Research Progress on Marine Organic Aerosols

  • Yizhe YI , 1 ,
  • Yujue WANG , 1 ,
  • Shubin LI 1 ,
  • Yiwen ZHANG 1 ,
  • Zhongxiang FAN 2 ,
  • Yiyang SUN 3 ,
  • Jialei ZHU 3 ,
  • Qi YUAN 1 ,
  • Chao ZHANG 1 ,
  • Xiaohong YAO 1 ,
  • Huiwang GAO 1
Expand
  • 1. Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao 266100, China
  • 2. Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China
  • 3. School of Earth System Science, Tianjin University, Tianjin 300072, China
WANG Yujue, research area includes marine atmospheric chemistry and aerosol chemistry. E-mail:

Received date: 2025-04-03

  Revised date: 2025-05-30

  Online published: 2025-05-17

Supported by

the National Key Research and Development Program of China(2024YFC2815800)

The National Natural Science Foundation of China(42205103)

Abstract

Marine aerosols are among the most important natural aerosols globally, playing key roles in the Earth’s radiation balance and climate change. They are a critical link between the ocean, atmosphere, and climate. Organic matter constitute a significant fraction of marine aerosols and can contribute up to 50% of submicron aerosol mass. Missing knowledge of the composition and formation of Marine Organic Aerosols (MOA) hinders the accurate evaluation of their climatic effects. This paper reviews research methods, spatial and temporal distribution patterns, chemical composition characteristics, and sources of MOA, providing a comprehensive summary of the domestic and international progress in marine organic aerosols, and proposes key research directions for future studies. Current research on the chemical nature was mainly focused on the fluorescent or water-soluble components, whereas the characterization or quantification of MOA molecular components remains largely unknown. Marine organic aerosols are generally abundant in regions with high phytoplankton activity or those under strong influence from transported continental pollutants. Their sources include sea-spray emissions or secondary formation processes across different sea areas, resulting in distinct MOA compositions and chemical properties. Currently, the limited of observational data limits our deep understanding of MOA formation and further investigation via laboratory experiments or modelling simulations. In the future, integrating observational, experimental, and modeling simulations should be combined to improve our understanding of the sources, sinks, and climate regulations of marine organic aerosols.

Cite this article

Yizhe YI , Yujue WANG , Shubin LI , Yiwen ZHANG , Zhongxiang FAN , Yiyang SUN , Jialei ZHU , Qi YUAN , Chao ZHANG , Xiaohong YAO , Huiwang GAO . Research Progress on Marine Organic Aerosols[J]. Advances in Earth Science, 2025 , 40(6) : 604 -620 . DOI: 10.11867/j.issn.1001-8166.2025.042

1 引 言

海洋气溶胶是全球最重要的天然源大气气溶胶,对地球的辐射平衡、海洋和陆地生态系统及区域空气质量产生重要影响1-2。海洋气溶胶不仅是海洋圈与大气圈物质交换的重要媒介,也是连接“海洋—大气—气候”的关键纽带3-6,其生成和气候效应是国际上层海洋—低层大气研究计划(Surface Ocean-Lower Atmosphere Study, SOLAS)关注的核心议题之一。
有机气溶胶是海洋气溶胶的重要组分,全球排放量达2~20 Tg/a,对亚微米海洋气溶胶的贡献可达50%以上;海洋有机气溶胶(Marine Organic Aerosols, MOA)作为清洁海洋大气边界层云凝结核和冰核的重要来源,在全球气候调节中扮演的角色不容忽视7-11。MOA既包括一次有机气溶胶,即表层海水中的有机质通过海洋飞沫直接排放进入大气形成的MOA;也包括二次有机气溶胶(Secondary Organic Aerosols, SOA),即海洋释放的二甲基硫和异戊二烯等挥发性有机物(Volatile Organic Compounds, VOCs)在大气中氧化生成的MOA12-14。此外,陆源沙尘和人为源污染物等外源性物质经大气长距离传输也会贡献MOA或影响其生成和大气转化过程6。厘清MOA的源—汇过程及其调控机制是准确评估海洋气溶胶气候效应、发展并完善海洋浮游植物排放驱动气候调节理论假说[CLAW(Charlson-Lovelock-Andreae-Warren hypothesis)]亟须解答的关键科学问题715-17

2 海洋有机气溶胶研究概况

MOA的相关研究可基于陆地沿海站点或船基走航的外场观测、实验室模拟或模式开展,外场观测主要以真实海洋大气气溶胶为研究对象,实验室模拟则以模拟生成的一次海洋飞沫气溶胶(Sea Spray Aerosol, SSA)为研究对象。进而,基于有机碳(Organic Carbon,OC)/黑碳分析仪、总有机碳分析仪、同位素、光谱和质谱等分析方法,对气溶胶样品的浓度和组成特征开展研究,MOA的具体研究方法和主要研究内容总结于文章第3部分。当前,实验室模拟聚焦于简化体系中研究MOA的生成过程。海洋调查受科考船和海况等客观条件限制,造成有关MOA时空分布、组成和理化特性的现场走航数据仍十分匮乏,全面解析MOA的生成机制存在挑战,也限制了模式中MOA模块的发展及对MOA气候效应的深入理解和准确评估。
不同海域海洋生化要素、大气环境条件和外源输送的差异造成MOA的主导生成途径不同,时空分布、组成和特性显著变化。MOA整体上呈现北半球高于南半球、沿岸和近海高于开阔大洋的空间分布格局,MOA通常在浮游植物活动旺盛或陆源传输影响的季节或时段呈现高值。开阔大洋上空,MOA组分以非水溶性有机物和类蛋白质主导;近海大气中,MOA则呈现水溶性组分和类腐殖质贡献升高的趋势。当前,在分子水平上对MOA化学组成的认识仍十分有限,大部分有机组分尚未解析;能够准确定量的物种也主要局限于传统的有机示踪分子或与海洋生物排放相关的组分。这种组成解析的局限性,限制了对其来源和转化机制的全面认识,MOA源汇过程的关键调控因子尚不清晰,对海洋气溶胶通量和气候效应的准确评估面临挑战。

3 海洋有机气溶胶的研究方法和关键问题

3.1 观测研究

早期研究人员通常选取受陆源影响较小的沿岸或岛屿站点开展海洋气溶胶的观测研究。位于大西洋沿岸的爱尔兰Mace Head站点和佛得角大气观测站(Cape Verde Atmospheric Observatory, CVAO)已开展了大量海洋气溶胶相关研究18-19,这些沿海或岛屿站点受陆源影响较小,是研究海洋气溶胶的理想站位;此外,CVAO站点所在海域的海洋生物活动旺盛,有利于探究海洋生源气溶胶的生成和特性。近年来,我国高度重视陆海统筹,近海海洋边界层大气综合立体观测技术和研究快速发展20。我国研究人员已在东海沿岸的花鸟岛建成了海洋大气综合观测站,针对MOA的化学组成、光学特性和来源开展了研究21-23。香港科技大学团队搭建了热带沿岸的大气综合观测站,揭示陆源污染与海洋排放相互作用下MOA的生成24-25。站点观测研究通常可以集成多种在线仪器或采样器对海洋气溶胶进行长周期监测26,综合观测和分析海洋气溶胶的浓度、成分、粒径分布和理化性质变化26-29;还可以结合沿岸海水和云覆盖等数据,深入分析海洋气溶胶中有机物的来源和传输过程1930。海洋气团主导时,沿岸和岛屿站点是研究MOA的理想选择,也适用于探究陆—海—气相互作用过程。但这些站点离陆地较近,难以避免高陆地背景大气污染的影响,在研究海洋本身对大气气溶胶的影响时存在很大干扰,从外场观测结果中剥离陆地和海洋源的贡献并分析各自影响,是基于站点观测研究海洋气溶胶需要解决的首要问题。
不同站点或海域观测MOA所采用的测量仪器和主要研究内容如表1所列。气溶胶质谱仪(Aerosol Mass Spectrometer, AMS)是陆基站点和航测中在线监测有机气溶胶浓度和组分的常用仪器,可对亚微米级MOA的分子碎片和组分信息开展高时空分辨率的测量,并解析主要有机组分的类别和来源。Mace Head站点已运用AMS开展了长年的MOA连续观测,并结合扫描电迁移率粒径谱仪(Scanning Mobility Particle Sizer, SMPS)和吸湿性串联差分电迁移率粒径分析仪(Humidified Tandem Differential Mobility Analyzer, HTDMA)等仪器测量,对MOA粒径分布、吸湿性和成云等开展了全面研究2629-30。李忠等49综述了气溶胶质谱技术在观测亚微米级海洋气溶胶研究中的应用,本文不再赘述。但在线AMS难以对MOA中的单一有机分子或物种进行直接测量或准确定量,已有少量研究运用化学电离质谱(Chemical Ionization Mass Spectrometer, CIMS)在线测量了MOA的分子组成信息38;也有研究人员运用在线离子色谱等方法,对甲磺酸或有机胺等具体组分开展了准确的定量分析32-3347。对于MOA分子组成的更精细、全面的定性或定量表征,则通常基于膜采样和离线分析方法开展;在线测量仪器对运行环境和成本均有较高要求,使得基于膜采样的离线分析方法在开阔大洋的走航观测中被更广泛地应用。运用荧光分光光度计、紫外—可见分光光度计或傅里叶变换红外光谱仪分析采集的MOA膜样品,可以分析MOA的光学特性、荧光组分或官能团信息。运用超高分辨率质谱或色谱—质谱联用方法,则可以对MOA的分子组成进行准确定性或定量分析193645(具体研究内容见第4部分)。研究人员在花鸟岛站点和CVAO站点运用离线分析膜采样方法对MOA的光学性质和化学组分等开展了大量研究(表1)。基于膜采样的MOA离线分析方法通常可以对MOA的组分或特性开展更准确的精细化表征,深入理解MOA的生成和环境气候效应的分子机制;但相较于在线方法其时空分辨率较低,难以在观测中捕捉短期事件的变化或对演变过程进行深入剖析。
表1 海洋有机气溶胶的观测研究

