Review of Current Research on Orographic and Non-Orographic Gravity Waves

  • Xinjie OUYANG ,
  • Ju WANG ,
  • Hong HUANG ,
  • Lin WANG
Expand
  • College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410000, China
OUYANG Xinjie, research areas include the characteristics of non-orographic gravity waves. E-mail: 18360857323@163.com
HUANG Hong, research areas include Meso-scale weather dynamics and numerical forecasting. E-mail: hhong7782@sina.com

Received date: 2025-04-08

  Revised date: 2025-05-03

  Online published: 2025-07-03

Abstract

Gravity Waves (GWs) significantly influence structure of the entire atmosphere and coupling between atmospheric layers. Research on gravity waves is crucial for deepening our understanding of atmospheric dynamics and for improving the accuracy of atmospheric models. While gravity waves are well-known in the fields of astronomy and physics, they also play a vital role in atmospheric science, particularly in the study of airflow, wave propagation, and climate variability. This review highlights the following key findings: ① Satellites are suitable for observing the middle and upper atmosphere; radar is most effective for detailed observations of vertical wave propagation; and reanalysis data are best suited for analyzing global GW characteristics; ② Compared with non-orographic gravity waves, orographic gravity waves generally have longer vertical wavelengths and can propagate to higher altitudes; ③ Orographic gravity waves are easier to trace due to their relatively fixed sources; and ④ Common parameterization schemes effectively simulate the drag effects of orographic gravity waves, while single-wave and global spectral techniques can predict the east-west momentum flux of non-orographic gravity waves. However, the complete generation and evolution processes of both types of GWs cannot yet be accurately simulated. There is still considerable room for improvement in the observation, identification, feature analysis, and parameterization of gravity waves. In the future, advancements in observational technology are expected to yield higher-quality data, enabling a clearer understanding of GW characteristics. Based on this, progress in parameterization methods and the application of artificial intelligence techniques is anticipated to enhance our understanding of the formation mechanisms of both orographic and non-orographic gravity waves, thereby improving the accuracy of weather and climate simulations.

Cite this article

Xinjie OUYANG , Ju WANG , Hong HUANG , Lin WANG . Review of Current Research on Orographic and Non-Orographic Gravity Waves[J]. Advances in Earth Science, 2025 , 40(5) : 500 -515 . DOI: 10.11867/j.issn.1001-8166.2025.039

References

[1] YI?IT E, MEDVEDEV A S. Obscure waves in planetary atmospheres[J]. Physics Today201972(6): 40-46.
[2] LIU H L, LAURITZEN P H, VITT F. Impacts of gravity waves on the thermospheric circulation and composition[J]. Geophysical Research Letters202451(3). DOI: 10.1029/2023GL107453 .
[3] FRITTS D C, ALEXANDER M J. Gravity wave dynamics and effects in the middle atmosphere[J]. Reviews of Geophysics200341(1). DOI:10.1029/2001RG000106 .
[4] WU X, HOFFMANN L, WRIGHT C J, et al. Mechanisms linking stratospheric gravity wave activity to hurricane intensification: insights from model simulation of hurricane joaquin[J]. Geophysical Research Letters202552(10). DOI:10.1029/2024GL113531 .
[5] BLANC E, FARGES T, Le PICHON A, et al. Ten year observations of gravity waves from thunderstorms in western Africa[J]. Journal of Geophysical Research: Atmospheres2014119(11): 6 409-6 418.
[6] NISHIOKA M, TSUGAWA T, KUBOTA M, et al. Concentric waves and short-period oscillations observed in the ionosphere after the 2013 Moore EF5 tornado[J]. Geophysical Research Letters201340(21): 5 581-5 586.
[7] Lü D R, YI F, XU J Y. Advances in studies of the middle and upper atmosphere and their coupling with the lower atmosphere[J]. Advances in Atmospheric Sciences200421(3): 361-368.
[8] ACHATZ U, ALEXANDER M J, BECKER E, et al. Atmospheric gravity waves: processes and parameterization[J]. Journal of the Atmospheric Sciences202481(2): 237-262.
[9] SAWYER J S. The introduction of the effects of topography into methods of numerical forecasting[J]. Quarterly Journal of the Royal Meteorological Society195985(363): 31-43.
