REACTIVE HALOGEN CHEMISTRY IN THE TROPOSPHERE: A RESEARCH FIELD WITH MANY OPPORTUNITIES AND CHALLENGES
Received date: 2005-03-10
Revised date: 2005-07-05
Online published: 2005-11-25
Reactive halogen species (RHS) is involved with many chemical processes in the atmospheric troposphere. It affects the sources and sinks of many important species in the atmosphere, and plays a significant role in the tropospheric chemistry. RHS chemistry in the troposphere is recently an important frontier research field in the international atmospheric chemistry research. The main field measure techniques of RHS in the troposphere include chemical amplification , atmospheric pressure ionization mass spectrometry (APIMS), differential optical absorption spectroscopy (DOAS) , mist chamber and wet chemical detection, photolysable halogen detector (PHD) and the isotopic ratios. Various observation methods show that different kinds of RHS exist in the atmospheric boundary layer, particularly in the marine boundary layer, polar boundary layer, and over the regions of salt lake. RHS concentrations vary from 1012 to 1010. RHS can cause oxidation of some VOCs, influence the reaction of HOx and NOx, and make the loss of O3. RHS impacts on the oxidation of sulfur and on mercury chemistry. The source of RHS in the troposphere is mainly from the emission of organic halogen and from the release of sea-salt aerosols. The cycle and transformation of RHS in the troposphere are summarized. Main scientific problems are put forward,and research prospect is made.
WANG Wei-gang , GAO Hui-wang , XU Yong-fu , WANG Dian-xun , YAO Li , SUN Zheng , GE Mao-fa . REACTIVE HALOGEN CHEMISTRY IN THE TROPOSPHERE: A RESEARCH FIELD WITH MANY OPPORTUNITIES AND CHALLENGES[J]. Advances in Earth Science, 2005 , 20(11) : 1199 -1209 . DOI: 10.11867/j.issn.1001-8166.2005.11.1199
[1] World Meteorological Organization (WMO). Scientific Assessment of Ozone Depletion: 1994[R]. Geneva :Report No. 37,1995.
[2] Farman J C, Gardiner B G, Shanklin J D. Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction[J]. Nature,1985,315: 207-210.[3] Solomon S. Stratospheric ozone depletion: A review of concepts and history[J]. Reviews of Geophysics, 1999,37:275-316.
[4] Newchurch M J, Yang E S, Cunnold D M. Evidence for slowdown in stratospheric ozone loss: First stage of ozone recovery[J].Journal of Geophysical Research,2003, 108 (D16): 4507, doi:10.1029/2003JD003471.
[5] Austin J, Butchart N. Coupled chemistry-climate model simulations for the period 1980 to 2020: Ozone depletion and the start of ozone recovery[J].Quarterly Journal of the Royal Meteorological Society Part B, 2003,129:3 225-3 249.
[6] Chen Limin, Duan Yang,Yue Zhiwei, et al. Study on the trends of atmospheric CFCs[J]. Enviromental Science,1999,20(1):27-29.[陈立民,段杨,乐致威,等.大气中氯氟烃类物质浓度变化的研究[J].环境科学, 1999, 20(1):27-29.]
[7] Duan Yang,Hou Huiqi,Zhu Shaolong, et al. Photodissociation of CF2ClBr at 185nm of ultraviolet radiation[J].Enviromental Science,1996, 17(6):24-26.[段杨,侯惠奇,朱绍龙,等.CF2ClBr在短紫外光照射下光解离过程的研究[J].环境科学,1996,17(6):24-26.]
[8] Chen Zhongming,Li Jinlong,Tang Xiaoyan. Study of atmospheric chemistry of CFC substitutes[J]. Enviromental Science, 1997,18(4):85-89.[ 陈忠明,李金龙,唐孝炎.氯氟烃替代物大气化学研究[J].环境化学, 1997,18(4):85-89.]
[9] Wang Gengchen , Kong Qinxin, Chen Hongbin,et al.Characteristics of ozone vertical distribution in the atmosphere over Beijing [J]. Advances in Earth Science,2004,19(5):743-748.[王庚辰,孔琴心,陈洪滨,等.北京上空大气臭氧垂直分布的特征[J].地球科学进展,2004,19(5):743-748.]
[10] Wang Huijun,Xu Yongfu, Zhou Tianjun, et al. Atmospheric science:A vigorous frontier science [J] .Advances in Earth Science, 2004, 19 (4): 525- 532.[王会军,徐永福,周天军,等.大气科学:一个充满活力的前沿科学[J].地球科学进展,2004,19(4):525-532.]