Table 1 Observation studies on Marine Organic AerosolsMOA

观测站点/海域 采样时间 测量仪器 主要研究内容 参考文献
Mace Head站点 2009—2011年 扫描电迁移率粒径谱仪(SMPS)、吸湿性串联差分电迁移率粒径分析仪(HTDMA)和气溶胶质谱仪(AMS)

MOA粒径分布

组分和吸湿性

2629-30
CVAO站点 2017年9~10月 高效阴离子交换色谱串联安培检测、超高效液相色谱结合电喷雾静电场轨道阱质谱(UHPLC-Orbitrap MS)和火焰离子检测器

碳水化合物

氨基酸

脂质

19
2007—2011年 离子色谱 乙二酸 31
花鸟岛站点 2019年春、夏、秋、冬

紫外—可见分光光度计

同位素质谱仪

棕色碳 21

总有机碳/总氮分析仪

离子色谱

水溶性有机氮 22
东亚陆架海 2021年5~6月 离子色谱 低分子量有机胺 32
2019年12月 在线离子色谱 有机胺 33
2023年4~5月

紫外—可见分光光度计

荧光分光光度计

MOA光学性质 34
2018年3~4月

气相色谱—质谱联用仪(GC-MS)

热脱附GC-MS

有机分子示踪物 35
2019年春、夏、秋、冬 UHPLC-Orbitrap MS 生物源有机硫酸酯 36
大西洋 2017年5~6月 飞行时间气溶胶化学分析仪(ToF-ACSM) MOA化学组成类别 37
2015年11月、2016年5月、2017年9月和2018年4月 离线热脱附化学电离质谱(TD-CIMS) 有机分子组成 38
2011—2012年春、秋

HTDMA

高分辨率飞行时间气溶胶质谱仪(HR-ToF-AMS)

MOA吸湿性

MOA化学组成类别

39
太平洋 1992年9~10月 GC-MS 羟基脂肪酸 40
2014年3~4月和2015年3~5月 离子色谱、荧光检测器 水溶性有机氮 41
2002年9~10月和2004年3月 离子色谱、总有机碳/总氮分析仪 水溶性有机氮 42
2014年3~4月 GC-MS 有机分子示踪物 43
2014年3~4月 在线离子色谱 有机胺 44
2015年4~5月 超高效傅里叶变换离子回旋共振质谱(FTICR MS) 水溶性MOA分子组成 45
2014年3~4月和2016年3~4月 荧光显微镜 生物气溶胶 46
南大洋 2017年11月至2018年2月

在线离子色谱

单颗粒气溶胶质谱仪(SP-AMS)

甲磺酸 47
北冰洋 2017年8~9月

高效液相色谱

紫外—可见分光光度计

荧光分光光度计

一次MOA的光学性质 48
船基走航观测基于科考船执行的航次,在不同海域开展海洋有机气溶胶的在线观测或离线采样分析(图1),船基大气观测通常远离陆地,规避了沿岸站点易受陆源污染影响的问题。莱布尼茨对流层研究所团队在大西洋开展了海洋气溶胶的走航观测[图1(b)],测量了亚微米有机气溶胶的浓度和组成,解析了MOA的主要来源,并发现其质量占比决定了气溶胶吸湿性939。西班牙国家研究委员会在极地开展了走航观测,重点研究海冰覆盖对海洋气溶胶中有机物和新粒子生成的影响55-56。近年来,我国涉海高校和科研院所已在近海、极地、北太平洋和南大洋等多个海域开展了海洋气溶胶的走航观测,各团队针对MOA的不同方面开展研究。自然资源部第三海洋研究所团队在南大洋和南极针对海洋气溶胶开展走航观测,重点关注与海洋浮游植物排放和气候调节相关的甲磺酸(Methanesulfonic Acid, MSA)组分4757。中国科学技术大学团队在不同海域进行走航观测,重点关注极地海域,通过有机分子示踪物探究MOA的来源和生成机制58。中国海洋大学是我国最早开展海上大气走航观测研究的团队之一,其依托“东方红2”和“东方红3”等科考船,在东亚近海至西北太平洋海域等多个海域持续开展了MOA的走航观测[图1(a)],聚焦与海洋排放及陆源传输相关的生物气溶胶、有机胺及二次有机气溶胶等组分3336434659。厦门大学团队在西北太平洋与南海海域开展了海洋气溶胶走航观测,重点关注水溶性有机气溶胶的分子组成及冰核相关成分4560。天津大学团队也在全球不同大洋开展了大量走航观测,重点关注MOA的示踪分子、吸光组分及其辐射效应61-62。北京大学63、南京信息工程大学64和华南理工大学65等单位的研究人员也在近海开展了走航观测,主要关注 MOA的化学组成、来源和转化过程的研究。
图1 海洋有机气溶胶的走航观测和模拟研究

(a)“东方红3”科考船西北太平洋走航观测;(b)Polarstern科考船大西洋走航观测;(c)美国航空航天局全球飞机航测;(d)海洋飞沫气溶胶(SSA)实验室模拟装置;(e)波浪水槽式SSA实验室模拟装置;(f)海扫—鼓泡式SSA走航模拟装置;(g)SSA船基模拟装置950-54

Fig. 1 Investigation of marine organic aerosols via cruise observation and laboratory simulation experiments

(a) R/V Dongfanghong 3” over the northwest Pacific Ocean; (b) R/VPolarstern over the Atlantic Ocean; (c) The National Aeronautics and Space Administration (NASA) global airborne campaign, named Atmospheric Tomography (ATom) mission; (d) Laboratory Sea Spray Aerosol (SSA) simulation tank using diffuser and plunging jet; (e) Laboratory SSA simulation using a wave channel; (f) Sea Sweep-SSA simulation using diffusers; (g) Onboard SSA simulation950-54.

此外,美国国家海洋和大气管理局(National Oceanic and Atmospheric Administration, NOAA)、美国航空航天局(National Aeronautics and Space Administration, NASA)等机构的研究人员基于飞机航测[图1(c)]对海洋大气边界层的有机气溶胶开展了研究66-67。在开阔海域开展船基走航观测或飞机航测,不仅在很大程度上排除高陆地背景的干扰,真实反映海洋大气环境的情景;还可以基于科考船同步测量的海洋理化生参数,如海水叶绿素-a(Chl-a)、有机质、盐度、温度及海表风速等,分析海洋和大气环境要素对有机气溶胶生成的综合影响和调控作用。但与地基站点观测相比,走航观测的空间和配套条件受限,且面临海浪、大风、高湿和高盐等恶劣环境条件的挑战,通常无法集成多种先进观测设备,难以实现对MOA的精细化和高时分辨率观测;此外,船基走航观测时段通常取决于航次执行情况,难以开展长周期连续监测。

3.2 实验室模拟研究

与站点或船基走航观测相比,实验室模拟条件可控,多用以探究海洋飞沫产生有机气溶胶的特性、生成和调控机制,可以量化单一物种在SSA中的富集或某些因素对MOA生成的影响,有助于配合观测深入理解外场现象的发生过程或机制68。自然界SSA的生成途径包括:气泡上升至海气界面破裂产生的“膜滴(film drops)”,在气泡破裂后的空腔内形成射流水柱而产生的“射滴(jet drops)”,较高的海表风速(>10 m/s)直接撕裂海浪波峰形成的“裂滴(spume drops)”69。由于裂滴产出的SSA粒径尺寸较大,会快速再沉降到海表,在大气中的寿命仅为几秒至几分钟,因此在大气化学和气候研究中通常较少关注。
针对不同的SSA生成方式和研究目标,研究人员设计搭建了多种尺寸的SSA模拟装置,用以探究海洋飞沫生成的有机气溶胶5570-72。这些SSA模拟装置大多关注膜滴或射滴的生成过程,根据装置模拟原理分为鼓泡式、射流/跌瀑式和波浪水槽式3类[图1(d)~图1(g)]。鼓泡式通常运用烧结玻璃过滤器或空气扩散器模拟气泡破裂过程产生SSA,是最早的SSA模拟方式73;射流/跌瀑式则是运用蠕动泵等方式将海水抽至较高处形成射流水柱或水瀑,通过高速水柱或水瀑跌落撞击水面形成SSA51图1(d)]。基于这两种方式搭建的SSA模拟装置通常具有体积小、实验条件易控制的优点,且结合射流/跌瀑式能较好地重现真实SSA的粒径分布,是当前应用较广的模拟方式5174。我国研究人员已基于以上方式开展了海洋飞沫生成机制及其排放有机组分的研究,例如:山东大学团队7075和复旦大学团队76等。波浪水槽式装置通过在较大体积的水槽中产生波浪模拟SSA的生成,例如,美国加州大学圣地亚哥分校搭建了长33 m的波浪水槽,研究海洋飞沫排放的有机组分[图1(e)]7277-78。波浪水槽是最接近真实海洋环境中SSA生成情景的模拟方式,且可以基于海水培养实验模拟浮游植物等生长过程以及产生SSA的变化情况79-80;但由于该方式对空间和运维成本要求较高,其应用不及前两种方式广泛。实验室SSA模拟装置还可以与氧化流式反应器等氧化过程模拟装置联用,研究SSA生成后在海洋大气中的老化过程81
有研究者将海洋飞沫模拟装置带到海上实验场,开展了SSA的船基模拟实验。例如,NOAA的研究人员基于“海扫”装置[图1(f)]在加利福尼亚州附近海域对一次海洋气溶胶的特征进行了模拟与研究53;Rastelli团队54开展了船基海洋飞沫生成模拟实验[图1(g)],对海洋气溶胶中有机物和微生物的转移和富集开展研究。基于简化海水体系,进行物质添加或海水培养,以模拟海洋飞沫生成有机气溶胶的过程,有助于探究和理解观测现象的机制,量化单一要素影响。但简化模拟体系与复杂海洋环境存在差异,真实海洋大气中除海浪飞沫排放外,还存在有机气溶胶的二次生成等其他来源及沉降过程的影响。因此,真实海洋大气气溶胶中OC的富集因子通常高于模拟生成的SSA中OC的富集因子。例如,基于鼓泡法生成的SSA中OC的富集因子为130~640,同一海域观测得到的海洋大气气溶胶中OC的富集因子为724~6 81082-84。海洋飞沫的实验室模拟是理解MOA生成机制的重要手段,未来SSA模拟需要在更接近真实海气环境条件下设计实验情景,配合深入理解MOA的观测现象,并用以优化大尺度模式中使用的关键参数。

