Ga Confederation assemblage of the Birch-Uchi greenstone belt, Superior Province [J]. Contributions to Mineralogy and Petrology,2000, 139: 208-226.
[17]Polat A, Kerrich R. Magnesian andesites, Nb-enriched basalt-andesites, and adakites from late-Archean 2.7Ga Wawa greenstone belts, Superrior Province, Canada: Implications for late Archean subducton zone petrogenetic processes [J]. Contributions to Mineralogy and Petrology, 2001, 141: 36-52.[18]Hollings P. Archean Nb-enriched basalts in the northern Superior Province [J]. Lithos,2002, 64: 1-14.
[19]Zhang Haixiang, Niu Hecai, Yu Xueyuan, et al. Discovery of Nb-enriched basalt at the northeast margin of Junggar plate and the geological significance [J].Contributions to Geology and Mineral Resources Research,2003, 18(1): 71-71. [张海祥, 牛贺才, 于学元,等. 准噶尔板块东北缘富铌玄武岩的发现及其意义 [J]. 地质找矿论丛, 2003, 18(1): 71-71.]
[20]Zhang Haixiang, Niu Hecai, Hiroaki Sato, et al. Late Paleozoic adakite and Nb-enriched basalt from northern Xinjiang: Evidence for the southward subduction of the paleo-Asian ocean [J]. Geological Journal of China Universities,2004, 10(1): 106-113.[张海祥, 牛贺才, Hiroaki Sato,等. 新疆北部晚古生代埃达克岩、富铌玄武岩组合:古亚洲洋板块南向俯冲的证据[J]. 高校地质学报, 2004, 10(1): 106-113.]
[21]Wang Qiang, Zhao Zhenhua, Bai Zhenhua, et al. Carboniferous adakites and Nb-enriched arc basaltic rocks association in the Alataw Mountains, north Xinjiang: Interactions between slab melt and mantle peridotite and implications for crustal growth [J]. Chinese Sciences Bulletin, 2003, 48(19): 2 108-2 115.
[22]Martin H. Adakitic magams: modern analogues of Archean granitoids [J]. Lithos,1999, 46: 411-429.
[23]Sorensen S S, Grossman J N. Enrichment of trace element in garnet amphibolites from paleo-subduction zone: Catalina Schist, southern California [J].Geochimica et Cosmochimica Acta,1989, 53: 3 155-3 177.
[24]Rapp R P, Watson E B, Miller C F. Partial melting of amphibolite/eclogite and the origin of Archaean trondhjemites and tonalities [J]. Precambrian Research, 1991, 51: 1-25.
[25]Rapp R P, Shimizu N,Norman M D. Growth of early continental crust by partial melting of eclogite[J].Nature, 2003, 425: 605-609.
[26]Morris J D, Hart S R. Isotopic and incompatible element constraints on the genesis of island arc volcanics from Cold Bay and Amak island, Aleutians, and implications for mantle structure [J]. Geochimica et Cosmochimica Acta,1983, 47: 2 015-2 030.
[27]Hofmann A W, Jochum K P, Seufert M, et al. Nb and Pb in oceanic basalts: New constraints on mantle evolution [J]. Earth and Planetary Science Letters, 1986, 79: 33-45.
[28]Arai S, Shimizu Y, Gervilia F. Quartz diorite veins in a peridotite xenolith from Tallante, Spain: Implications for reaction and survival of slab-derived SiO2-oversaturated melt in the upper mantle [J]. Proceedings of the Japan Academy, 2003, 79(ser. B): 145-150.
[29]Rapp R P, Shimizu N, Norman M D. Applegate, reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8GPa [J]. Chemical Geology, 1999, 160: 335-356.
[30]Jin Xingchun, Ding Kaiping. Subduction factory and subduction recycling of continental materials [J]. Advances in Earth Science,2003, 18: 737-744. [金性春, 丁开平. 俯冲工厂及大陆物质的俯冲再循环研究 [J]. 地球科学进展, 2003, 18: 737-744.]
[31]Klemme S, Blundy J D, Wood B J. Experimental constraints on major and trace element partitioning during partial melting of eclogite [J]. Geochimica et Cosmochimica Acta, 2002, 66: 3 109-3 123.
[32]O'Reilly S Y, Griffin W L, Ryan C G. Residence of trace elements in metasomatized spinel lherzolite xenoliths: A proton-microprobe study [J]. Contributions to Mineralogy and Petrology, 1991, 109: 98-113.

Outlines

/