[11] Hausmann M, Platt U. Spectroscopic measurement of bromine oxide and ozone in the high Arctic during Polar Sunrise Experiment 1992[J].Journal of Geophysical Research,1994, 99:25 399-25 414.
[12] Stutz J, Ackerman R, Barrie L, et al. Atmospheric reactive chlorine and bromine at the Great SaltLake,Utah[J]. Geophysical Research Letters, 2002, 29(10): 1380, 10.1029/ 2002GL014812.
[13] Vogt R, Crutzen P J, Sander R.A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer[J]. Nature,1996, 383: 327-330.
[14] Bobrowski N, Galle B, Platt U,et al. Detection of bromine monoxide in a volcanic plume[J].Nature, 2003,423: 273-276.
[15] Lary D J. Halogens and the chemistry of the free Troposphere[J]. Atmospheric Chemistry and Physics Discussions,2004,4: 5 367-5 380.
[16] Wagner T, Platt U. Observation of tropospheric BrO from the GOME satellite[J]. Nature,1998,395:486-490.
[17] Fitzenberger R, Boesch H, Harder H,et al. First profile measurements of tropospheric BrO[J].Geophysical Research Letters,2000, 27: 2 921-2 924.
[18] McElroy C T, McLinden C A, MCConnell J C. Evidence for bromine monoxide in the free troposphere during Arctic polar sunrise[J]. Nature, 1999,397: 338-340.
[19] Foster K L, Finlayson-Pitts B J, Spicer C W, et al. The role of Br2 and BrCl in surface ozone destruction at polar sunrise [J].Science,2001 ,291: 471-474.
[20] Wennberg P O. Bromine explosion [J].Nature,1999,397:299-301.
[21] Hebestreit K. Halogen oxides in the mid-latitude marine boundary laye[D]. Institut fuer Umweltphysik, Universitaet Heidelberg, 2001.
[22] Burnett E B, Burnett C R. Enhanced production of stratospheric OH from methane oxidation at elevated reactive chlorine levels in Northern midlatitudes[J].Journal of Atmospheric Chemistry,1995,21: 13-41.
[23] Tuckermann M, Ackermann R, Platt U, et al. DOAS-observation of halogen radical-catalysed Arctic boundary layer ozone destruction during the ARCTOC campaigns 1995 and 1996 in Ny-Alesund, Spitsbergen[J].Tellus,1997, 49B:533-555.
[24] Mart-nez M, Arnold T, Perner D. The role of bromine and chlorine chemistry for arctic ozone depletion events in Ny Alesund and comparison with model calculations[J].Annales Geophysicae,1999,17:941-956.
[25] Hegels E, Crutzen P J, Burrows P J, et al. Global distribution of atmospheric bromine monoxide from GOME on Earth-observing satellite ERS-2[J].Geophysical Research Letters,1998,25:3 127-3 130.
[26] Richter A, Wittrock F, Burrows J P, et al. GOME observations of tropospheric BrO in northern hemispheric spring and summer 1997[J].Geophysical Research Letters, 1998, 25:2 683-2 686.
[27] Wagner T, Leue C, Platt U, et al. Spatial and temporal distribution of enhanced boundary layer BrO concentrations measured by the GOME instrument aboard ERS-2[J].Journal of Atmospheric Chemistry, 2001,106:24 225-24 235.
[28] Lehrer E, Wagenbach D, Platt U.Chemical composition of the Aerosol during Arctic Spring in Svalbard[J]. Tellus,1997,49:486-495.
[29] Hoeonninger G, Platt U. Observations of BrO and its vertical distribution during surface ozone depletion at alert[J]. Atmospheric Environment, 2002 ,36:2 481-2 489.
[30] Barrie L A, Bottenheim J W, Crutzen P J, et al. Ozone destruction and photochemical reactions at polar sunrise in the lower Arctic atmosphere[J]. Nature, 1988, 334: 138-141.
[31] Langendoeorfer U, Lehrer E, Platt U, et al. Observation of filterable bromine variabilities during arctic tropospheric ozone depletion events in high time resolution[J].Journal of Atmospheric Chemistry,1999,34:39-54.
[32] Perner D, Arnold T, Crowley J, et al. The measurements of active chlorine in the atmosphere by chemical amplification[J]. Journal of Atmospheric Chemistry, 1999,34: 9-20.
