Research Progress on Numerical Simulations of the Tibetan Plateau Thermodynamic Forcing Based on Potential Vorticity Theory
Received date: 2025-04-05
Revised date: 2025-05-05
Online published: 2025-07-03
Supported by
the National Natural Science Foundation of China(42475020)
The thermodynamic forcing of the Tibetan Plateau (TP) plays a crucial role in modulating the formation and variability of the Asian summer monsoon. However, due to limitations in both observational data and numerical models, the relative importance of the Plateau’s dynamic versus thermal effects on monsoon development remains a subject of ongoing debate. In recent years, a new framework based on Potential Vorticity (PV) theory has been proposed, introducing the concept of surface PV forcing over the Tibetan Plateau and revealing its relationship with the Asian summer monsoon. This paper reviews and synthesizes related research findings. Key conclusions include the following: the relative significance of TP thermodynamic forcing is closely related to experimental design and model performance; the surface PV index can serve as a quantitative metric to assess this relative significance. Compared to sensible heat flux, surface PV more accurately represents summer surface forcing over the Plateau and can be used to evaluate the strength of TP surface forcing under different model configurations and its impact on monsoonal rainfall. Climatologically, TP surface heating plays a dominant role in the formation of the summer monsoon over land. From an extended-range forecasting perspective, the spatiotemporal scales of thermodynamic disturbances over the TP that modulate synoptic-scale waves are key factors influencing the predictability of downstream precipitation. Notably, the intensity of TP surface forcing in climate system models—and its sensitivity in influencing monsoon precipitation—was quantified across different regions in 2022. Accurate simulation of TP surface PV forcing in June 2022 proved essential for reproducing the persistent rainfall observed over South China. These theoretical and modeling advancements contribute to a deeper understanding of the climatic dynamics associated with TP. However, observational data scarcity—particularly in high-elevation regions of the western TP—due to terrain and environmental constraints, limits the understanding of boundary-layer processes and results in biased physical parameterizations in climate models. Therefore, advancing TP simulation capabilities and deepening understanding of its climatic role require integrating observations, numerical modeling, and theoretical research into a unified framework. This approach will enhance the prediction of weather and climate extremes across TP and adjacent regions.
Bian HE , Shijian FENG , Guoxiong WU , Yimin LIU , Chen SHENG , Xinyu HE . Research Progress on Numerical Simulations of the Tibetan Plateau Thermodynamic Forcing Based on Potential Vorticity Theory[J]. Advances in Earth Science, 2025 , 40(5) : 441 -455 . DOI: 10.11867/j.issn.1001-8166.2025.037
[1] | YEH Tucheng, Szuwei LO, CHU Paochen. The wind structure and heat balance in the lower troposphere over Tibetan Plateau and its surrounding[J]. Acta Meteorologica Sinica, 1957, 15(2): 108-121. |
叶笃正, 罗四维, 朱抱真. 西藏高原及其附近的流场结构和对流层大气的热量平衡[J]. 气象学报, 1957, 15(2): 108-121. | |
[2] | FLOHN H. Large-scale aspects of the “summer monsoon” in south and east Asia[J]. Journal of the Meteorological Society of Japan Ser II, 1957, 35A: 180-186. |