3.3 模式研究

海表Chl-a浓度水平是模式计算海洋飞沫气溶胶中有机物质量占比的关键依据,通常将卫星Chl-a数据与海表10 m风速(U 10)或SSA粒径分布相结合作为海洋一次排放有机气溶胶的参数化方案,在全球模式中用以模拟海洋飞沫产生MOA的总量85-90。Gantt等86还在一次有机气溶胶(Primary Organic Aerosols,POA)的参数化方案中引入了对MOA老化过程的模拟。海洋浮游植物或微表层光解产生的二甲基硫(Dimethyl Sulfide,DMS)、异戊二烯和单萜烯等挥发性有机物经海气交换释放到大气,可以在大气中被氧化二次生成MOA。海洋源VOCs的估算将Chl-a、光合有效辐射和风速作为输入参数,结合浮游植物的VOCs排放速率获得海洋释放到大气的VOCs总量,进一步运用大气化学模式估算海洋源VOCs氧化生成的MOA总量8587
当前模式对MOA模拟存在很大的不确定性,例如,Spracklen等88基于GEOS-Chem全球化学模式,运用卫星遥感Chl-a数据和观测的大气气溶胶OC数据,估算得到MOA的全球总排放量约为8 TgC/a;这与Long等89基于NCAR-CAM模式(National Center for Atmospheric Research- Community Atmosphere Model)的模拟结果(29 TgC/a)以及Roelofs90基于ECHAM5-HAM模式(European Centre Hamburg Model 5-Hamburg Aerosol Module)的模拟结果(75 TgC/a)存在较大差异。不同模式对MOA排放量模拟结果的差异受其参数化方案和数据来源等影响。Spracklen等88采用的MOA参数化方案中主要考虑了海表Chl-a浓度的影响,而Long等89将Chl-a与U 10、海表温度和气溶胶粒径分布等影响因素相结合进行参数化。Spracklen等88和Roelofs90均采用自上而下的方法进行模拟,将观测的MOA浓度或卫星遥感的叶绿素浓度用以约束模型输出结果;Long等89则采用自下而上的方式进行MOA模拟,并在研究中指出MOA的生成量高度依赖于海表Chl-a浓度,且呈现非线性响应关系,基于Chl-a浓度对MOA质量占比进行线性外推会造成模型对不同海域MOA排放量的高估或低估。模式对MOA模拟的不确定性,源于对MOA排放机制的认识不足。例如,模式中对SSA有机组分的低估,特别是对其中非水溶性组分的低估,以及风速对SSA有机组分的影响尚未明确89。MOA排放和生成的时空异质性涉及复杂的海洋生物地球化学过程和大气化学过程,亟须开展多海域的MOA现场观测,形成观测数据集用以约束模型参数或输出结果,优化排放源函数以提升全球尺度MOA模拟的准确性。

4 海洋有机气溶胶的时空分布和组成特征

4.1 海洋有机气溶胶的时空分布

MOA的浓度水平通常以OC衡量,不同海域OC浓度水平为0.01~2.28 μgC/m3,开阔大洋中大气气溶胶OC浓度大多低于1.0 μgC/m3图2)。MOA的空间分布整体上呈现北半球高于南半球、沿岸和近海高于远洋的分布格局223891-100,MOA的高浓度通常与陆源传输等人为影响或高海洋浮游植物活动有关。与南半球相比,北半球海洋大气受到更多的陆源传输、船舶排放等人为活动影响,造成MOA浓度呈现北半球高于南半球的空间分布格局。燃烧和人为源排放相关的有机气溶胶对大西洋亚微米MOA的贡献分别为30%和19%,且二者在北大西洋的贡献高于南大西洋9。海洋气团主导期间,化石燃料燃烧和其他陆源污染对北大西洋MOA的贡献分别为14%和7%;陆源气团主导期间,二者贡献升高至37%和31%958101。全球范围内,船舶排放的有机气溶胶为0.14 TgC/a,其分布与船舶航线密切相关,北半球船舶航线密集,船舶排放有机气溶胶的浓度显著高于南半球,这也是造成北半球MOA高于南半球的原因之一102。有机物、硫酸盐和海盐是海洋气溶胶最主要的组分,有机物对亚微米海洋气溶胶的质量贡献占3%~90%966103-104。有机物通常主导了开阔大洋或高海洋浮游植物活动海域的亚微米海洋气溶胶组成。环球航测发现:在清洁大洋边界层中,有机气溶胶对亚微米海洋气溶胶的贡献约为50%105;在高浮游植物活动海域,海洋气溶胶中有机物含量明显增加,其在亚微米颗粒物中的质量贡献可达60%以上80103-104
图2 海洋有机气溶胶浓度的空间分布30416191-99

饼图大小表示对应海域大气气溶胶中总的有机碳浓度。

Fig. 2 Spatial distribution of marine organic aerosol concentration30416191-99

Size of the pie chart indicates the total concentration of Organic Carbon (OC) in atmospheric aerosols over the sea area.

MOA可依据组分水溶性的差异划分为水溶性有机组分和非水溶性有机组分,其含量通常以水溶性有机碳(Water-Soluble Organic Carbon, WSOC)和非水溶性有机碳(Water-Insoluble Organic Carbon, WIOC)的浓度进行衡量。在开阔大洋或海洋浮游植物高活动海域,MOA的组成以非水溶性组分为主,这主要是因为在海洋微表层(Sea surface Microlayer,SML)富集并通过海洋飞沫进入大气气溶胶的有机组分,多为海洋生物产生的疏水性和非水溶性有机质3799106。在开阔大洋,MOA浓度的变化与浮游植物活动水平密切相关,通常在高浮游植物活动的时段呈现出高值。例如,大西洋沿岸的Mace Head站点的连续观测显示,MOA在高浮游植物活动的夏季浓度明显升高28。在近海大气中,MOA则转变为WSOC主导或与WIOC贡献相当,这主要由于陆源传输的影响增加,二次生成或老化的有机气溶胶通常为水溶性较强的组分95。海洋大气有机气溶胶的季节变化还受陆源沙尘或人为污染传输的直接影响,在近海海域这一影响尤为显著,因此MOA在沙尘多发或人为污染传输影响显著的季节浓度也较高2191

4.2 海洋有机气溶胶光学特性

MOA通常含有表层海水中富集的类蛋白质(Protein-Like Organic Matter, PLOM)及与陆源传输相关的类腐殖质(Humic-Like Substances, HULIS)等荧光组分,因而表现出荧光特性107-108。基于三维荧光光谱测量溶液提取有机气溶胶的激发/发射波长,进一步结合平行因子分析(Excitation-Emission Matrix-Parallel Factor Analysis,EEM-PARAFAC)可以解析MOA的荧光特性和组分,Chen等109对有机气溶胶中的荧光组分进行了总结(图3)。MOA中的PLOM通常呈现出激发/发射波长为270~280 nm/295~320 nm和275~280 nm/330~350 nm荧光特征峰;这类荧光组分主要为类酪氨酸和类色氨酸,还包括一些水溶性氨基酸或肽类物质,主要来源与海洋生物有关110。类蛋白组分通常在表层海水中富集,研究者发现海洋气溶胶中的PLOM与海盐表现出相近变化趋势,表明其通过海洋飞沫排放进入MOA108110。与PLOM相比,MOA中的HULIS组分通常具有更长的激发波长与发射波长,其荧光特征峰通常包括290 nm/410 nm(HULIS-2)和260 nm/425~475 nm、360 nm/445~470 nm(HULIS-1)107-108110图3)。其中,HULIS-2通常为低氧化态的类腐殖质组分,与陆源一次排放有关;HULIS-1则为高氧化态的类腐殖质组分,与陆源或海洋源二次生成或老化有关109。MOA中的荧光组分通常由海洋自身排放的PLOM主导,当陆源传输或二次转化过程较强时,HULIS组分的荧光贡献增加109
图3 海洋有机气溶胶中不同荧光组分的激发发射波长(据参考文献[109]修改)

Fig. 3 Excitation-emission matrices of fluorescent components in marine organic aerosolsmodified after reference109])