[33] Jobson B T, Niki H, Hopper F, et al. Measurements of C2-C6 hydrocarbons during the Polar Sunrise 1992 Experiment: Evidence for Cl atom and Br atom chemistry[J]. Journal of Atmospheric Chemistry,1994,99:25 355-25 368.
[34] Ramacher B, Rudolph J, Koppmann R. Hydrocarbon measurements in the spring arctic troposphere during the ARCTOC 95 campaign[J]. Tellus(Series B), 1997,49(15):466-485.
[35] Ramacher B, Rudolph J, Koppmann R. Hydrocarbon measurements during tropospheric ozone depletion events:Evidence for halogen atom chemistry[J]. Journal of Atmospheric Chemistry,1999,104,D3:3 633-3 653.
[36] Spicer C W, Chapman E G, Finlayson-Pitts B J, et al. Unexpectedly high concentrations of molecular chlorine in coastal air[J]. Nature,1998,394:353-356.
[37] Spicer C W, Plastridge R A, Finlayson -Pitts B J, et al. Molecular halogens before and during ozone depletion events in the Arctic at polar sunrise: Concentration and sources[J]. Atmospheric Environment, 2002, 36:2 721-2 731.
[38] Stutz J, Hebestreit K, Platt U, et al. Chemistry of halogen oxides in the troposphere: Comparison of model calculations with recent field data[J]. Journal of Atmospheric Chemistry,1999,34: 65-85.
[39] Carpenter L J, Hebestreit K, Platt U, et al. Coastal zone production of IO precursors: A 2-dimensional study[J]. Atmospheric Chemistry and Physics, 2001,1: 9-18.
[40] Allan B J, McFiggans G, Plane J M C. Observation of iodine monoxide in the remote marine boundary layer[J]. Journal of Atmospheric Chemistry,2000, 105:14 363-14 369.
[41] Frieβ U, Wagner T, Platt U, et al. Spectroscopic measurements of tropospheric iodine oxide at Neumayer station,Antartica[J].Geophysical Research Letters,2001, 28: 1 941-1 944.
[42] McFiggans G, Plane J M C, Carpenter L J, et al. A modelling study of iodine chemistry in the marine boundary layer[J]. Journal of Atmospheric Chemistry, 2000,105:14 371-14 385.
[43] Hebestreit K, Stutz J, Platt U, et al. First DOAS measurements of tropospheric BrO in mid-latitudes[J].Science, 1999,283: 55-57.
[44] Matveev V, Peleg M, Platt U, et al. Bromine oxide ozone interaction over the Dead Sea[J].Journal of Atmospheric Chemistry, 2001,106:10 375-10 387.
[45] Van Roozendael M, et al. Intercomparison of BrO measurements from ERS-2 GOME, ground-based and balloon platforms[J]. Advance in Space Research, 2002, 29:1 661-1 666.
[46] Frieβ U, Otten C, Platt U, et al. Intercomparison of measured and modelled BrO slant column amounts for the Arctic winter and spring 1994/95[J].Geophysical Research Letters, 1999, 26:1 861-1 864.
[47] Leser H, Hoenninger G, Platt U. MAX-DOAS measurements of BrO and NO2 in the marine boundary layer[J].Geophysical Research Letters,2003,30:10,doi: 10.1029/2002GL015811.
[48] Pszenny A A P, Keene W C, Jacob D J, et al. Evidence of inorganic chlorine gases other than hydrogen chloride in marine surface air[J].Geophysical Research Letters, 1993,20: 699-702.
[49] Wingenter O W, Kubo M K, Blake N J, et al. Hydrocarbon and halocarbon measurements as photochemical and dynamical indicators of atmospheric hydroxyl, atomic chlorine, and vertical mixing obtained during Lagrange flights[J].Journal of Atmospheric Chemistry,1996,101:4 331-4 340.
[50] Platt U. Differential Optical Absorption Spectroscopy (DOAS). Monitoring by Spectroscopic Techniques[M]. New York: Wiley, 1994.27-84.
[51] Impey G A, Mihele C M, Anlauf K G, et al. Measurements of photolyzable halogen compounds and bromine radicals during Polar Sunrise Experiment 1997[J].Journal of Atmospheric Chemistry,1999,34: 21-37.