[10] PALMER T N, SHUTTS G J, SWINBANK R. Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parametrization[J]. Quarterly Journal of the Royal Meteorological Society1986112(474): 1 001-1 039.
[11] VOSPER S B, BROWN A R, WEBSTER S. Orographic drag on islands in the NWP mountain grey zone[J]. Quarterly Journal of the Royal Meteorological Society2016142(701): 3 128-3 137.
[12] SANDU I, BECHTOLD P, BELJAARS A, et al. Impacts of parameterized orographic drag on the Northern Hemisphere winter circulation[J]. Journal of Advances in Modeling Earth Systems20168(1): 196-211.
[13] ALEXANDER M J, ECKERMANN S D, BROUTMAN D, et al. Momentum flux estimates for South Georgia Island mountain waves in the stratosphere observed via satellite[J]. Geophysical Research Letters200936(12). DOI:10.1029/2009GL038587 .
[14] ALEXANDER M J, GELLER M, MCLANDRESS C, et al. Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models[J]. Quarterly Journal of the Royal Meteorological Society2010136(650): 1 103-1 124.
[15] TSENG H H, FU Q. Temperature control of the variability of tropical tropopause layer Cirrus clouds[J]. Journal of Geophysical Research: Atmospheres2017122(20): 11 062-11 075.
[16] PODGLAJEN A, HERTZOG A, PLOUGONVEN R, et al. Lagrangian temperature and vertical velocity fluctuations due to gravity waves in the lower stratosphere[J]. Geophysical Research Letters201643(7): 3 543-3 553.
[17] KIM J E, ALEXANDER M J. Direct impacts of waves on tropical cold point tropopause temperature[J]. Geophysical Research Letters201542(5): 1 584-1 592.
[18] GELLER M A, ALEXANDER M J, LOVE P T, et al. A comparison between gravity wave momentum fluxes in observations and climate models[J]. Journal of Climate201326(17): 6 383-6 405.
[19] ATLAS R, BRETHERTON C S. Aircraft observations of gravity wave activity and turbulence in the tropical tropopause layer: prevalence, influence on Cirrus clouds, and comparison with global storm-resolving models[J]. Atmospheric Chemistry and Physics202323(7): 4 009-4 030.
[20] NING W H, HUANG K M, ZHANG S D, et al. A statistical investigation of inertia gravity wave activity based on MST radar observations at Xianghe (116.9°E, 39.8°N), China[J]. Journal of Geophysical Research: Atmospheres2022127(1). DOI:10.1029/2021JD035315 .
[21] VINCENT R A, ALEXANDER M J. Balloon-borne observations of short vertical wavelength gravity waves and interaction with QBO winds[J]. Journal of Geophysical Research: Atmospheres2020125(15). DOI:10.1029/2020JD032779 .
[22] JEWTOUKOFF V, HERTZOG A, PLOUGONVEN R, et al. Comparison of gravity waves in the southern hemisphere derived from balloon observations and the ECMWF analyses[J]. Journal of the Atmospheric Sciences201572(9): 3 449-3 468.
[23] MURPHY D J, ALEXANDER S P, KLEKOCIUK A R, et al. Radiosonde observations of gravity waves in the lower stratosphere over Davis, Antarctica[J]. Journal of Geophysical Research: Atmospheres2014119(21): 11 973-11 996.
[24] VINCENT R A, HERTZOG A. The response of superpressure balloons to gravity wave motions[J]. Atmospheric Measurement Techniques20147(4): 1 043-1 055.
[25] KOUSHIK N, KUMAR K K, SUBRAHMANYAM K V, et al. Characterization of inertia gravity waves and associated dynamics in the lower stratosphere over the Indian Antarctic station, Bharati (69.4°S, 76.2°E) during austral summers[J]. Climate Dynamics201953(5): 2 887-2 903.
[26] CHEN Q Y, WU H K, LONG H C, et al. Comparative analysis of gravity wave characteristics in China and the United States using high vertical resolution radiosonde observations[J]. Journal of Geophysical Research: Atmospheres2024129(14). DOI: 10.1029/2023JD040492 .