MOA的吸光水平和特性与陆源污染长距离传输有关。当前对MOA吸光的研究多聚焦于水溶性有机物,以WSOC为研究对象。东亚近海受到较强的陆源人为污染影响:渤海和黄海海域,海洋气溶胶中WSOC在365 nm波长的吸收系数(Abs365)分别为(3.38±1.33) Mm-1和(1.45±0.79) Mm-1[34;东海海域冬季和春季大气气溶胶中WSOC的Abs365为(0.39±0.27) Mm-1和(0.73±0.44) Mm-1[2234。南海沿岸站点观测到大气气溶胶的Abs365为(3.34±3.45) Mm-1,热带印度洋海域走航观测采集的有机气溶胶Abs365为(1.5±1.1) Mm-1,这些海域的MOA光吸收高值主要与生物质燃烧排放有关111-112。MOA的吸光水平显著低于陆地人为污染主导环境中的大气气溶胶113。在受陆源传输影响较小的开阔大洋,MOA的光吸收强度很低,例如,在北极海域和海洋排放主导时段的印度洋观测到的海洋气溶胶的Abs365仅为(0.07±0.04) Mm-1和(0.09±0.05) Mm-1[6295

4.3 海洋有机气溶胶的分子组成

基于气溶胶质谱仪、拉曼光谱和傅里叶变换红外光谱(Fourier Transform Infrared spectroscopy, FTIR)等方法可以对MOA的化学组分类别和主要官能团进行识别79,MOA分子组成的研究进展如表2所列。运用FTIR分析发现,亚微米SSA中主要包括羟基、烷烃、羧酸和有机胺类物质,且羟基与烷烃类的占比最高可以达到88%,表明亚微米海洋飞沫有机气溶胶以脂肪族或有机酸类物质为主105114-115。亚微米SSA中碳水化合物在有机物总质量中的占比为37%~68%,这些碳水化合物可能与表层海水中的生物活动有关95115-116。对MOA组成进行分子水平上的精细化分析需要借助于先进的质谱及其联用方法,以静电场轨道阱质谱(Orbitrap MS)和傅里叶变换离子回旋共振质谱(Fourier Transform Ion Cyclotron Resonance Mass Spectrometry,FT-ICR MS)为代表的超高分辨率质谱(Ultra-High Resolution Mass Spectrometry,UHRMS)及其联用方法为分析海洋有机气溶胶的复杂分子组成提供了重要手段,推动了对其化学组成的深入理解117-118。对极地大气有机气溶胶进行UHRMS分析发现,34%~61%的有机分子为含氮组分119。在大西洋的研究表明,海洋飞沫排放的有机气溶胶以含氮组分为主导(>95%),整体呈现出高N含量、低O/C值的类肽组分特征114。Bao等4560运用FT-ICR MS在我国东部沿海和西北太平洋的水溶性有机气溶胶中识别到近万个有机分子式,发现含C、H、O元素和含C、H、O、N元素的物种占比最高,例如含氮多环芳烃等组分,在我国近海海域含硫组分的占比增加,但大部分有机分子尚未被准确解析。
表2 海洋有机气溶胶的分子组成和主要特征

Table 2 Molecular compositions and characteristics of Marine Organic AerosolsMOA

有机类别 特征 参考文献
MOA分子组成 高氮、低O/C值的类肽组分特征;饱和程度高;氧化程度较低 41-4295114
MOA有机类别或官能团 含氮MOA和氧化态MOA;羟基、烷烃、羧酸和有机胺类;含氮多环芳烃;碳水化合物 939454995105115
已被定量的MOA有机分子 甲磺酸(MSA);脂肪酸、多环芳烃、脂类、糖类;等有机分子标志物;异戊二烯/单萜烯-SOA示踪物;氨基酸和尿素;低分子量有机胺;有机硫酸酯 333657596172116

注:MSA: Methanesulfonic Acid。

MOA中已被准确识别并定量的分子主要包括:MSA、脂肪酸、多环芳烃、脂类、糖类、氨基酸、有机胺、尿素和有机硫酸酯(Organosulfates, OSs)等5772117。MSA是海洋浮游植物排放的二甲基硫经氧化生成的最主要的有机物,因其对成云过程和气候的影响,成为最早受到关注的MOA组分47。海洋气溶胶中的糖类、氨基酸和脂类化合物通常与海洋生物活动相关,通过海洋飞沫直接排放进入大气气溶胶,胡伟等120对海洋气溶胶中的有机分子示踪物进行了全面综述,本文不再赘述。有机胺在近海和开阔海域大气气溶胶中广泛存在,可以参与并促进清洁大洋的新粒子生成,影响海洋边界层气候33。在北大西洋,二甲胺和二乙胺对亚微米海洋气溶胶中水溶性有机氮的贡献约为35%121,但在太平洋沿岸,有机胺的质量贡献则很低122。大气气溶胶中氨基酸对水溶性有机氮的贡献在西北太平洋沿岸为22%122,但这一贡献在地中海仅为2%123。Fu等1461对不同海域海洋气溶胶中的糖类、脂类、多环芳烃和生物源SOA示踪物等140余种有机组分进行了定量分析,这些组分对总有机碳质量的贡献最高不到30%。最近,研究人员在东亚近海的走航调查发现,MOA中存在海洋浮游植物排放异戊二烯氧化生成的有机硫酸酯组分,对MOA的贡献最高达6%以上,是以往研究中未被识别的MOA重要组分36。由此可见,研究人员立足不同研究目标对MOA中的有机分子进行了识别和定量,但绝大部分有机分子尚未被准确识别。海洋与陆地大气环境条件和主要源汇过程存在明显差异,有待基于走航调查,深入理解MOA的分子组成,为准确评估MOA的源汇机制和气候效应提供理论依据。

5 海洋有机气溶胶的主要来源和二次生成特性

基于碳稳定同位素(δ¹³C)、有机分子示踪物或结合正矩阵因子分解法(Positive Matrix Factorization, PMF)可以对MOA的来源开展研究(图4)。研究人员基于δ¹³C分析发现,与陆地环境的有机气溶胶相比,海洋大气中的有机气溶胶以新生成的组分为主,这主要源于海洋生物的新鲜排放124;因此,可以基于δ13C值的变化粗略估算海洋源和陆源传输对MOA的贡献108。MOA中的δ13C分布特征受到生物活动、海域和季节变化的影响,海洋生物活动固定CO2导致δ13C值偏正,在高海洋生物活动时期,MOA表现出δ13C值更加偏正125。在北极和南大洋,海洋新碳对气溶胶中OC的贡献分别为80%±12%和52%±19%126。碳同位素的方法仅能对MOA的陆源和海洋源贡献进行估算,进一步基于有机分子示踪物或结合源解析方法,可以对MOA的来源和生成途径进行更深入的解析。Fu等61基于环球航次,调查了MOA中的分子示踪物,定量解析了海洋排放、陆源传输、化石燃料燃烧、生物质燃烧和二次生成对其的贡献,大致呈现开阔大洋海洋排放贡献较高、热带海域二次生成贡献较高以及近海海域陆源相关来源贡献增加的趋势。运用PMF等源解析方法分析离线或在线测量的有机分子组成信息,可以对MOA的来源进行定量解析。Huang等9运用PMF解析了在线气溶胶质谱测量的大西洋MOA的分子碎片信息,结果表明海洋源氧化态OA、含氮OA和一次排放OA对亚微米MOA的贡献分别为16%、16%和19%,人为源氧化态OA和燃烧排放相关的氧化态OA的贡献分别为19%和30%。
图4 海洋有机气溶胶的来源和生成过程

Fig. 4 Sources and formation pathways of marine organic aerosols

5.1 海洋飞沫一次排放

海洋是地球上最大的活性有机质储库,海水中溶解有机碳储量与大气中CO2的含量相当127。海水中大量存在的糖类、氨基酸和脂质等有机组分会在SML中富集,进而在气泡破裂或海浪破碎过程中直接排放进入海洋气溶胶116-117127-128。SSA中有机物的化学组成与SML中的有机物组成相似106,受表层海水生化要素的直接调控37986。与表层海水和微表层相比,SSA中的有机物相对海盐表现出高度富集的特征,OC的富集因子(EFOC)可以达到103~105数量级54129-130
上层海洋的生物活动在很大程度上驱动了表层海水的生化要素和大气有机气溶胶的生成,海洋气溶胶中有机物的含量与海表生物活动直接有关80。海洋表层生物活动较高时,海洋气溶胶中有机物的含量显著增加80103-104。若不考虑海洋有机质向大气的排放,全球化学模式对高生物活性期间的大气有机气溶胶浓度低估了5~20倍88。走航和模拟研究均发现,MOA的荧光强度与海水Chl-a浓度变化一致107110,浮游植物活动较高时,SSA中荧光有机组分的含量明显升高107。然而,以叶绿素指征海洋生物活动的影响可能无法完全解释表层海水有机质含量的变化,其重要原因是海水中大量的溶解有机质不能通过叶绿素反演15。不同有机组分在SSA中的富集特征存在差异,与有机分子的结构直接相关,同时受到有机质浓度、海水温度和盐度等因素的影响131-132。具有表面活性的有机组分通常更容易在海洋微表层富集,并进一步在气泡破裂过程中转移至SSA中,表现出在海洋气溶胶中的高度富集79128,徐名兰等133对SSA生成过程中表面活性有机物的作用进行了总结。

