Articles

Spatial Data Computing Pattern and Its Geo-Application

Expand
  • 1. Institute of Geographical Sciences and Natural Resources Research , CAS , Beijing 100101, China;2. The State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing,Wuhan University, Wuhan 430079,China

Received date: 2005-06-20

  Revised date: 2005-08-29

  Online published: 2006-01-15

Abstract

    With the development in satellite sensor technology, data acquisition technology developed rapidly; and with the start of a series of space-based observation network for Earth science, such as EOS, GTOS, ECOS, GOOS and etc., high performance processing and analysis of tremendous data become the bottleneck we face. According to the functional differences between different data carrier of terrene, ocean and atmosphere, this paper divides spatial data into four classes:terrestrial-solid based spatial data, terrestrial-liquid based spatial data, marine-floating based spatial data and atmospheric-floating based spatial data. Then this paper introduces the concept of the basic unit in which the features or characters are homogenous and then proposes their actually existing style in the four types of spatial data mentioned above. 
    Furthermore, this paper simply reviews geocomputation and expands it to geo-spatial computation. Then this paper discusses the connotation and classification of geo-spatial computation and summarizes the general computing procedure: data→ features→ knowledge. According to the differences of the computational behavior and the computing emphasis, this paper divides geo-spatial computation into two classes: deep-computation and active-computation. Deep-computation (from data to features) is to extract the basic units through certain methods, such as clustering, so deep-computation emphasizes particularly on computing amount. Active-computation (from features to knowledge) is based on the basic units obtained by deep-computation. Firstly the spatial relationships between the units are computed, and the decisions can be made effectively and efficiently with domain knowledge and domain models through web services, so deep-computation emphasizes particularly on intelligence of computation.
    Consequently, this paper analyzes the computing pattern of the four types of spatial data mentioned above. What's more, a case study of information extraction and target recognition from remote sensing image based on features was done to illustrate and testify the ideas mentioned above. In the end, this paper summarizes the relative problems about spatial data computation and expects the direction of future researches.

Cite this article

Ming Dongping,Luo Jiancheng,Zhou Chenghu,Shen Zhanfeng,Liang Qinghan,Sheng Hao . Spatial Data Computing Pattern and Its Geo-Application[J]. Advances in Earth Science, 2006 , 21(1) : 14 -23 . DOI: 10.11867/j.issn.1001-8166.2006.01.0014

References

[1] Ying Longgen, Ning Yuemin. Spatial data: Its nature, effects and analysis[J]. Advances in Earth Science, 2005,20(1):49-56. [应龙根,宁越敏.空间数据:性质、影响和分析方法[J].地球科学进展,2005,20(1):49-56.]

[2] Zuo Dakang, ed. Dictionary of Contemporary Geography[M]. Beijing: The Commercial Press, 1990. [左大康主编.现代地理学辞典[M]. 北京: 商务印书馆,1990.]

[3] Camara G, Monteiro A. Geocomputation techniques for spatial analysis: Are they relevant to health data? [J]. Cad Saude Publica, 2001, 17(5):1 059-1 071.

[4] Egenhofer M, Glasgow J, Gnther O,et al. Progress in computational methods for representing geographical concepts [J]. International Journal of Geographical Information Science, 1999, 13(8): 775-796.

[5] Openshaw S, Abrahart R. Geocomputation[A]. In: Abrahart R, ed. Proceedings of the lst International Conference on GeoComputation[C]. Leeds: University of Leeds, 1996:665-666.

[6] Longley P. Geocomputation: A Primer [M]. NewYork: John Wiley and Sons, 1998.

[7] Wang Yongwu, Wang Yonggang. Guide to Object—Oriented Practice [M]. Beijing: Electronic Industry Press, 2004. [王咏武,王咏刚. 道法自然——面向对象实践指南[M]. 北京:电子工业出版社,2004.]

[8] Zheng Du,Chen Shupeng. Progress and disciplinary frontiers of geographical research [J]. Advances in Earth Science,2001,16(5): 599-606. [郑度,陈述彭. 地理学研究进展与前沿领域[J]. 地球科学进展, 2001, 16(5): 599-606.]

[9] Lu Dadao, Cai Yunlong. Geography in China: As sciences of changing direction [J]. Advances in Earth Science, 2001, 16(4): 497-472. [陆大道,蔡运龙. 我国地理学发展的回顾与展望——地理学:方向正在变化的科学[J]. 地球科学进展, 2001,16(4): 467-472.]