[27] GONG J, GELLER M A. Vertical fluctuation energy in United States high vertical resolution radiosonde data as an indicator of convective gravity wave sources[J]. Journal of Geophysical Research: Atmospheres2010115(D11). DOI:10.1029/2009JD012265 .
[28] ALEXANDER S P, KLEKOCIUK A R, MURPHY D J. Rayleigh lidar observations of gravity wave activity in the winter upper stratosphere and lower mesosphere above Davis, Antarctica (69°S, 78°E)[J]. Journal of Geophysical Research2011116(D13). DOI:10.1029/2010JD015164 .
[29] KAIFLER B, KAIFLER N, EHARD B, et al. Influences of source conditions on mountain wave penetration into the stratosphere and mesosphere[J]. Geophysical Research Letters201542(21): 9 488-9 494.
[30] GUO W J, YAN Z A, HU X, et al. Measuring the three-dimensional structure of gravity waves by Lidar[J]. Chinese Journal of Geophysics202063(2): 394-400.
[31] ZHENG X Y, LI X M, CHANG Q H. The estimation of the horizontal parameters of gravity waves by the monostatic Rayleigh Lidar[J]. Scientific Reports202414(1). DOI: 10.1038/s41598-024-79959-y .
[32] BINDER M, D?RNBRACK A. Observing gravity waves generated by moving sources with ground-based Rayleigh lidars[J]. Journal of Geophysical Research: Atmospheres2024129(8). DOI:10.1029/2023JD040156 .
[33] HOFFMANN L, WU X, ALEXANDER M J. Satellite observations of stratospheric gravity waves associated with the intensification of tropical cyclones[J]. Geophysical Research Letters201845(3): 1 692-1 700.
[34] HOFFMANN L, XUE X, ALEXANDER M J. A global view of stratospheric gravity wave hotspots located with Atmospheric Infrared Sounder observations[J]. Journal of Geophysical Research: Atmospheres2013118(2): 416-434.
[35] MEYER C I, ERN M, HOFFMANN L, et al. Intercomparison of AIRS and HIRDLS stratospheric gravity wave observations[J]. Atmospheric Measurement Techniques201811(1): 215-232.
[36] FORBES J M, ZHANG X L, RANDALL C E, et al. Troposphere-mesosphere coupling by convectively forced gravity waves during southern hemisphere monsoon season as viewed by AIM/CIPS[J]. Journal of Geophysical Research: Space Physics2021126(11). DOI: 10.1029/2021ja029734 .
[37] SHUAI Jing, HUANG Kaiming, SUN Baolin, et al. Climatology of global stratopause and gravity wave activity revealed by SABER/TIMED temperature observations[J]. Journal of Wuhan University (Natural Science Edition)202470(4): 507-514.
  帅晶, 黄开明, 孙宝林, 等. 基于SABER/TIMED温度数据的全球平流层顶与重力波活动的气候学特征的观测研究[J]. 武汉大学学报(理学版)202470(4): 507-514.
[38] YANG Wenkai, YANG Junfeng, GUO Wenjie, et al. Global stratospheric gravity wave characteristics by Aura/MLS and TIMED/SABER observation data[J]. Chinese Journal of Space Science202242(5): 919-926.
  杨文凯, 杨钧烽, 郭文杰, 等. Aura/MLS与TIMED/SABER观测全球重力波特性[J]. 空间科学学报202242(5): 919-926.
[39] WANG Cong, YANG Junfeng, CHENG Xuan, et al. Investigation of the global gravity wave activity characteristics from the FY-3C satellite observation data[J]. Chinese Journal of Space Science202343(2): 260-272.
  王聪, 杨钧烽, 程旋, 等. 基于风云3C卫星观测数据的全球重力波活动特性研究[J]. 空间科学学报202343(2): 260-272.
[40] SMITH R B, NUGENT A D, KRUSE C G, et al. Stratospheric gravity wave fluxes and scales during DEEPWAVE[J]. Journal of the Atmospheric Sciences201673(7): 2 851-2 869.
[41] COOPER W A, SPULER S M, SPOWART M, et al. Calibrating airborne measurements of airspeed, pressure and temperature using a Doppler laser air-motion sensor[J]. Atmospheric Measurement Techniques20147(9): 3 215-3 231.