5.2 二次生成

海洋浮游植物和微表层的光化学反应会向大气中释放大量的SOA前体物,例如DMS、异戊二烯和单萜烯等,且在近海、热带或海洋生物活性较高的海域表现出高浓度134。在我国近海的春季,大气异戊二烯的浓度为15×10-12~141×10-12;藻华期间,异戊二烯和α-蒎烯的浓度可达187×10-12和125×10-12[135-136。这些高反应活性的VOCs可以在海洋大气边界层中被OH自由基等氧化生成二次有机气溶胶(图5137。对不同海域大气的观测研究表明,异戊二烯和单萜烯生成的SOA在热带和近海大气中的浓度高于其他海域4361。在热带海域,海洋生源异戊二烯生成的SOA可以贡献亚微米有机气溶胶质量的30%87;藻华期间,异戊二烯SOA的浓度显著升高,并可以解释海洋大气云凝结核数浓度的变化;在北极的夏季,海洋源SOA主导了50~100 nm颗粒物的增长,在极地气候变化中发挥着重要作用10
图5 海洋源挥发性有机物氧化生成二次有机气溶胶(据参考文献[137]修改)

Fig. 5 Formation of secondary organic aerosols via the oxidation of marine volatile organic compoundsmodified after reference137])

前期研究大多关注海洋生源VOCs气相氧化生成SOA的过程,最近,研究者基于走航观测提出海洋大气中的异戊二烯氧化产物还可以与硫酸盐进一步反应,发生类似陆地大气环境中的酸催化液相反应,生成以有机硫酸酯为代表的液相SOA36。之前有少量研究在太平洋、大西洋和南北极的海洋大气中观测到以异戊二烯-OSs为代表的有机硫酸酯的信号60119,且大多研究认为,海洋大气OSs的生成与陆源大气污染的传输有关138。Wang等36基于对海洋大气气溶胶开展的四季观测,证实了海洋排放异戊二烯等生源VOCs与硫酸盐反应生成有机硫酸酯类物质,揭示了酸催化液相反应是海洋大气SOA潜在的重要生成途径。由于当前海洋大气OSs的观测数据十分有限,不同海域大气OSs的生成过程和调控因子仍不清楚。海洋微表层光解和浮游植物光合作用会生成大量的DMS并释放进入大气,DMS氧化生成的硫酸盐是海洋大气气溶胶的主要组分之一,且海洋大气气溶胶通常呈现酸性条件6677。根据酸催化液相反应所需的环境条件,推测不同海域VOCs前体物的浓度水平和组成差异可能是影响海洋大气OSs生成和酸催化液相反应生成SOA的主要因素,但该推测需基于不同海域的观测进一步证实。海洋大气环境具备MOA液相二次生成所需的有利条件:VOCs前体物、硫酸盐、酸性颗粒物以及高相对湿度77。在生物源VOCs排放较高的近海或热带海域,酸催化液相反应在MOA生成中的作用需要重点关注134

6 总结与展望

本文总结了MOA的国内外进展、关键科学问题、研究方法、时空分布特征、组成特性及主要来源。相较于海洋气溶胶中的主要无机组分海盐和硫酸盐,MOA组成复杂,在分子水平上的定性和定量表征存在较大缺失,尤其在走航现场调查资料方面存在不足,这限制了对其源汇机制的深入理解及模型中MOA模拟模块的发展,是准确评估海洋气溶胶气候效应的限制瓶颈。展望未来MOA研究,应充分结合现场观测、实验室模拟和模式研究的优势,开展立足原位海洋环境、以观测结果为基础依据的实验室模拟和模式研究,从现象到机制层面,深入理解MOA的生成、演化过程及在气候调节和反馈中的作用。具体应加强以下方面的研究:
(1)重视MOA的走航调查和资料积累,尤其对代表性海域的观测数据收集,包括浓度水平及与辐射和成云相关的关键理化特性参数,明确其在不同海域的源汇分布格局,为海洋气溶胶的气候效应评估提供关键数据支撑。
(2)突出从分子水平阐明MOA的组成和特性,更全面地认识并准确追踪MOA的源汇过程,从有机质角度剖析上层海洋和低层大气间物质交换的调控机理,进而深入理解海气界面的碳循环过程。
(3)聚焦区域和全球模式中MOA的模拟方案优化,以观测调查数据为基础,构建MOA生成及其与海水理化生要素、气象条件的可靠量化关系,揭示关键调控因子,为准确模拟海洋有机气溶胶的时空分布、评估其气候效应提供观测、模拟的理论依据。
[1]
DONEY S C RUCKELSHAUS M EMMETT D J, et al. Climate change impacts on marine ecosystems[J]. Annual Review of Marine Science20124: 11-37.

[2]
LU M L CONANT W C JONSSON H H, et al. The Marine Stratus/stratocumulus Experiment (MASE): aerosol-cloud relationships in marine stratocumulus[J]. Journal of Geophysical Research: Atmospheres2007112(D10). DOI: 10.1029/2006JD007985 .

[3]
COCHRAN R E RYDER O S GRASSIAN V H, et al. Sea spray aerosol: the chemical link between the oceans, atmosphere, and climate[J]. Accounts of Chemical Research201750(3): 599-604.

[4]
SCHIFFER J M MAEL L E PRATHER K A, et al. Sea spray aerosol: where marine biology meets atmospheric chemistry[J]. ACS Central Science20184(12): 1 617-1 623.

[5]
BROOKS S D THORNTON D C O. Marine aerosols and clouds[J]. Annual Review of Marine Science201810: 289-313.

[6]
ITO A MIYAZAKI Y TAKETANI F, et al. Marine aerosol feedback on biogeochemical cycles and the climate in the Anthropocene: lessons learned from the Pacific Ocean[J]. Environmental Science: Atmospheres20233(5): 782-798.

[7]
MURPHY D M ANDERSON J R QUINN P K, et al. Influence of sea-salt on aerosol radiative properties in the Southern Ocean marine boundary layer[J]. Nature1998392: 62-65.

[8]
MCCLUSKEY C S HILL T C J MALFATTI F, et al. A dynamic link between ice nucleating particles released in nascent sea spray aerosol and oceanic biological activity during two mesocosm experiments[J]. Journal of the Atmospheric Sciences201774(1): 151-166.

[9]
HUANG S WU Z J POULAIN L, et al. Source apportionment of the organic aerosol over the Atlantic Ocean from 53°N to 53°S: significant contributions from marine emissions and long-range transport[J]. Atmospheric Chemistry and Physics201818(24): 18 043-18 062.

[10]
MOSCHOS V DZEPINA K BHATTU D, et al. Equal abundance of summertime natural and wintertime anthropogenic Arctic organic aerosols[J]. Nature Geoscience202215(3): 196-202.

[11]
XU W OVADNEVAITE J FOSSUM K N, et al. Sea spray as an obscured source for marine cloud nuclei[J]. Nature Geoscience202215: 282-286.

[12]
RINALDI M DECESARI S FINESSI E, et al. Primary and secondary organic marine aerosol and oceanic biological activity: recent results and new perspectives for future studies[J]. Advances in Meteorology20102010(1). DOI: 10.1155/2010/310682 .

[13]
O’DOWD C D de LEEUW G. Marine aerosol production: a review of the current knowledge[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences2007365(1 856): 1 753-1 774.

[14]
FU P Q KAWAMURA K CHEN J, et al. Organic molecular composition of marine aerosols over the Arctic Ocean in summer: contributions of primary emission and secondary aerosol formation[J]. Biogeosciences201310(2): 653-667.

[15]
QUINN P K BATES T S. The case against climate regulation via oceanic phytoplankton sulphur emissions[J]. Nature2011480(7 375): 51-56.

[16]
FUENTES E, COE H, GREEN D, et al. On the impacts of phytoplankton-derived organic matter on the properties of the primary marine aerosol—part 2: composition, hygroscopicity and cloud condensation activity [J]. Atmospheric Chemistry and Physics201111(6): 2 585-2 602.

[17]
WILSON T W LADINO L A ALPERT P A, et al. A marine biogenic source of atmospheric ice-nucleating particles[J]. Nature2015525(7 568): 234-238.

[18]
MÜLLER C IINUMA Y KARSTENSEN J, et al. Seasonal variation of aliphatic amines in marine sub-micrometer particles at the Cape Verde islands [J]. Atmospheric Chemistry and Physics20099(24): 9 587-9 597.

[19]
van PINXTEREN M ZEPPENFELD S FOMBA K W, et al. Amino acids, carbohydrates, and lipids in the tropical oligotrophic Atlantic Ocean: sea-to-air transfer and atmospheric in situ formation[J]. Atmospheric Chemistry and Physics202323(11): 6 571-6 590.

[20]
ZHENG Haitao LIU Jianguo LUO Tao, et al. Research progress on integrated three-dimensional detection technology for atmospheric pollution in coastal ocean boundary layer[J]. Environmental Engineering202442(3): 1-16.

郑海涛, 刘建国, 罗涛, 等, 近海海洋边界层大气污染综合立体探测技术研究进展[J]. 环境工程202442(3): 1-16.

[21]
TIAN M K LI H WANG G C, et al. Seasonal source identification and formation processes of marine particulate water soluble organic nitrogen over an offshore island in the East China Sea[J]. Science of the Total Environment2023, 863. DOI: 10.1016/j.scitotenv.2022.160895 .

[22]
LI H QIN X F WANG G C, et al. Conjoint impacts of continental outflows and marine sources on brown carbon in the East China Sea: abundances, optical properties, and formation processes[J]. Atmospheric Environment2022, 273. DOI: 10.1016/j.atmosenv.2022.118959 .

[23]
WANG F H CHEN Y ZHOU S Q, et al. Aerosol sources and transport paths co-control the atmospheric bacterial diversity over the coastal East China Sea[J]. Marine Pollution Bulletin2024, 205. DOI: 10.1016/j.marpolbul.2024.116589 .

[24]
KUANG B Y LIN P HUANG X H H, et al. Sources of humic-like substances in the Pearl River Delta, China: positive matrix factorization analysis of PM2.5 major components and source markers[J]. Atmospheric Chemistry and Physics201515(4): 1 995-2 008.