[52] Roeckmann T, Crutzen P J, Platt U, et al.Short-term variations in the 13C/12C ratio of CO as a measure of Cl activation during tropospheric ozone depletion events in the Arctic[J]. Journal of Atmospheric Chemistry, 1999,104: 1 691-1 697.
[53] Von Glasow R, Crutzen P J. Model study of multiphase DMS oxidation with a focus on halogens[J]. Atmospheric Chemistry and Physics, 2004,4: 589-608.
[54] Sander R, Crutzen P J, Duce R A, et al. Inorganic bromine in the marine boundary layer: A critical review[J]. Atmospheric Chemistry and Physics, 2003,3: 1 301-1 336.
[55] Shi Fei,Chen Zhongming. Study on atmospheric photo-oxidation of methyl hydroperoxide initiated by Cl-atom[J]. Spectroscope and Spectral Analysis,2004,24(1): 65-67.[史飞,陈忠明.氯原子引发的甲基过氧化氢大气光化学反应[J].光谱学与光谱分析,2004,24(1): 65-67.]
[56] Wu Hai,Zhang Yi,Mou Yujing. Products of the gas-phase photooxidation of isopropanol initiated by OH radicals and Cl atoms[J]. Enviromental Chemistry,2004,23(1):1-6.[吴海,张逸,牟玉静.异丙醇与OH自由基物Cl反应产物的研究[J].环境化学,2004,23(1):1-6.]
[57] Wennberg P O. Hydrogen radical,nitrogen radical,and the production of O3 in the upper troposphere[J]. Science,1998 ,279:49-53.
[58] Charlson R J, Lovelock J E, Andreae M O, et al. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate[J].Nature, 1987,326: 655-661.
[59] Barnes I, Bastian V, Becker K H, et al. Kinetic studies of the reactions of IO, BrO and ClO with DMS[J].International Journal of Chemical Kinetics, 1991,23:579-591.
[60] Toumi R. BrO as a sink for dimethylsulphide in the marine atmosphere[J].Geophysical Research Letters,1994 ,21:117-120.
[61] Jensen J, Adare K, Shearer R. Canadian Arctic Contaminants Assessment Report[R]. Indian and Northern Affairs Canada, Ottawa, Ontario,1997.
[62] Schroeder W H, Anlauf K G, Barrie L A, et al. Arctic springtime depletion of mercury[J].Nature, 1998,394:331-332.
[63] Ebinghaus R, Kock H H, Temme C, et al. Antarctic springtime depletion of atmospheric mercury[J].Environmental Science and Technology,2002, 36:1 238-1 244.
[64] Ariya P A, Khalizov A, Gidas A. Reactions of gaseous mercury with atomic and molecular halogens: Kinetics, product studies, and atmospheric implications[J].Journal of physical Chemistry A,2002 ,106: 7 310-7 320.
[65] Calvert J G, Lindberg S E. A modeling study of the mechanism of the halogen ozone mercury homogeneous reactions in the troposphere during the polar spring[J].Atmospheric Environment, 2003, 37:4 467-4 481.
[66] Balabanov N B, Peterson K A. Mercury and reactive halogens: the thermochemistry of Hg+(Cl2, Br2, BrCl, ClO, and BrO) [J]. Journal of physical Chemistry A, 2003,107:7 465-7 470.
[67] Parisa A A, Ashu P D, Marc A, et al. The Arctic: A sink for mercury[J]. Nature, 2004, 56(5): 397-403.
[68] Finlayson-Pitts B J, Livingston F E, Berko H N. Ozone destruction and bromine photo chemistry in the Arctic spring[J]. Nature,1990,343:622-625.
[69] Le Bras G, Platt U. A Possible mechanism for combined chlorine and bromine catalysed destruction of tropospheric ozone in the Arctic[J]. Geophysical Research Letters, 1995,22:599-602.
[70] Ashworth S H, Allan B J, Plane M C. High resolution spectroscopy of the OIO radical: Implications for the ozone depleting potential of iodine[J]. Geophysical Research Letters,2002,29 (10):1 456-1 459, doi:10.1029/ 2001GL 013851.
[71] Platt U,Janssen C. Observation and role of the free radicals NO3, ClO, BrO and IO in the Troposphere[J].Faraday Discuss, 1995, 100:175-198.
[72] Khalil M A K, Rasmussen R A, Gundwardena A. Atmospheric methyl bromide: Trends and global mass balance[J]. Journal of Atmospheric Chemistry, 1993, 98:2 887-2 896.