[42] SMITH R B, WOODS B K, JENSEN J, et al. Mountain waves entering the stratosphere[J]. Journal of the Atmospheric Sciences200865(8): 2543-2562.
[43] PAHLAVAN H A, WALLACE J M, FU Q. Characteristics of tropical convective gravity waves resolved by ERA5 reanalysis[J]. Journal of the Atmospheric Sciences202380(3): 777-795.
[44] YAMASHITA C, LIU H L, CHU X Z. Gravity wave variations during the 2009 stratospheric sudden warming as revealed by ECMWF-T799 and observations[J]. Geophysical Research Letters201037(22). DOI:10.1029/2010GL045437 .
[45] EHARD B, ACHTERT P, D?RNBRACK A, et al. Combination of lidar and model data for studying deep gravity wave propagation[J]. Monthly Weather Review2016144(1): 77-98.
[46] VINCENT R A, JOAN ALEXANDER M. Gravity waves in the tropical lower stratosphere: an observational study of seasonal and interannual variability[J]. Journal of Geophysical Research: Atmospheres2000105(D14): 17 971-17 982.
[47] WANG L, GELLER M A. Morphology of gravity-wave energy as observed from 4 years (1998-2001) of high vertical resolution U.S. radiosonde data[J]. Journal of Geophysical Research: Atmospheres2003108(D16). DOI:10.1029/2002JD002786 .
[48] KIM B, LARIMER R. Application of balloon-borne high precision GPS for inertia gravity wave characterization[J]. Advances in Space Research202473(3): 1 749-1 759.
[49] ZHANG S D, HUANG C M, HUANG K M, et al. Spatial and seasonal variability of medium- and high-frequency gravity waves in the lower atmosphere revealed by US radiosonde data[J]. Annales Geophysicae201432(9): 1 129-1 143.
[50] DUTTA G, VINAY KUMAR P, MOHAMMAD S. Retrieving characteristics of inertia gravity wave parameters with least uncertainties using the hodograph method[J]. Atmospheric Chemistry and Physics201717(23): 14 811-14 819.
[51] ERN M, PREUSSE P, GILLE J C, et al. Implications for atmospheric dynamics derived from global observations of gravity wave momentum flux in stratosphere and mesosphere[J]. Journal of Geophysical Research2011, 116. DOI: 10.1029/2011JD015821 .
[52] ERN M, TRINH Q T, KAUFMANN M, et al. Satellite observations of middle atmosphere gravity wave absolute momentum flux and of its vertical gradient during recent stratospheric warmings[J]. Atmospheric Chemistry and Physics201616(15): 9 983-10 019.
[53] VINCENT R A, FRITTS D C. A climatology of gravity wave motions in the mesopause region at Adelaide, Australia[J]. Journal of the Atmospheric Sciences198744(4): 748-760.
[54] ECKERMANN S D, VINCENT R. Falling sphere observations of anisotropic gravity wave motions in the upper stratosphere over Australia [J]. Pure and Applied Geophysics1989(130): 509-532.
[55] PRAMITHA M, VENKAT RATNAM M, LEENA P P, et al. Identification of inertia gravity wave sources observed in the troposphere and the lower stratosphere over a tropical station Gadanki[J]. Atmospheric Research2016176: 202-211.
[56] MOLDOVAN H, LOTT F, TEITELBAUM H. Wave breaking and critical levels for propagating inertio-gravity waves in the lower stratosphere[J]. Quarterly Journal of the Royal Meteorological Society2002128(580): 713-732.
[57] WRIGHT C J, OSPREY S M, BARNETT J J, et al. High resolution dynamics limb sounder measurements of gravity wave activity in the 2006 Arctic stratosphere[J]. Journal of Geophysical Research: Atmospheres2010115(D2). DOI: 10.1029/2009JD011858 .
[58] LU C G, KOCH S, WANG N. Determination of temporal and spatial characteristics of atmospheric gravity waves combining cross-spectral analysis and wavelet transformation[J]. Journal of Geophysical Research: Atmospheres2005110(D1). DOI:10.1029/2004JD004906 .