[25]
WANG Y C LIANG S M le BRETON M, et al. Field observations of C2 and C3 organosulfates and insights into their formation mechanisms at a suburban site in Hong Kong [J]. Science of the Total Environment2023, 904. DOI: 10.1016/j.scitotenv.2023.166851 .

[26]
O’CONNOR T C JENNINGS S G O’DOWD C D. Highlights of fifty years of atmospheric aerosol research at Mace Head[J]. Atmospheric Research200890(2/3/4): 338-355.

[27]
CAVALLI F FACCHINI M C DECESARI S, et al. Advances in characterization of size-resolved organic matter in marine aerosol over the North Atlantic[J]. Journal of Geophysical Research: Atmospheres2004109(D24). DOI: 10.1016/j.jes.2021.01.026 .

[28]
OVADNEVAITE J CEBURNIS D LEINERT S, et al. Submicron NE Atlantic marine aerosol chemical composition and abundance: seasonal trends and air mass categorization[J]. Journal of Geophysical Research: Atmospheres2014119(20): 11 850-11 863.

[29]
VAISHYA A OVADNEVAITE J BIALEK J, et al. Bistable effect of organic enrichment on sea spray radiative properties[J]. Geophysical Research Letters201340(24): 6 395-6 398.

[30]
SELLEGRI K VILLANI P PICARD D, et al. Role of the volatile fraction of submicron marine aerosol on its hygroscopic properties [J]. Atmospheric Research200890(2/4): 272-277.

[31]
FOMBA K W MÜLLER K van PINXTEREN D, et al. Long-term chemical characterization of tropical and marine aerosols at the Cape Verde Atmospheric Observatory (CVAO) from 2007 to 2011[J]. Atmospheric Chemistry and Physics201414(17): 8 883-8 904.

[32]
LIU C LI H ZHENG H, et al. Ocean Emission pathway and secondary formation mechanism of aminiums over the Chinese Marginal Sea [J]. Journal of Geophysical Research: Atmospheres2022127(23). DOI: 10.1029/2022jd037805 .

[33]
CHEN D SHEN Y WANG J, et al. Mapping gaseous dimethylamine, trimethylamine, ammonia, and their particulate counterparts in marine atmospheres of China’s marginal seas—part 1: differentiating marine emission from continental transport [J]. Atmospheric Chemistry and Physics202121(21): 16 413-16 425.

[34]
HU K Y HU J TCHINDA N T, et al. Revealing the composition and optical properties of marine carbonaceous aerosols: a case of the eastern China marginal seas[J]. Science of the Total Environment2025, 958. DOI:10.1016/j.scitotenv.2024.178136 .

[35]
CAO F ZHANG Y X ZHANG Y L, et al. Molecular compositions of marine organic aerosols over the Bohai and Yellow Seas: influence of primary emission and secondary formation[J]. Atmospheric Research2024, 297. DOI: 10.1016/j.atmosres.2023.107088 .

[36]
WANG Y J ZHANG Y J LI W S, et al. Important roles and formation of atmospheric organosulfates in marine organic aerosols: influence of phytoplankton emissions and anthropogenic pollutants[J]. Environmental Science & Technology202357(28): 10 284-10 294.

[37]
FRENEY E SELLEGRI K NICOSIA A, et al. Mediterranean nascent sea spray organic aerosol and relationships with seawater biogeochemistry[J]. Atmospheric Chemistry and Physics202121(13): 10 625-10 641.

[38]
LAWLER M J LEWIS S L RUSSELL L M, et al. North Atlantic marine organic aerosol characterized by novel offline thermal desorption mass spectrometry: polysaccharides, recalcitrant material, and secondary organics[J]. Atmospheric Chemistry and Physics202020(24): 16 007-16 022.

[39]
HUANG S WU Z J WANG Y, et al. Aerosol hygroscopicity and its link to chemical composition in a remote marine environment based on three transatlantic measurements[J]. Environmental Science & Technology202256(13): 9 613-9 622.

[40]
BIKKINA P KAWAMURA K BIKKINA S, et al. Hydroxy fatty acids in remote marine aerosols over the Pacific Ocean: impact of biological activity and wind speed[J]. ACS Earth and Space Chemistry20193(3): 366-379.

[41]
LUO L KAO S J BAO H Y, et al. Sources of reactive nitrogen in marine aerosol over the Northwest Pacific Ocean in spring[J]. Atmospheric Chemistry and Physics201818(9): 6 207-6 222.

[42]
NAKAMURA T OGAWA H MARIPI D K, et al. Contribution of water soluble organic nitrogen to total nitrogen in marine aerosols over the East China Sea and western North Pacific[J]. Atmospheric Environment200640(37): 7 259-7 264.

[43]
GUO T F GUO Z G WANG J T, et al. Tracer-based investigation of organic aerosols in marine atmospheres from marginal seas of China to the northwest Pacific Ocean[J]. Atmospheric Chemistry and Physics202020(8): 5 055-5 070.

[44]
HU Q J QU K M GAO H W, et al. Large increases in primary trimethylaminium and secondary dimethylaminium in atmospheric particles associated with cyclonic eddies in the northwest Pacific Ocean[J]. Journal of Geophysical Research: Atmospheres2018123(21). DOI: 10.1029/2018JD028836 .

[45]
BAO H Y NIGGEMANN J LUO L, et al. Molecular composition and origin of water-soluble organic matter in marine aerosols in the Pacific off China[J]. Atmospheric Environment2018191: 27-35.

[46]
QI J H YIN Y D ZHANG D Z, et al. The concentration, size distribution and dry deposition flux of microbes in atmospheric aerosols over the marginal seas and northwest Pacific Ocean[J]. Atmospheric Research2022, 265. DOI: 10.1016/j.atmosres.2021.105906 .

[47]
YAN J P JUNG J ZHANG M M, et al. Significant underestimation of gaseous Methanesulfonic Acid (MSA) over southern ocean[J]. Environmental Science & Technology201953(22): 13 064-13 070.

[48]
PARK J Dall’OSTO M PARK K, et al. Arctic primary aerosol production strongly influenced by riverine organic matter[J]. Environmental Science & Technology201953(15): 8 621-8 630.

[49]
LI Zhong CHEN Liqi YAN Jinpei. Review on application of aerosol mass spectrometric technique in characterizing submicron particles in marine aerosols[J]. Advances in Earth Science201530(2): 226-236.

李忠, 陈立奇, 颜金培. 气溶胶质谱技术在海洋气溶胶亚微米级颗粒物特征的研究进展[J]. 地球科学进展201530(2): 226-236.

[50]
THOMPSON C R WOFSY S C PRATHER M J, et al. The NASA Atmospheric Tomography (ATom) mission: imaging the chemistry of the global atmosphere[J]. Bulletin of the American Meteorological Society2022103(3): E761-E790.

[51]
CHRISTIANSEN S SALTER M E GOROKHOVA E, et al. Sea spray aerosol formation: laboratory results on the role of air entrainment, water temperature, and phytoplankton biomass[J]. Environmental Science & Technology201953(22): 13 107-13 116.

[52]
MAYER K J SAUER J S DINASQUET J, et al. CAICE studies: insights from a decade of ocean-atmosphere experiments in the laboratory[J]. Accounts of Chemical Research202053(11): 2 510-2 520.

[53]
BATES T S QUINN P K FROSSARD A A, et al. Measurements of ocean derived aerosol off the coast of California[J]. Journal of Geophysical Research: Atmospheres2012117(D21). DOI:10.1029/2012jd017588 .

[54]
RASTELLI E CORINALDESI C Dell’ANNO A, et al. Transfer of labile organic matter and microbes from the ocean surface to the marine aerosol: an experimental approach[J]. Scientific Reports2017, 7. DOI: 10.1038/s41598-017-10563-z .

[55]
BREAN J Dall’OSTO M SIMÓ R, et al. Open ocean and coastal new particle formation from sulfuric acid and amines around the Antarctic Peninsula[J]. Nature Geoscience202114: 383-388.

[56]
Dall’OSTO M OVADNEVAITE J PAGLIONE M, et al. Antarctic sea ice region as a source of biogenic organic nitrogen in aerosols[J]. Scientific Reports20177(1). DOI: 10.1038/s41598-017-06188-x .

[57]
YAN J P JUNG J ZHANG M M, et al. Uptake selectivity of Methanesulfonic Acid (MSA) on fine particles over polynya regions of the Ross Sea, Antarctica[J]. Atmospheric Chemistry and Physics202020(5): 3 259-3 271.

[58]
HU C G YUE F G ZHAN H C, et al. Spatiotemporal distribution and influencing factors of secondary organic aerosols in the summer atmosphere from the Bering Sea to the western North Pacific[J]. Science of the Total Environment2023, 859. DOI: 10.1016/j.scitotenv.2022.160138 .

[59]
GAO Y T CHEN D H SHEN Y J, et al. Mapping gaseous dimethylamine, trimethylamine, ammonia, and their particulate counterparts in marine atmospheres of China’s marginal seas—part 2: spatiotemporal heterogeneity, causes, and hypothesis[J]. Atmospheric Chemistry and Physics202222(2): 1 515-1 528.

[60]
BAO H Y NIGGEMANN J LUO L, et al. Aerosols as a source of dissolved black carbon to the ocean[J]. Nature Communications20178(1). DOI:10.1038/s41467-017-00437-3 .

[61]
FU P Q KAWAMURA K MIURA K. Molecular characterization of marine organic aerosols collected during a round-the-world cruise[J]. Journal of Geophysical Research2011116(D13). DOI: 10.1029/2011JD015604 .