[3] | YE Duzheng, GAO Youxi. Meteorology of Qinghai-Tibet Plateau[M]. Beijing: Science Press, 1979. |
叶笃正, 高由禧. 青藏高原气象学[M]. 北京: 科学出版社, 1979. | |
[4] | HOSKINS B J, KAROLY D J. The steady linear response of a spherical atmosphere to thermal and orographic forcing[J]. Journal of the Atmospheric Sciences, 1981, 38(6): 1 179-1 196. |
[5] | CHEN S C, TRENBERTH K E. Orographically forced planetary waves in the Northern Hemisphere winter: steady state model with wave-coupled lower boundary formulation[J]. Journal of the Atmospheric Sciences, 1988, 45(4): 657-681. |
[6] | WU Guoxiong, LI Weiping, GUO Hua,et al. Tibetan Plateau sensible heat driven air-pump and Asian summer monsoon[C]//YE Duzheng. Zhao Jiuzhang memorial collection. Beijing:Science Press,1997:116-126. |
吴国雄,李伟平,郭华,等. 青藏高原感热气泵和亚洲夏季风[C]//叶笃正. 赵九章纪念文集.北京:科学出版社,1997:116-126. | |
[7] | WU G X, LIU Y M, ZHANG Q, et al. The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate[J]. Journal of Hydrometeorology, 2007, 8(4): 770-789. |
[8] | WU G X, LIU Y M, HE B, et al. Thermal controls on the Asian summer monsoon[J]. Scientific Reports, 2012, 2. DOI:10.1038/srep00404 . |
[9] | WU G X, ZHANG Y S. Tibetan Plateau forcing and the timing of the monsoon onset over south Asia and the South China Sea[J]. Monthly Weather Review, 1998, 126(4): 913-927. |
[10] | HSU H H, LIU X. Relationship between the Tibetan Plateau heating and East Asian summer monsoon rainfall[J]. Geophysical Research Letters, 2003, 30(20). DOI: 10.1029/2003GL017909 . |
[11] | DUAN A M, WU G X. Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia[J]. Climate Dynamics, 2005, 24(7): 793-807. |
[12] | LIU Y M, HOSKINS B, BLACKBURN M. Impact of Tibetan orography and heating on the summer flow over Asia[J]. Journal of the Meteorological Society of Japan Series II, 2007, 85B: 1-19. |
[13] | MOLNAR P, ENGLAND P, MARTINOD J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon[J]. Reviews of Geophysics, 1993, 31(4): 357-396. |
[14] | BOOS W R, KUANG Z M. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating[J]. Nature, 2010, 463(7 278): 218-222. |
[15] | BOOS W R, KUANG Z M. Sensitivity of the South Asian monsoon to elevated and non-elevated heating[J]. Scientific Reports, 2013, 3. DOI: 10.1038/srep01192 . |
[16] | RAJAGOPALAN B, MOLNAR P. Signatures of Tibetan Plateau heating on Indian summer monsoon rainfall variability[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(3): 1 170-1 178. |
[17] | SON J H, SEO K H, WANG B. Dynamical control of the Tibetan Plateau on the east Asian summer monsoon[J]. Geophysical Research Letters, 2019, 46(13): 7 672-7 679. |
[18] | SON J H, SEO K H, WANG B. How does the Tibetan Plateau dynamically affect downstream monsoon precipitation?[J]. Geophysical Research Letters, 2020, 47(23). DOI: 10.1029/2020GL090543 . |
[19] | QIU J. Monsoon melee[J]. Science, 2013, 340(6 139): 1 400-1 401. |
[20] | ASHFAQ M. Topographic controls on the distribution of summer monsoon precipitation over south Asia[J]. Earth Systems and Environment, 2020, 4(4): 667-683. |
[21] | MANABE S, TERPSTRA T B. The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments[J]. Journal of the Atmospheric Sciences, 1974, 31(1): 3-42. |
[22] | HAHN D G, MANABE S. The role of mountains in the south Asian monsoon circulation[J]. Journal of the Atmospheric Sciences, 1975, 32(8): 1 515-1 541. |