[59] WüST S, BITTNER M. Non-linear resonant wave-wave interaction (triad): case studies based on rocket data and first application to satellite data[J]. Journal of Atmospheric and Solar-Terrestrial Physics200668(9): 959-976.
[60] HIROTA I, NIKI T. A statistical study of inertia-gravity waves in the middle atmosphere[J]. Journal of the Meteorological Society of Japan Series II198563(6): 1 055-1 066.
[61] VINCENT R A. Gravity-wave motions in the mesosphere[J]. Journal of Atmospheric and Terrestrial Physics198446(2): 119-128.
[62] SERAFIMOVICH A, HOFFMANN P, PETERS D, et al. Investigation of inertia-gravity waves in the upper troposphere/lower stratosphere over northern Germany observed with collocated VHF/UHF radars[J]. Atmospheric Chemistry and Physics20055(2): 295-310.
[63] PERRETT J A, WRIGHT C J, HINDLEY N P, et al. Determining gravity wave sources and propagation in the southern hemisphere by ray-tracing AIRS measurements[J]. Geophysical Research Letters202148(2). DOI:10.1029/2020GL088621 .
[64] PRAMITHA M, VENKAT R M, TAORI A, et al. Evidence for tropospheric wind shear excitation of high-phase-speed gravity waves reaching the mesosphere using the ray-tracing technique[J]. Atmospheric Chemistry and Physics201515(5): 2 709-2 721.
[65] WRASSE C M, NAKAMURA T, TAKAHASHI H, et al. Mesospheric gravity waves observed near equatorial and low-middle latitude stations: wave characteristics and reverse ray tracing results[J]. Annales Geophysicae200624(12): 3 229-3 240.
[66] JONES R M, BEDARD A J. Atmospheric gravity wave ray tracing: ordinary and extraordinary waves[J]. Journal of Atmospheric and Solar-Terrestrial Physics2018179: 342-357.
[67] ECKERMANN S D, MARKS C J. GROGRAT: a new model of the global propagation and dissipation of atmospheric gravity waves[J]. Advances in Space Research199720(6): 1 253-1 256.
[68] MARKS C J, ECKERMANN S D. A three-dimensional nonhydrostatic ray-tracing model for gravity waves: formulation and preliminary results for the middle atmosphere[J]. Journal of the Atmospheric Sciences199552(11): 1 959-1 984.
[69] NYASSOR P K, WRASSE C M, GOBBI D, et al. Case studies on concentric gravity waves source using lightning flash rate, brightness temperature and backward ray tracing at S?o martinho da serra (29.44°S, 53.82°W)[J]. Journal of Geophysical Research: Atmospheres2021126(10). DOI: 10.1029/2020JD034527 .
[70] PAULINO I, TAKAHASHI H, VADAS S L, et al. Forward ray-tracing for medium-scale gravity waves observed during the COPEX campaign[J]. Journal of Atmospheric and Solar-Terrestrial Physics201290: 117-123.
[71] VADAS S L. Horizontal and vertical propagation and dissipation of gravity waves in the thermosphere from lower atmospheric and thermospheric sources[J]. Journal of Geophysical Research: Space Physics2007112(A6). DOI:10.1029/2006JA011845 .
[72] HANKINSON M C N, REEDER M J, LANE T P. Gravity waves generated by convection during TWP-ICE: I. inertia-gravity waves[J]. Journal of Geophysical Research: Atmospheres2014119(9): 5 269-5 282.
[73] NOBLE P E, RHODE S, HINDLEY N P, et al. Exploring sources of gravity waves in the southern winter stratosphere using 3-D satellite observations and backward ray-tracing[J]. Journal of Geophysical Research: Atmospheres2024129(23). DOI:10.1029/2024JD041294 .
[74] HENDRICKS E A, DOYLE J D, ECKERMANN S D, et al. What is the source of the stratospheric gravity wave belt in austral winter?[J]. Journal of the Atmospheric Sciences201471(5): 1 583-1 592.
[75] ALEXANDER P, deLa TORRE A, LLAMEDO P, et al. The coexistence of gravity waves from diverse sources during a SOUTHTRAC flight[J]. Journal of Geophysical Research: Atmospheres2023128(5). DOI: 10.1029/2022jd037276 .