[62]
YUE S Y BIKKINA S GAO M, et al. Sources and radiative absorption of water-soluble brown carbon in the high Arctic atmosphere[J]. Geophysical Research Letters201946(24): 14 881-14 891.

[63]
SHANG D J HU M GUO Q F, et al. Effects of continental anthropogenic sources on organic aerosols in the coastal atmosphere of East China[J]. Environmental Pollution2017229: 350-361.

[64]
ZHANG Y L ZHAO Z Y CAO F, et al. Changes in atmospheric oxidants over Arctic Ocean atmosphere: evidence of oxygen isotope anomaly in nitrate aerosols[J]. NPJ Climate and Atmospheric Science2023, 6. DOI: 10.1038/s41612-023-00447-7 .

[65]
LI X Y ZHANG Y Y SHI L H, et al. Aerosol proteinaceous matter in coastal Okinawa, Japan: influence of long-range transport and photochemical degradation[J]. Environmental Science & Technology202256(8): 5 256-5 265.

[66]
SHANK L M HOWELL S CLARKE A D, et al. Organic matter and non-refractory aerosol over the remote Southeast Pacific: oceanic and combustion sources[J]. Atmospheric Chemistry and Physics201212(1): 557-576.

[67]
GAO C Y HEALD C L KATICH J M, et al. Remote aerosol simulated during the Atmospheric Tomography (ATom) campaign and implications for aerosol lifetime[J]. Journal of Geophysical Research Atmospheres2022127(22). DOI:10.1029/2022JD036524 .

[68]
HU Jie LI Jianlong LI Kun, et al. Laboratory simulation of sea spray aerosol[J]. Environmental Chemistry202342(3): 963-975.

胡杰, 李建龙, 李坤, 等. 海洋飞沫气溶胶的实验模拟[J]. 环境化学202342(3): 963-975.

[69]
VERON F. Ocean spray[J]. Annual Review of Fluid Mechanics201547: 507-538.

[70]
C TSONA N T DU L. Sea spray aerosol formation: results on the role of different parameters and organic concentrations from bubble bursting experiments[J]. Chemosphere2020, 252. DOI: 10.1016/j.chemosphere.2020.126456 .

[71]
STOKES M D DEANE G COLLINS D B, et al. A miniature Marine Aerosol Reference Tank (miniMART) as a compact breakingwave analogue[J]. Atmospheric Measurement Techniques20169(9): 4 257-4 267.

[72]
WANG X F SULTANA C M TRUEBLOOD J, et al. Microbial control of sea spray aerosol composition: a tale of two blooms[J]. ACS Central Science20151(3): 124-131.

[73]
HOFFMAN E J DUCE R A. Factors influencing the organic carbon content of marine aerosols: a laboratory study [J]. Journal of Geophysical Research197681(21): 3 667-3 670.

[74]
ALPERT P A KILTHAU W P BOTHE D W, et al. The influence of marine microbial activities on aerosol production: a laboratory mesocosm study[J]. Journal of Geophysical Research: Atmospheres2015120(17): 8 841-8 860.

[75]
HU J LI J L TSONA T N, et al. Underestimated role of sea surface temperature in sea spray aerosol formation and climate effects[J]. NPJ Climate and Atmospheric Science2024, 7. DOI: 10.1038/s41612-024-00823-x .

[76]
QI Xuan ZHU Xiaojing GAO Qianqian, et al. A lab simulation study on the impact of oil spills on the distribution of heavy metals and PAHs in sea spray aerosol[J]. Journal of Fudan University (Natural Science)202463(1): 122-133.

祁璇, 朱晓婧, 高倩倩, 等, 原油与柴油泄露影响海洋飞沫气溶胶中重金属与多环芳烃分布的实验室模拟研究 [J]. 复旦学报(自然科学版)202463(1): 122-133.

[77]
ANGLE K J CROCKER D R SIMPSON R M C, et al. Acidity across the interface from the ocean surface to sea spray aerosol[J]. Proceedings of the National Academy of Sciences of the United States of America2021118(2). DOI: 10.1073/pnas.2018397118 .

[78]
PRATHER K A BERTRAM T H GRASSIAN V H, et al. Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol[J]. Proceedings of the National Academy of Sciences of the United States of America2013110(19): 7 550-7 555.

[79]
COCHRAN R E LASKINA O TRUEBLOOD J V, et al. Molecular diversity of sea spray aerosol particles: impact of ocean biology on particle composition and hygroscopicity[J]. Chem20172(5): 655-667.

[80]
AULT A P MOFFET R C BALTRUSAITIS J, et al. Size-dependent changes in sea spray aerosol composition and properties with different seawater conditions[J]. Environmental Science & Technology201347(11): 5 603-5 612.

[81]
MA X Q LI K ZHANG S, et al. Molecular characteristics of sea spray aerosols during aging with the participation of marine volatile organic compounds[J]. Science of the Total Environment2024, 954. DOI: 10.1016/j.scitotenv.2024.176380 .

[82]
TUREKIAN V C MACKO S A KEENE W C. Concentrations, isotopic compositions, and sources of size-resolved, particulate organic carbon and oxalate in near-surface marine air at Bermuda during spring[J]. Journal of Geophysical Research: Atmospheres2003108(D5). DOI:10.1039/D1EA00025J .

[83]
KEENE W C MARING H MABEN J R, et al. Chemical and physical characteristics of nascent aerosols produced by bursting bubbles at a model air-sea interface[J]. Journal of Geophysical Research: Atmospheres2007112(D21). DOI:10.1029/2007JD008464 .

[84]
HOFFMAN E J DUCE R A. Organic carbon in marine atmospheric particulate matter: concentration and particle size distribution[J]. Geophysical Research Letters19774(10): 449-452.

[85]
MYRIOKEFALITAKIS S VIGNATI E TSIGARIDIS K, et al. Global modeling of the oceanic source of organic aerosols [J]. Advances in Meteorology2010. DOI:10.1155/2010/939171 .

[86]
GANTT B JOHNSON M S MESKHIDZE N, et al. Model evaluation of marine primary organic aerosol emission schemes[J]. Atmospheric Chemistry and Physics201212(18): 8 553-8 566.

[87]
GANTT B MESKHIDZE N KAMYKOWSKI D. A new physically-based quantification of marine isoprene and primary organic aerosol emissions[J]. Atmospheric Chemistry and Physics20099(14): 4 915-4 927.

[88]
SPRACKLEN D V ARNOLD S R SCIARE J, et al. Globally significant oceanic source of organic carbon aerosol[J]. Geophysical Research Letters200835(12). DOI:10.1029/2008GL033359 .

[89]
LONG M S KEENE W C KIEBER D J, et al. A sea-state based source function for size- and composition-resolved marine aerosol production[J]. Atmospheric Chemistry and Physics201111(3): 1 203-1 216.

[90]
ROELOFS G J. A GCM study of organic matter in marine aerosol and its potential contribution to cloud drop activation[J]. Atmospheric Chemistry and Physics20088(3): 709-719.

[91]
KUNWAR B KAWAMURA K. One-year observations of carbonaceous and nitrogenous components and major ions in the aerosols from subtropical Okinawa Island, an outflow region of Asian dusts[J]. Atmospheric Chemistry and Physics201414(4): 1 819-1 836.

[92]
FROSSARD A A RUSSELL L M BURROWS S M, et al. Sources and composition of submicron organic mass in marine aerosol particles[J]. Journal of Geophysical Research: Atmospheres2014119(22). DOI: 10.1002/2014JD021913 .

[93]
BIKKINA P BIKKINA S KAWAMURA K, et al. Evidence for brown carbon absorption over the Bay of Bengal during the southwest monsoon season: a possible oceanic source[J]. Environmental Science Processes & Impacts202022(8): 1 743-1 758.

[94]
BOSCH C ANDERSSON A KIRILLOVA E N, et al. Source-diagnostic dual-isotope composition and optical properties of water-soluble organic carbon and elemental carbon in the South Asian outflow intercepted over the Indian Ocean [J]. Journal of Geophysical Research: Atmospheres2014119(20): 11 743-11 759.

[95]
MO Y Z ZHONG G C LI J, et al. The sources, molecular compositions, and light absorption properties of water-soluble organic carbon in marine aerosols from South China Sea to the eastern Indian Ocean[J]. Journal of Geophysical Research: Atmospheres2022127(10). DOI: 10.1029/2021JD036168 .

[96]
DECESARI S FINESSI E RINALDI M, et al. Primary and secondary marine organic aerosols over the North Atlantic Ocean during the MAP experiment[J]. Journal of Geophysical Research: Atmospheres2011116(D22). DOI: 10.1029/2011JD016204 .

[97]
HOQUE M M M KAWAMURA K UEMATSU M. Spatio-temporal distributions of dicarboxylic acids, ω-oxocarboxylic acids, pyruvic acid, α-dicarbonyls and fatty acids in the marine aerosols from the North and South Pacific[J]. Atmospheric Research2017185: 158-168.

[98]
WU Z L HU L M GUO T F, et al. Aeolian transport and deposition of carbonaceous aerosols over the northwest Pacific Ocean in spring[J]. Atmospheric Environment2020, 223. DOI: 10.1016/j.atmosenv.2019.117209 .

[99]
MIYAZAKI Y SUZUKI K TACHIBANA E, et al. New index of organic mass enrichment in sea spray aerosols linked with senescent status in marine phytoplankton[J]. Scientific Reports202010(1). DOI: 10.1038/s41598-020-73718-5 .