[23] | WANG Qianqian, WANG Anyu, LI Xuefeng, et al. The effects of the Qinghai-Xizang Plateau on the mean general circulation in East Asia in summer[J]. Plateau Meteorology, 1984, 3(1): 13-26. |
王谦谦, 王安宇, 李学锋, 等. 青藏高原大地形对夏季东亚大气环流的影响[J]. 高原气象, 1984, 3(1): 13-26. | |
[24] | KUO H L, QIAN Y F. Influence of the Tibetian Plateau on cumulative and diurnal changes of weather and climate in summer[J]. Monthly Weather Review, 1981, 109(11): 2 337-2 356. |
[25] | LIU Xiaodong, LUO Siwei, QIAN Yongfu. Numerical simulations of influences of different thermal characteristics on ground surface of Tibetan Plateau on the over SE-Asia[J]. Plateau Meteorology, 1989, 8(3): 205-216. |
刘晓东, 罗四维, 钱永甫. 青藏高原地表热状况对夏季东亚大气环流影响的数值模拟[J]. 高原气象, 1989, 8(3): 205-216. | |
[26] | LIU Xiaodong, TIAN Liang, WEI Zhigang. Numerical experiment on the influence of surface reflectivity change on East Asian summer monsoon in Qinghai-Tibet Plateau[J]. Plateau Meteorology, 1994, 13(4): 468-472. |
刘晓东, 田良, 韦志刚. 青藏高原地表反射率变化对东亚夏季风影响的数值试验[J]. 高原气象, 1994, 13(4): 468-472. | |
[27] | ZENG Q C, ZHANG X H, LIANG X Z, et al. Documentation of IAP Two-level Atmospheric General Circulation Model: DOE/ER/60314-H1?TRO44[R]. Washington, D.C.: U.S. Department of Energy? 1989. |
[28] | ZHU Qiangen, HU Jianglin. Numerical experiments on the influences of the Qinghai-Xizang Plateau topography on the summer general circulation and the Asian summer monsoon[J]. Journal of Nanjing Institute of Meteorology, 1993, 16(2): 120-129. |
朱乾根, 胡江林. 青藏高原大地形对夏季大气环流和亚洲夏季风影响的数值试验[J]. 南京气象学院学报, 1993, 16(2): 120-129. | |
[29] | WU Guoxiong, LIU Xin, ZHANG Qiong,et al. Progresses in the study of the climate impacts of the elevated heating over the Tibetan Plateau[J]. Climatic and Environmental Research,2002,7(2):184-201. |
吴国雄,刘新,张琼,等. 青藏高原抬升加热气候效应研究的新进展[J]. 气候与环境研究,2002,7(2):184-201. | |
[30] | WU Guoxiong, LIU Yimin, LIU Xin, et al. How the heating over the Tibetan Plateau affects the Asian climate in summer[J]. Chinese Journal of Atmospheric Sciences, 2005, 29(1): 47-56, 167-168. |
吴国雄, 刘屹岷, 刘新, 等. 青藏高原加热如何影响亚洲夏季的气候格局[J]. 大气科学, 2005, 29(1): 47-56, 167-168. | |
[31] | WANG Zaizhi. Numerical simulation of weather and climate effects on Qinghai-Tibet Plateau[D]. Beijing: Institute of Atmospheric Physics, Chinese Academy of Sciences, 2005. |
王在志. 青藏高原天气气候效应的数值模拟研究[D]. 北京: 中国科学院大气物理研究所, 2005. | |
[32] | QIAN Yun, QIAN Yongfu. Sensitivity test on the influence of Qinghai-Tibet Plateau uplift on summer atmospheric circulation[J]. Acta Meteorologica Sinica, 1996, 54(4): 474-483. |
钱云, 钱永甫. 青藏高原隆升影响夏季大气环流的敏感性试验[J]. 气象学报, 1996, 54(4): 474-483. | |
[33] | XU Z F, FU C B, QIAN Y F. Relative roles of land-sea distribution and orography in Asian monsoon intensity[J]. Journal of the Atmospheric Sciences, 2009, 66(9): 2 714-2 729. |
[34] | XU Z F, QIAN Y F, FU C B. The role of land-sea distribution and orography in the Asian monsoon. Part I: land-sea distribution[J]. Advances in Atmospheric Sciences, 2010, 27(2): 403-420. |
[35] | ZHANG Yaocun, QIAN Yongfu. Numerical study on the effect of Qinghai-Tibet Plateau uplift on atmospheric critical height[J]. Acta Meteorologica Sinica, 1999, 57(2): 157-167. |
张耀存, 钱永甫. 青藏高原隆升作用于大气临界高度的数值研究[J]. 气象学报, 1999, 57(2): 157-167. | |
[36] | ZHANG R, JIANG D B, LIU X D, et al. Modeling the climate effects of different subregional uplifts within the Himalaya-Tibetan Plateau on Asian summer monsoon evolution[J]. Chinese Science Bulletin, 2012, 57(35): 4 617-4 626. |