[76] VADAS S L. Compressible f-plane solutions to body forces, heatings, and coolings, and application to the primary and secondary gravity waves generated by a deep convective plume[J]. Journal of Geophysical Research: Space Physics2013118(5): 2 377-2 397.
[77] XU S, VADAS S L, YUE J. Quiet time thermospheric gravity waves observed by GOCE and CHAMP[J]. Journal of Geophysical Research: Space Physics2024129(1). DOI:10.1029/2023JA032078 .
[78] LIU X, XU J Y, LIU H L, et al. Nonlinear interactions between gravity waves with different wavelengths and diurnal tide[J]. Journal of Geophysical Research: Atmospheres2008113(D8). DOI: 1029/2007JD009136 .
[79] LIU X, XU J Y, MA R P. Nonlinear interactions between gravity waves and tides[J]. Science in China Series D: Earth Sciences200750(8): 1 273-1 279.
[80] REICHERT R, KAIFLER B, KAIFLER N, et al. High-cadence lidar observations of middle atmospheric temperature and gravity waves at the southern Andes hot spot[J]. Journal of Geophysical Research: Atmospheres2021126(22). DOI:10.1029/2021JD034683 .
[81] WANG Rong, WU Xixi, YUE Ping, et al. Numerical simulation of gravity waves in complex terrain on the northeast slope of the Qinghai-Tibet Plateau[J]. Transactions of Atmospheric Sciences202346(5): 738-752.
  王蓉, 吴稀稀, 岳平, 等. 青藏高原东北边坡复杂地形重力波的数值模拟[J]. 大气科学学报202346(5): 738-752.
[82] SATO K, TATENO S, WATANABE S, et al. Gravity wave characteristics in the southern hemisphere revealed by a high-resolution middle-atmosphere general circulation model[J]. Journal of the Atmospheric Sciences201269(4): 1 378-1 396.
[83] INCHIN P A, BHATT A, BRAMBERGER M, et al. Atmospheric and ionospheric responses to orographic gravity waves prior to the December 2022 cold air outbreak[J]. Journal of Geophysical Research: Space Physics2024129(6). DOI: 10.1029/2024JA032485 .
[84] FRITTS D C, LUND T S, WAN K, et al. Numerical simulation of mountain waves over the southern Andes. part II: momentum fluxes and wave-mean-flow interactions[J]. Journal of the Atmospheric Sciences202178(10): 3 069-3 088.
[85] LIU Y, CHEN Z, FAN Z Q, et al. Statistical analysis on orographic atmospheric gravity wave and sporadic E layer[J]. Journal of Atmospheric and Solar—Terrestrial Physics2024, 259. DOI: 10.1016/j.jastp.2024.106256 .
[86] XU Yizhou, LI Guoping, ZHANG Xiaoyu, et al. Relationship between a heavy rainfall and gravity wave in Sichuan Basin[J]. Journal of Applied Meteorological Science202536(1): 65-76.
  许一洲, 李国平, 张晓玉, 等. 四川盆地一次暴雨过程与重力波的关联特征[J]. 应用气象学报202536(1): 65-76.
[87] XIE Jiaxu, LI Guoping. Mechanism analysis of a sudden rainstorm triggered by the coupling of gravity wave and convection in mountainous area[J]. Atmospheric Sciences202145(3): 617-632.
  谢家旭,李国平. 重力波与对流耦合作用在一次山地突发性暴雨触发中的机理分析[J]. 大气科学202145(3): 617-632.
[88] LI Runqiu, XU Xin, XU Xiangde, et al. Importance of orographic gravity waves over the Tibetan Plateau on the spring rainfall in East Asia[J]. Science in China (Earth Sciences)202353(11): 2 639-2 647.
  李闰秋,徐昕,徐祥德,等. 青藏高原地形重力波对东亚春季降水的重要作用[J]. 中国科学(地球科学)202353(11): 2 639-2 647.
[89] LANE T P, REEDER M J, CLARK T L. Numerical modeling of gravity wave generation by deep tropical convection[J]. Journal of the Atmospheric Sciences200158(10): 1 249-1 274.
[90] FOVELL R, DURRAN D, HOLTON J R. Numerical simulations of convectively generated stratospheric gravity waves[J]. Journal of the Atmospheric Sciences199249(16): 1 427-1 442.