[73] Sturges W T, Cota G F, Buckley P T. Bromoform emission from Arctic Ice Algae[J].Nature, 1992,358:660-662.
[74] Carpenter L J, Sturges W T, Platt U, et al. Observation of short-lived alkyl iodides and bromides at Mace Head, Ireland: Links to biogenic sources and halogen oxide production[J].Journal of Atmospheric Chemistry, 1999,104: 1 679-1 689.
[75] Kritz M, Rancher J. Circulation of Na, Cl, and Br in the Tropical Marine Atmosphere[J]. Journal of Atmospheric Chemistry, 1980,85:1 633-1 639.
[76] Ayers G P, Gillett R W, Cainey J M, et al. Chloride and Bromide Loss from Sea-Salt Particles in Southern Ocean Air[J]. Journal of Atmospheric Chemistry, 1999,33: 299-319.
[77] Kaleschke L, Richter A, Burrows J. Frost flowers on sea ice as a source of sea salt and their influence on tropospheric halogen chemistry[J]. Geophysical Research Letters, 2004,31,L16114, doi:10.1029/2004GL020655.
[78] Behnke W, Krueger H U, Scheer V, et al. Formation of ClNO2 and HONO in the presence of NO2, O3 and wet NaCl aerosol[J].Journal of Aerosol Science, 1992,23: 933-936.
[79] Behnke W, Scheer V, Zetzsch C. Formation of ClNO2 and HNO3 in the presence of N2O5 and wet pure NaCl- and wet mixed NaCl/Na2SO4-aerosol[J]. Journal of Aerosol Science, 1993,24:115-116.
[80] Finlayson-Pitts B J, Johnson S N. The reaction of NO2 with NaBr: Possible source of BrNO in polluted marine atmospheres[J]. Atmospheric Environment, 1988,22: 1 107-1 112.
[81] Schweitzer F, Mirabel P, George C. Heterogeneous chemistry of nitryl halides in relation to tropospheric halogen activation[J]. Journal of Atmospheric Chemistry,1999, 34:101-117.
[82] Oum K W, Lakin M J, Finlayson Pitts B J, et al. Formation of molecular chlorine from the photolysis of ozone and aqueous sea-salt particles[J]. Science, 1998, 279:74-77.
[83] Oum K W, Lakin M J, Finlayson Pitts B J. Bromine activation in the troposphere by the dark reaction of O3 with seawater ice[J]. Geophysical Research Letters,1998,25:3 923-3 926.
[84] Qiao Z, Sun S, Wang D, et al. Vacuum Synthesis and Characterizations of BrOBr and HOBr[J]. Journal of Chemical Physics, 2003,119:7 111-7 114.[85] Abbatt J P D, Waschewsky G C G. Heterogeneous interactions of HOBr, HNO3, O3 and NO2 with deliquescent NaCl aerosols at room temperature[J]. Journal of Physical Chemistry A, 1998,102: 3 719-3 725.
[86] Mozurkewich M. Mechanisms for the release of halogens from sea-salt particles by free radical reactions[J]. Journal of Atmospheric Chemistry, 1995,100:14 199-14 207.
[87] Molina M J,Tso T L,Molina L T, et al. Antarctic stratospheric chemistry of chlorine nitrate, hydrogen chloride, and ice: Release of active Chlorine[J]. Science,1987,238:1 253-1 257.
[88] Molina M J,Molina L T,Kolb C E. Gas-Phase and heterogeneous chemical kinetics of the troposphere and stratosphere[J]. Annual Review of Physical Chemistry, 1996,47:327-367.
[89] Ying L M,Zhao X S. Theoretical studies of XONO2-H2O (X=Cl, H) complexes[J]. Journal of Physical Chemistry A, 1997,101:6 807-6 812.
[90] Wang D, Li Y, Jiang P, et al. The study of HeI photoelectron spectroscopy (PES) of the electronic structure for ClONO2[J]. Chemical Physics Letters, 1996,260: 99-102.
[91] Wang D, Jiang P. HeI photoelectron spectroscopy study on the electronic structure of bromine nitrate, BrONO2[J]. Journal of Physical Chemistry, 1996,100:4 382-4 384.
[92] Sun S, Zeng Y, Wang D, et al. A new reaction:Vacuum synthesis and characterization of IONO2 and IONO[J].Journal of Electron Spectroscopy and Related Phenomena,2005, 142:261-264.
/
〈 |
|
〉 |