[37] | LU M M, YANG S, WANG J B, et al. Response of regional Asian summer monsoons to the effect of reduced surface albedo in different Tibetan Plateau domains in idealized model experiments[J]. Journal of Climate, 2021. DOI: 10.1175/JCLI-D-20-0500.1 . |
[38] | LU M M, YANG S, ZHU C W, et al. Thermal impact of the southern Tibetan Plateau on the Southeast Asian summer monsoon and modulation by the tropical Atlantic SST[J]. Journal of Climate, 2023, 36(5): 1 319-1 330. |
[39] | FAN Guangzhou, LUO Siwei, Shihua Lü. Preliminary numerical simulation study on the influence of winter snow anomaly on summer monsoon in East and South Asia in Qinghai-Tibet Plateau[J]. Plateau Meteorology, 1997, 16(2): 140-152. |
范广洲, 罗四维, 吕世华. 青藏高原冬季积雪异常对东、南亚夏季风影响的初步数值模拟研究[J]. 高原气象, 1997, 16(2): 140-152. | |
[40] | CHEN Lijuan, Shihua Lü, LUO Siwei. Numerical experiment on the influence of spring snow anomaly on Asian monsoon precipitation in Qinghai-Tibet Plateau[J]. Plateau Meteorology, 1996, 15(1): 122-130. |
陈丽娟, 吕世华, 罗四维. 青藏高原春季积雪异常对亚洲季风降水影响的数值试验[J]. 高原气象, 1996, 15(1): 122-130. | |
[41] | LIU Xin, WU Guoxiong, LIU Yimin,et al. Diabatic heating over the Tibetan Plateau and seasonal variations of the Asian circulation of summer monsoon onset[J]. Chinese Journal of Atmospheric Sciences,2002,26(6):781-793. |
刘新,吴国雄,刘屹岷,等. 青藏高原加热与亚洲环流季节变化和夏季风爆发[J]. 大气科学,2002,26(6):781-793. | |
[42] | SHI L, SMITH E A. Surface forcing of the infrared cooling profile over the Tibetan Plateau. Part II: cooling-rate variation over large-scale plateau domain during summer monsoon transition[J]. Journal of the Atmospheric Sciences, 1992, 49(10): 823-844. |
[43] | DUAN A M, WU G X, LIANG X Y. Influence of the Tibetan Plateau on the summer climate patterns over Asia in the IAP/LASG SAMIL model[J]. Advances in Atmospheric Sciences, 2008, 25(4): 518-528. |
[44] | WU Z W, LI J P, JIANG Z H, et al. Modulation of the Tibetan Plateau snow cover on the ENSO teleconnections: from the east Asian summer monsoon perspective[J]. Journal of Climate, 2012, 25(7): 2 481-2 489. |
[45] | SHA Y Y, SHI Z G, LIU X D, et al. Distinct impacts of the Mongolian and Tibetan Plateaus on the evolution of the east Asian monsoon[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(10): 4 764-4 782. |
[46] | GE J, YOU Q L, ZHANG Y Q. The influence of the Asian summer monsoon onset on the northward movement of the South Asian high towards the Tibetan Plateau and its thermodynamic mechanism[J]. International Journal of Climatology, 2018, 38(2): 543-553. |
[47] | SUN H, LIU X D. Impacts of dynamic and thermal forcing by the Tibetan Plateau on the precipitation distribution in the Asian arid and monsoon regions[J]. Climate Dynamics, 2021, 56(7): 2 339-2 358. |
[48] | LIU X D, YIN Z Y. Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 183(3/4): 223-245. |
[49] | LIU X D, DONG B W. Influence of the Tibetan Plateau uplift on the Asian monsoon-arid environment evolution[J]. Chinese Science Bulletin, 2013, 58(34): 4 277-4 291. |
[50] | ZHOU X J, ZHAO P, CHEN J M, et al. Impacts of thermodynamic processes over the Tibetan Plateau on the northern hemispheric climate[J]. Science in China Series D: Earth Sciences, 2009, 52(11): 1 679-1 693. |
[51] | LIU G, ZHAO P, CHEN J M. Possible effect of the thermal condition of the Tibetan Plateau on the interannual variability of the summer Asian-Pacific oscillation[J]. Journal of Climate, 2017, 30(24): 9 965-9 977. |