[100]
ALROE J CRAVIGAN L T MILJEVIC B, et al. Marine productivity and synoptic meteorology drive summer-time variability in Southern Ocean aerosols[J]. Atmospheric Chemistry and Physics202020(13): 8 047-8 062.

[101]
CEBURNIS D GARBARAS A SZIDAT S, et al. Quantification of the carbonaceous matter origin in submicron marine aerosol by 13C and 14C isotope analysis[J]. Atmospheric Chemistry and Physics201111(16): 8 593-8 606.

[102]
EYRING V ISAKSEN I S A BERNTSEN T, et al. Transport impacts on atmosphere and climate: shipping[J]. Atmospheric Environment201044(37): 4 735-4 771.

[103]
O’DOWD C D FACCHINI M C CAVALLI F, et al. Biogenically driven organic contribution to marine aerosol[J]. Nature2004431(7 009): 676-680.

[104]
O'DOWD C D LANGMANN B VARGHESE S, et al. A combined organic-inorganic sea-spray source function[J]. Geophysical Research Letters200835(1). DOI: 10.1029/2007GL030331 .

[105]
QUINN P K BATES T S SCHULZ K S, et al. Contribution of sea surface carbon pool to organic matter enrichment in sea spray aerosol[J]. Nature Geoscience20147: 228-232.

[106]
FACCHINI M RINALDI M DECESARI S, et al. Primary submicron marine aerosol dominated by insoluble organic colloids and aggregates[J]. Geophysical Research Letters200835(17). DOI: 10.1029/2008GL034210 .

[107]
LEE C SULTANA C M COLLINS D B, et al. Advancing model systems for fundamental laboratory studies of sea spray aerosol using the microbial loop[J]. The Journal of Physical Chemistry A2015119(33): 8 860-8 870.

[108]
FU P Q KAWAMURA K CHEN J, et al. Fluorescent water-soluble organic aerosols in the High Arctic atmosphere[J]. Scientific Reports2015, 5. DOI: 10.1038/srep09845 .

[109]
CHEN Q C MIYAZAKI Y KAWAMURA K, et al. Characterization of chromophoric water-soluble organic matter in urban, forest, and marine aerosols by HR-ToF-AMS analysis and excitation-emission matrix spectroscopy[J]. Environmental Science & Technology201650(19): 10 351-10 360.

[110]
SANTANDER M V SCHIFFER J M LEE C, et al. Factors controlling the transfer of biogenic organic species from seawater to sea spray aerosol[J]. Scientific Reports202212(1). DOI: 10.1038/s41598-022-07335-9 .

[111]
GENG X F MO Y Z LI J, et al. Source apportionment of water-soluble brown carbon in aerosols over the northern South China Sea: influence from land outflow, SOA formation and marine emission[J]. Atmospheric Environment2020, 229. DOI: 10.1016/j.atmosenv.2020.117484 .

[112]
SRINIVAS B SARIN M M. Light absorbing organic aerosols (brown carbon) over the tropical Indian Ocean: impact of biomass burning emissions[J]. Environmental Research Letters20138(4). DOI: 10.1088/1748-9326/8/4/044042 .

[113]
YAN C Q ZHENG M SULLIVAN A P, et al. Chemical characteristics and light-absorbing property of water-soluble organic carbon in Beijing: biomass burning contributions[J]. Atmospheric Environment2015121: 4-12.

[114]
ALTIERI K E FAWCETT S E PETERS A J, et al. Marine biogenic source of atmospheric organic nitrogen in the subtropical North Atlantic[J]. Proceedings of the National Academy of Sciences of the United States of America2016113(4): 925-930.

[115]
RUSSELL L M HAWKINS L N FROSSARD A A, et al. Carbohydrate-like composition of submicron atmospheric particles and their production from ocean bubble bursting[J]. Proceedings of the National Academy of Sciences of the United States of America2010107(15): 6 652-6 657.

[116]
HASENECZ E S KALUARACHCHI C P LEE H D, et al. Saccharide transfer to sea spray aerosol enhanced by surface activity, calcium, and protein interactions[J]. ACS Earth and Space Chemistry20193(11): 2 539-2 548.

[117]
COCHRAN R E LASKINA O JAYARATHNE T, et al. Analysis of organic anionic surfactants in fine and coarse fractions of freshly emitted sea spray aerosol[J]. Environmental Science & Technology201650(5): 2 477-2 486.

[118]
SCHMITT-KOPPLIN P LIGER-BELAIR G KOCH B P, et al. Dissolved organic matter in sea spray: a transfer study from marine surface water to aerosols[J]. Biogeosciences20129(4): 1 571-1 582.

[119]
YE Y Q ZHAN H C YU X W, et al. Detection of organosulfates and nitrooxy-organosulfates in Arctic and Antarctic atmospheric aerosols, using ultra-high resolution FT-ICR mass spectrometry[J]. Science of the Total Environment2021, 767. DOI: 10.1016/j.scitotenv.2020.144339 .

[120]
HU Wei WANG Yajie DUAN Peimin, et al. Research progress of biomarkers in marine atmospheric aerosols[J]. Earth and Environment202452(2): 230-243.

胡伟, 王亚杰, 段沛敏, 等. 海洋大气气溶胶中生物标志物研究进展[J]. 地球与环境202452(2): 230-243.

[121]
FACCHINI M C DECESARI S RINALDI M, et al. Important source of marine secondary organic aerosol from biogenic amines[J]. Environmental Science & Technology200842(24): 9 116-9 121.

[122]
MATSUMOTO K YAMAMOTO Y KIM S, et al. Chemical characterization of the water-soluble organic nitrogen in the maritime aerosol[J]. Journal of Aerosol Science2023, 167. DOI: 10.1016/j.jaerosci.2022.106069 .

[123]
VIOLAKI K MIHALOPOULOS N. Water-Soluble Organic Nitrogen (WSON) in size-segregated atmospheric particles over the Eastern Mediterranean[J]. Atmospheric Environment201044(35): 4 339-4 345.

[124]
CROCKER D R KALUARACHCHI C P CAO R C, et al. Isotopic insights into organic composition differences between supermicron and submicron sea spray aerosol[J]. Environmental Science & Technology202256(14): 9 947-9 958.

[125]
MIYAZAKI Y COBURN S, ONO K, et al. Contribution of dissolved organic matter to submicron water-soluble organic aerosols in the marine boundary layer over the eastern equatorial Pacific[J]. Atmospheric Chemistry and Physics201616(12): 7 695-7 707.

[126]
GU W H XIE Z Q JIANG B, et al. Sources of southern hemisphere marine aerosols: insights from carbonaceous fraction concentration and stable carbon isotope analysis[J]. Journal of Geophysical Research: Atmospheres2024129(12). DOI:10.1029/2023jd039803 .

[127]
HEDGES J I. Global biogeochemical cycles: progress and problems[J]. Marine Chemistry199239(1/2/3): 67-93.

[128]
COCHRAN R E JAYARATHNE T STONE E A, et al. Selectivity across the interface: a test of surface activity in the composition of organic-enriched aerosols from bubble bursting[J]. The Journal of Physical Chemistry Letters20167(9): 1 692-1 696.

[129]
ANGLE K J NOWAK C M DAVASAM A, et al. Amino acids are driven to the interface by salts and acidic environments[J]. The Journal of Physical Chemistry Letters202213(12): 2 824-2 829.

[130]
CASAS G MARTÍNEZ-VARELA A ROSCALES J L, et al. Enrichment of perfluoroalkyl substances in the sea-surface microlayer and sea-spray aerosols in the Southern Ocean[J]. Environmental Pollution2020, 267. DOI: 10.1016/j.envpol.2020.115512 .

[131]
QUINN P K COLLINS D B GRASSIAN V H, et al. Chemistry and related properties of freshly emitted sea spray aerosol[J]. Chemical Reviews2015115(10): 4 383-4 399.

[132]
ZÁBORI J MATISĀNS M KREJCI R, et al. Artificial primary marine aerosol production: a laboratory study with varying water temperature, salinity, and succinic acid concentration[J]. Atmospheric Chemistry and Physics201212(22): 10 709-10 724.

[133]
XU Minglan DU Lin GE Maofa. Effect of surface-Active substances on the generation and physicochemical properties of sea spray aerosol[J]. Advances in Earth Science202338(12): 1 203-1 212.

徐名兰, 杜林, 葛茂发. 表面活性物质对海洋飞沫气溶胶的产生和理化性质的影响 [J]. 地球科学进展202338(12): 1 203-1 212.

[134]
CONTE L SZOPA S AUMONT O, et al. Sources and sinks of isoprene in the global open ocean: simulated patterns and emissions to the atmosphere[J]. Journal of Geophysical Research: Oceans2020125(9). DOI: 10.1029/2019JC015946 .

[135]
YASSAA N PEEKEN I ZÖLLNER E, et al. Evidence for marine production of monoterpenes[J]. Environmental Chemistry20085(6): 391-401.

[136]
LI J L ZHAI X ZHANG H H, et al. Temporal variations in the distribution and sea-to-air flux of marine isoprene in the East China Sea [J]. Atmospheric Environment2018187: 131-143.

[137]
YU Z J LI Y. Marine volatile organic compounds and their impacts on marine aerosol: a review[J]. Science of the Total Environment2021, 768. DOI: 10.1016/j.scitotenv.2021.145054 .

[138]
HAWKINS L N RUSSELL L M COVERT D S, et al. Carboxylic acids, sulfates, and organosulfates in processed continental organic aerosol over the southeast Pacific Ocean during VOCALS-REx 2008[J]. Journal of Geophysical Research: Atmospheres2010115(D13). DOI:10.1029/2009JD013276 .

Outlines

/