[91] LIU T, YU Z B, DING Z H, et al. Observation of ionospheric gravity waves introduced by thunderstorms in low latitudes China by GNSS[J]. Remote Sensing202113(20). DOI: 10.3390/rs13204131 .
[92] ZHAO Y X, DENG Y, WANG J S, et al. Tropical cyclone-induced gravity wave perturbations in the upper atmosphere: GITM-R simulations[J]. Journal of Geophysical Research: Space Physics2020125(7). DOI: 10.1029/2019JA027675 .
[93] WU X, HOFFMANN L, WRIGHT C J, et al. Stratospheric gravity waves as a proxy for hurricane intensification: a case study of weather research and forecast simulation for hurricane Joaquin[J]. Geophysical Research Letters202249(1). DOI:10.1029/2021GL097010 .
[94] NANDA K, SASMAL S, HAZRA R, et al. Study on the distribution of Gravity Wave (GW) activity in six bay of Bengal tropical cyclones[J]. Atmosphere202516(2). DOI: 10.3390/atmos16020235 .
[95] WANG Xiujuan, RAN Linkun, QI Yanbin,et al. Based on microbarometer observations, analysis of the gravitational wave characteristics during heavy rainfall processes [J]. Acta Physica Sinica202170(23): 266-278.
  王秀娟,冉令坤,齐彦斌,等. 基于微压计观测的暴雨过程重力波特征分析[J]. 物理学报202170(23): 266-278.
[96] WEI J H, ZHANG F Q. Mesoscale gravity waves in moist baroclinic jet-front systems[J]. Journal of the Atmospheric Sciences201471(3): 929-952.
[97] WOIWODE W, D?RNBRACK A, GELDENHUYS M, et al. Non-orographic gravity waves and turbulence caused by merging jet streams[J]. Journal of Geophysical Research: Atmospheres2023128(14). DOI: 10.1029/2022JD038097 .
[98] HOU J L, LUO J, XU X H. Influences of different factors on gravity wave activity in the lower stratosphere of the Indian region[J]. Remote Sensing202416(5). DOI: 10.3390/rs16050761 .
[99] ZHANG Y H, ZHANG S D, YI F. Intensive radiosonde observations of lower tropospheric inversion layers over Yichang, China[J]. Journal of Atmospheric and Solar-Terrestrial Physics200971(1): 180-190.
[100] NAYAK C, YI?IT E. Variation of small-scale gravity wave activity in the ionosphere during the major sudden stratospheric warming event of 2009[J]. Journal of Geophysical Research: Space Physics2019124(1): 470-488.
[101] CULLENS C Y, THURAIRAJAH B. Gravity wave variations and contributions to stratospheric sudden warming using long-term ERA5 model output[J]. Journal of Atmospheric and Solar-Terrestrial Physics2021, 219. DOI: 10.1016/j.jastp.2021.105632 .
[102] HOLT L A, ALEXANDER M J, COY L, et al. An evaluation of gravity waves and gravity wave sources in the Southern Hemisphere in a 7 km global climate simulation[J]. Quarterly Journal of the Royal Meteorological Society Royal Meteorological Society2017143(707): 2 481-2 495.
[103] PLOUGONVEN R, HERTZOG A, GUEZ L. Gravity waves over Antarctica and the southern ocean: consistent momentum fluxes in mesoscale simulations and stratospheric balloon observations[J]. Quarterly Journal of the Royal Meteorological Society2013139(670): 101-118.
[104] MCLANDRESS C, SCINOCCA J F, SHEPHERD T G, et al. Dynamical control of the mesosphere by orographic and nonorographic gravity wave drag during the extended northern winters of 2006 and 2009[J]. Journal of the Atmospheric Sciences201370(7): 2 152-2 169.
[105] HáJKOVá D, ?áCHA P. Parameterized orographic gravity wave drag and dynamical effects in CMIP6 models[J]. Climate Dynamics202462(3): 2 259-2 284.
[106] PLOUGONVEN R. An essay on the parameterization of orographic gravity wave drag[C]// Seminar/workshop on observation, theory and modelling of orographic effects seminar, 1986.