[52] | XU J, ZHAO P, CHAN J C L, et al. Increasing tropical cyclone intensity in the western North Pacific partly driven by warming Tibetan Plateau[J]. Nature Communications, 2024, 15(1). DOI: 10.1038/s41467-023-44403-8 . |
[53] | HE B, LIU Y M, WU G X, et al. CAS FGOALS-f3-L model datasets for CMIP6 GMMIP tier-1 and tier-3 experiments[J]. Advances in Atmospheric Sciences, 2020, 37(1): 18-28. |
[54] | HE B, BAO Q, WANG X C, et al. CAS FGOALS-f3-L model datasets for CMIP6 historical atmospheric model intercomparison project simulation[J]. Advances in Atmospheric Sciences, 2019, 36(8): 771-778. |
[55] | ZHISHENG A, KUTZBACH J E, PRELL W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times[J]. Nature, 2001, 411(6 833): 62-66. |
[56] | ABE M, KITOH A, YASUNARI T. An evolution of the Asian summer monsoon associated with mountain uplift-simulation with the MRI atmosphere-ocean coupled GCM -[J]. Journal of the Meteorological Society of Japan Series II, 2003, 81(5): 909-933. |
[57] | ABE M, HORI M, YASUNARI T, et al. Effects of the Tibetan Plateau on the onsetof the summer monsoon in South Asia: the role of the air-sea interaction[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(4): 1 760-1 776. |
[58] | KITOH A. Mountain uplift and surface temperature changes[J]. Geophysical Research Letters, 1997, 24(2): 185-188. |
[59] | KITOH A. Effects of mountain uplift on east Asian summer climate investigated by a coupled atmosphere-ocean GCM[J]. Journal of Climate, 2004, 17(4): 783-802. |
[60] | KITOH A, MOTOI T, ARAKAWA O. Climate modelling study on mountain uplift and Asian monsoon evolution[J]. Geological Society, London, Special Publications, 2010, 342(1): 293-301. |
[61] | KOSEKI S, WATANABE M, KIMOTO M. Role of the midlatitude air-sea interaction in orographically forced climate[J]. Journal of the Meteorological Society of Japan Series II, 2008, 86(2): 335-351. |
[62] | OKAJIMA H, XIE S P. Orographic effects on the northwestern Pacific monsoon: role of air-sea interaction[J]. Geophysical Research Letters, 2007, 34(21). DOI:10.1029/2007GL032206 . |
[63] | HE B, LIU Y M, WU G X, et al. The role of air-sea interactions in regulating the thermal effect of the Tibetan-Iranian Plateau on the Asian summer monsoon[J]. Climate Dynamics, 2019, 52(7): 4 227-4 245. |
[64] | HE B, SHENG C, WU G X, et al. Quantification of seasonal and interannual variations of the Tibetan Plateau surface thermodynamic forcing based on the potential vorticity[J]. Geophysical Research Letters, 2022, 49(5). DOI:10.1029/2021GL097222 . |
[65] | HE B, LIU Y M, BAO Q, et al. Model sensitivity of Tibetan Plateau surface potential vorticity and the Asian summer monsoon system to Asian orographic perturbation in FGOALS-f2[J]. Fundamental Research, 2023. DOI:10.1016/j.fmre.2023.08.013 . |
[66] | HE B, HE X Y, LIU Y M, et al. Role of thermal and dynamical subdaily perturbations over the Tibetan Plateau in 30-day extended-range forecast of East Asian precipitation in early summer[J]. NPJ Climate and Atmospheric Science, 2025, 8. DOI: 10.1038/s41612-025-00931-2 . |
[67] | WU G X, ZHOU X J, XU X D, et al. An integrated research plan for the Tibetan Plateau land-air coupled system and its impacts on the global climate[J]. Bulletin of the American Meteorological Society, 2023, 104(1): E158-E177. |
[68] | HUANG J P, ZHOU X J, WU G X, et al. Global climate impacts of land-surface and atmospheric processes over the Tibetan Plateau[J]. Reviews of Geophysics, 2023, 61(3). DOI:10.1029/2022KG000771 . |
/
〈 |
|
〉 |