Research Progress on the Processes, Mechanism and Parameterization of Intermittent Dust Emission
Received date: 2025-03-11
Revised date: 2025-03-30
Online published: 2025-05-13
Supported by
the Joint Research Project for Meteorological Capacity Improvement(24NLTSQ011);The National Natural Science Foundation of China(41605081)
Dust emissions are primary component of the atmospheric dust cycle. A comprehensive and quantitative description of the dust emission process is the basis for accurate simulation and prediction of dust aerosols. Dust emission processes are highly unsteady, non-uniform, and has intermittent features, also known as intermittent dust emissions. Accurately characterizing intermittent dust emissions remains a key scientific challenge in current dust research. This study reviews research from the past two decades, spanning field experiments, wind tunnel tests, and numerical simulations, on intermittent dust emissions. It covers the development of observation techniques using high-frequency measurements, occurrence conditions, and identification methods based on turbulence thresholds and intermittent factors. The influence of boundary-layer turbulence structures and their thermodynamic and dynamic effects on intermittent dust emissions is also summarized. Advancements in parameterization schemes for different dust emission mechanisms are discussed, with a focus on methods incorporating gust variations, intermittent factors, or probability distributions of turbulence parameters to model intermittent dust emissions. Finally, suggestions are provided to address existing challenges in dust emission research and outline future research directions. In the future, more filed experiments of atmospheric boundary layer and dust emission processes need to conduct using high-frequency measurement techniques for dust saltation and emission. In the relevant studies of identification methods and formation mechanisms of intermittent dust emission, both of the dynamic and thermodynamic impact of turbulence should be considered. More attention should be paid on the intermittent dust emission processes caused by direct turbulence aerodynamic entrainment, typically without sand saltation activity. The intermittent dust emission parameterization schemes should be developed and evaluated using field experiment data, in order to improve the simulation and forecasting of dust aerosols and dust events.
Xiaolan LI , Hongsheng ZHANG . Research Progress on the Processes, Mechanism and Parameterization of Intermittent Dust Emission[J]. Advances in Earth Science, 2025 , 40(4) : 348 -359 . DOI: 10.11867/j.issn.1001-8166.2025.031
1 | WANG H, ZHAO T L, ZHANG X Y, et al. Dust direct radiative effects on the Earth-atmosphere system over East Asia: early spring cooling and late spring warming[J]. Chinese Science Bulletin, 2011, 56(10): 1 020-1 030. |
2 | KOK J F, STORELVMO T, KARYDIS V A, et al. Mineral dust aerosol impacts on global climate and climate change[J]. Nature Reviews Earth & Environment, 2023, 4: 71-86. |
3 | SHAO Y P, WYRWOLL K H, CHAPPELL A, et al. Dust cycle: an emerging core theme in Earth system science[J]. Aeolian Research, 2011, 2(4): 181-204. |
4 | ZHANG Hongsheng, LI Xiaolan. Review of the field measurements and parameterization for dust emission during sand-dust events [J]. Acta Meteorologica Sinica, 2014, 72(5): 987-1 000. |
张宏升, 李晓岚. 沙尘天气过程起沙特征的观测试验和参数化研究进展 [J]. 气象学报, 2014, 72(5): 987-1 000. | |
5 | SHI Guangyu, TAN Saichun, CHEN Bin. Environmental and climatic effects of mineral dust and bioaerosol[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(3): 559-569. |
石广玉, 檀赛春, 陈彬. 沙尘和生物气溶胶的环境和气候效应[J]. 大气科学, 2018, 42(3): 559-569. | |
6 | FAN Yawei, DU Heqiang, YANG Shengfei, et al. Research progress, problems and prospects of numerical modelling and data assimilation of sand and dust aerosols [J]. Advances in Earth Science, 2024, 39(8): 813-822. |
范亚伟, 杜鹤强, 杨胜飞, 等. 沙尘气溶胶数值模式与资料同化的研究进展, 问题与展望[J]. 地球科学进展, 2024, 39(8): 813-822. | |