[107] van NIEKERK A, VOSPER S B. Towards a more “scale-aware” orographic gravity wave drag parametrization: description and initial testing[J]. Quarterly Journal of the Royal Meteorological Society2021147(739): 3 243-3 262.
[108] GELDENHUYS M. On gravity wave parameterisation in vicinity of low-level blocking[J]. Atmospheric Science Letters202223(6). DOI: 10.1002/asl.1084 .
[109] ZHANG Hanbin, SHI Yongqiang, CUI Lina, et al. The application study of gravity wave drag scheme in karamay wind numerical forecast [J].Transactions of Atmospheric Sciences202245(1): 124-134.
  张涵斌,史永强,崔丽娜,等. 克拉玛依大风数值预报中的重力波拖曳方案应用研究[J]. 大气科学学报202245 (1): 124-134.
[110] ZHANG R, JI Y, XU X, et al. Impacts of nonhydrostatic orographic gravity wave parameterization on the simulation of atmospheric circulation in climate model[J]. Chinese Journal of Geophysics202467(9): 3 277-3 289.
[111] XU X, ZHANG R R, TEIXEIRA M A C, et al. A parameterization scheme accounting for nonhydrostatic effects on the momentum flux of vertically propagating orographic gravity waves: formulas and preliminary tests in the Model for Prediction Across Scales (MPAS)[J]. Journal of the Atmospheric Sciences202481(5): 805-817.
[112] XU X, JI Y Z, ZHOU X, et al. Reducing winter precipitation biases over the western Tibetan Plateau in the Model for Prediction Across Scales (MPAS) with a revised parameterization of orographic gravity wave drag[J]. Journal of Geophysical Research: Atmospheres2023128(22): 1-14.
[113] LU Y X, XU X, WANG L, et al. Machine learning emulation of subgrid-scale orographic gravity wave drag in a general circulation model with middle atmosphere extension[J]. Journal of Advances in Modeling Earth Systems202416(3). DOI:10.1029/2023MS003611 .
[114] OKUI H, WRIGHT C J, HINDLEY N P, et al. A comparison of stratospheric gravity waves in a high-resolution general circulation model with 3-D satellite observations[J]. Journal of Geophysical Research: Atmospheres2023128(13). DOI:10.1029/2009GL03858 .
[115] LINDZEN R S. Turbulence and stress owing to gravity wave and tidal breakdown[J]. Journal of Geophysical Research: Oceans198186(C10): 9 707-9 714.
[116] HINES C O. The saturation of gravity waves in the middle atmosphere. part II: development of Doppler-spread theory[J]. Journal of the Atmospheric Sciences199148(11): 1 361-1 379.
[117] WARNER C D, MCINTYRE M E. On the propagation and dissipation of gravity wave spectra through a realistic middle atmosphere[J]. Journal of the Atmospheric Sciences199653(22): 3 213-3 235.
[118] SCINOCCA J F. The effect of back-reflection in the parameterization of non-orographic gravity-wave drag[J]. Journal of the Meteorological Society of Japan Series II200280(4B): 939-962.
[119] SONG I S, CHUN H Y. Momentum flux spectrum of convectively forced internal gravity waves and its application to gravity wave drag parameterization. Part I: theory[J]. Journal of the Atmospheric Sciences200562(1): 107-124.
[120] LOTT F, RANI R, MCLANDRESS C, et al. Comparison between non-orographic gravity-wave parameterizations used in QBOi models and Strateole 2 constant-level balloons[J]. Quarterly Journal of the Royal Meteorological Society2024150(763): 3 721-3 736.
[121] ECKERMANN S D. Explicitly stochastic parameterization of nonorographic gravity wave drag[J]. Journal of the Atmospheric Sciences201168(8): 1 749-1 765.
[122] WEDI N P, POLICHTCHOUK I, DUEBEN P, et al. A baseline for global weather and climate simulations at 1 km resolution[J]. Journal of Advances in Modeling Earth Systems202012(11). DOI: 10.1029/2020MS002192 .
[123] ARTICLE S, KIM Y J, ECKERMANN S D, et al. An overview of the past, present and future of gravity-wave drag parametrization for numerical climate and weather prediction models[J]. Atmosphere-Ocean200341(1): 65-98.
Outlines

/