[10] Tang A, Adams T, Usery E. A spatial data model design for feature-based geographical information systems [J]. International Journal of Geographical Information Systems, 1996, 10(5): 643-659.

[11] Li Tianjun. Research on Distributed Geo-spatial Object Model[D]. Beijing: Beijing University, 1997. [李天峻. 分布式地理空间对象模型研究[D].北京: 北京大学, 1997.]

[12] Wladawsky-Berger I. Turning points in information technology [J]. IBM System Journal,1999, 38(2&3): 449-452.

[13] Computationally efficient Methods for deep computing (DeepC) [EB/OL]. http://cosco.hiit.fi/Projects/DeepC/. 2005-05-10.

[14] Want R, Pering T, Tennenhouse D. Comparing autonomic and proactive computing [J]. IBM Systems Journal,2003, 42(1) : 129-135.

[15] Smith B, Mark D. Ontology and Geographic Kinds [A]. In: Peucker T, Chrisman N, eds. International Symposium on Spatial Data Handling[C]. Vancouver, Canada, 1998.308-320.

[16] Luo Yingwei, Wang Xiaolin, Xu Zhuoqun. The model of distributed GIS2 oriented multi-agent system [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2002,38(3):375-383. [罗英伟,汪小林,许卓群.面向分布式GIS的多Agent系统模型[J]. 北京大学学报:自然科学版, 2002,38(3):375-383.]

[17] Xue Ling, Yang Kaizhong, Shen Tiyan. Agent-based modeling: The new advance in geocomputation [J]. Advances in Earth Science, 2004,19(2):305-311. [薛领,杨开忠,沈体雁.基于agent 的建模——地理计算的新发展[J].地球科学进展,2004,19(2):305-311.]

[18] Tang C, Xu L, Feng S. An agent-based geographical information system [J]. Knowledge-Based Systems, 2001,14(5~6): 233-242.

[19] Guo Shenglian, Xiong Lihua, Yang Jing, et al. A DEM and physically based distributed hydrological model [J]. Journal of Wuhan University of Hydraulic and Electric Engineering,2000,33(6):1-5. [郭生练,熊立华,杨井,.基于DEM的分布式流域水文物理模型[J]. 武汉水利电力大学学报, 2000,33(6):1-5.]

[20] Xiong Lihua, Guo Shenglian. Distributed Watershed Hydrological Model[M]. Beijing: China Water Power Press, 2004.[熊立华,郭生练.分布式流域水文模型[M]. 北京: 中国水利水电出版社, 2004.]

[21] Li Li, Wang Haiqing. Geo-spatial data mining and knowledge discovering-study and development on geographical unit dataset [J]. Science of Surveying and Mapping, 2005, 30(3): 24-27. [李莉,王海清. 地理空间数据挖掘与知识发现——地理单元数据集的研究与开发[J]. 测绘科学, 2005, 30(3): 24-27.]

[22] Wang Hong, Wang Jun. Preliminary study of national basic geographical unit dataset [J]. Science of Surveying and Mapping, 2004, 29(3):22-25. [王红,王均. 国家基本地理单元数据集的初步研究[J]. 测绘科学,2004, 29(3):22-25.]

[23] Ren Hongyu, Yang Qinke, Han Lin, et al. Construction and application of national spatial hydrology database on a hydrological polygons basis [J]. Bulletin of Soil and Water Conservation, 2003, 23(3): 55-67. [任红玉,杨勤科,韩琳,. 全国水文计算单元空间数据库的建立与应用[J]. 水土保持通报, 2003, 23(3): 55-67.]

[24] Liu Changming. Advance in Geo-hydrology and Its Prospect in 21th Century [EB/OL]. http://www.waterinfo.net.cn, 2005-05-10. [刘昌明.地理水文学的研究进展与21世纪展望 [EB/OL]. http://www.waterinfo.net.cn,2005-05-10.]

[25] Becker A, Klöking B, Lahmer W, et al. The hydrological modeling system ARC/EGMO [A]. In: Singh Vijay P, Frevert D, eds. Mathematical Models of Large Watershed Hydrology[C]. Colorado:Water Resource Publications, LLC, 2002:321-384.

[26] Ao Ruzhuang, Wang Xiekang, Huang Er. BP based Simulation of overland flow [J]. Sediment Research, 2000,(4): 55-59. [敖汝庄,王协康,黄尔. 坡面产流模式的神经网络模拟[J]. 泥沙研究,2000,(4): 55-59.]

[27] Fish management zones [EB/OL].http://www.albertaoutdoorsmen.ca/fishingregs/zones_units.html,2005-05-10.

[28] Zhang Tianyu. Research on Marine GIS Field Model[D]. Beijing: Institute of Geographic Sciences and Natural Resources Research, CAS, 2002. [仉天宇.海洋GIS 场模型研究[D]. 北京: 中国科学院地理科学与资源研究所, 2002.]

[29] Feng Shizuo, Li Fengqi, Li Shaoqing. An Introduction to Marine Science [M]. Beijing: Higher Education Press,1996. [冯士笮,李凤歧,李少菁.海洋科学导论[M]. 北京: 高等教育出版社, 1996.]

[30] Wang Guihua, Li Rongfeng. Advance in the study of deducing ocean circulation from hydrographic data [J]. Advances in Earth Science, 2004,19(1):100-106. [王桂华,李荣凤.利用水文资料推测海洋流场的研究进展[J].地球科学进展,2004,19(1):100-106.]

[31] Nancy M.Ocean Currents[EB/OL]. http://www.marine.usm.edu/mar151/MAR_151_Chap_6c.html,2005-05-10.

[32] Su Fenzhen. Spatio-Temporal Analysis for Marine Fishery Resources[D]. Beijing: Institute of Geographic Sciences and Natural Resources Research, CAS, 2001. [苏奋振.海洋渔业资源时空动态研究[D]. 北京: 中国科学院地理科学与资源研究所, 2001.]

[33] Wang Xinwen, Lin Jianping. Conspectus of Geo-science [M]. Beijing: Geology Press, 1999. [汪新文, 林建平. 地球科学概论[M]. 北京:地质出版社,1999.]

[34] Sheng Peixuan, Mao Jietai, Li Jianguo, et al. Atmospheric Physics [M]. Beijing: Beijing University Press, 2003. [盛裴轩,毛节泰,李建国,. 大气物理学[M]. 北京:北京大学出版社,2003.]

[35] Science museum of China [EB/OL]. http://www.kepu.com.cn/gb/earth/weather/vary/index.html, 2005-05-10.

[36] Zhang Yongqiang, Zhou Wenxian. A scheme on the objective air mass grouping procedure [J]. Scientia Meteorology Sinica, 1997,17(4):384-392. [张永强,周文贤.气团客观分类实施方案研究[J]. 气象科学,1997,17(4):384-392.]

[37] Huang Ronghui. Review and prospects of the developments of atmospheric sciences [J]. Advances in Earth Science, 2001,16(5).643-657. [黄荣辉.大气科学发展的回顾与展望[J]. 地球科学进展, 2001,16(5):643-657.]

[38] Li Chongyin. Numeric simulation of atmospheric science [J]. Advances in Earth Science, 1991,6(5):58-60. [李崇银.大气科学数值模拟[J]. 地球科学进展, 1991,6(5): 58-60.]

[39] Ming Dongping, Luo Jiancheng, Zhou Chenghu, et al. Research on information extraction from high resolution remote sensing image and parcel unit extraction based-on features [J]. Journal of Data Acquisition & Processing, 2005, 20(1): 34-39. [明冬萍,骆剑承,周成虎,. 高分辨率遥感影像信息提取及块状基元特征提取研究[J]. 数据采集与处理, 2005, 20(1): 34-39.]

[40] Shen Zhanfeng, Luo Jiancheng, Ma Weifeng, et al. Web services in remotely sensed image distributed processing [J]. Computer Engineering and Applications, 2004, 40(8): 185-222. [沈占锋,骆剑承,马伟锋,.Web Services实现遥感图像分布式处理[J].计算机工程与应用,2004, 40(8): 185-222.]

[41] Shen Zhanfeng, Luo Jiancheng, Ma Weifeng, et al. Distributed computing environment for remotely sensed image processing [J]. Computer Engineering and Design, 2005, 26(1): 1-3. [沈占锋,骆剑承,马伟锋,.适合高分辨率遥感影像处理的分布式环境研究[J]. 计算机工程与设计, 2005, 26(1): 1-3.]

[42] Zheng Jiang. Study on Parallel Methods for Information Extraction and Analysis of Remotely Sensed Images[D]. Beijing: Institute of Geographic Sciences and Natural Resources Research, CAS, 2004. [郑江.并行遥感图像信息提取与分析方法研究[D]. 北京: 中国科学院地理科学与资源研究所, 2004.]

Outlines

/