7 | ZHANG T L, ZHENG M, SUN X G, et al. Environmental impacts of three Asian dust events in the northern China and the northwestern Pacific in spring 2021[J]. Science of the Total Environment, 2023, 859. DOI:10.1016/j.scitotenv.2022.160230 . |
8 | SHAO Y, ISHIZUKA M, MIKAMI M, et al. Parameterization of size-resolved dust emission and validation with measurements[J]. Journal of Geophysical Research, 2011, 116(D8). DOI: 10.1029/2010JD014527 . |
9 | KLOSE M, SHAO Y P, LI X L, et al. Further development of a parameterization for convective turbulent dust emission and evaluation based on field observations[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(17): 10 441-10 457. |
10 | LI X L, KLOSE M, SHAO Y, et al. Convective Turbulent Dust Emission (CTDE) observed over Horqin Sandy Land area and validation of a CTDE scheme[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(16): 9 980-9 992. |
11 | JU T T, LI X L, ZHANG H S, et al. Comparison of two different dust emission mechanisms over the Horqin Sandy Land area: aerosols contribution and size distributions[J]. Atmospheric Environment, 2018, 176: 82-90. |
12 | BAGNOLD R A. The physics of blown sand and desert dune [M]. London: Methuen, 1941. |
13 | DUPONT S, BERGAMETTI G, MARTICORENA B, et al. Modeling saltation intermittency[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(13): 7 109-7 128. |
14 | COMOLA F, KOK J F, CHAMECKI M, et al. The intermittency of wind-driven sand transport[J]. Geophysical Research Letters, 2019, 46(22): 13 430-13 440. |
15 | BUTTERFIELD G R. Transitional behaviour of saltation: wind tunnel observations of unsteady winds[J]. Journal of Arid Environments, 1998, 39(3): 377-394. |
16 | ZHOU Chunhong, RAO Xiaoqin, SHENG Li, et al. Application of scale-adaptive dust emission scheme to CMA-CUACE/Dust[J]. Journal of Applied Meteorological Science, 2024, 35(4): 400-413. |
周春红, 饶晓琴, 盛黎, 等. 尺度适应性起沙机制在CMA-CUACE/Dust中的应用[J]. 应用气象学报, 2024, 35(4): 400-413. | |
17 | MA S Q, ZHANG X L, GAO C, et al. Multimodel simulations of a springtime dust storm over northeastern China: implications of an evaluation of four commonly used air quality models (CMAQ v5.2.1, CAMx v6.50, CHIMERE v2017r4, and WRF-Chem v3.9.1)[J]. Geoscientific Model Development, 2019, 12(11): 4 603-4 625. |
18 | WU M X, LIU X H, YU H B, et al. Understanding processes that control dust spatial distributions with global climate models and satellite observations[J]. Atmospheric Chemistry and Physics, 2020, 20(22): 13 835-13 855. |
19 | KARAMI S, KASKAOUTIS D G, KASHANI S S, et al. Evaluation of nine operational models in forecasting different types of synoptic dust events in the Middle East[J]. Geosciences, 2021, 11(11). DOI:10.3390/geosciences11110458 . |
20 | CHEN Siyu, HUANG Jianping, LI Jingxin, et al. Comparison of dust emissions, transport, and deposition between the Taklimakan Desert and Gobi Desert from 2007 to 2011[J]. Science China Earth Sciences, 2017, 60: 1 338-1 355. |
陈思宇, 黄建平, 李景鑫, 等. 塔克拉玛干沙漠和戈壁沙尘起沙、传输和沉降的对比研究[J]. 中国科学: 地球科学, 2017, 47(8): 939-957. | |
21 | WU C L, LIN Z H, LIU X H, et al. Description of dust emission parameterization in CAS-ESM2 and its simulation of global dust cycle and east Asian dust events[J]. Journal of Advances in Modeling Earth Systems, 2021, 13(10). DOI: 10.1029/2020MS002456 . |
22 | BARCHYN T E, MARTIN R L, KOK J F, et al. Fundamental mismatches between measurements and models in aeolian sediment transport prediction: the role of small-scale variability[J]. Aeolian Research, 2014, 15: 245-251. |
23 | ZOU Xueyong, ZHANG Mengcui, ZHANG Chunlai, et al. Response of aeolian flux to soil particle properties and airflow turbulence fluctuation[J]. Advances in Earth Science, 2019, 34(8): 787-800. |
邹学勇, 张梦翠, 张春来, 等. 输沙率对土壤颗粒特性和气流湍流脉动的响应[J]. 地球科学进展, 2019, 34(8): 787-800. | |
24 | ZENG Qingcun, CHENG Xueling, HU Fei. The mechanism of soil erosion and dust emission under the action of nonsteady strong wind with descending motion and gustwind[J]. Climatic and Environmental Research, 2007, 12(3): 244-250. |
曾庆存, 程雪玲, 胡非. 大气边界层非常定下沉急流和阵风的起沙机理[J]. 气候与环境研究, 2007, 12(3): 244-250. | |
25 | MAYAUD J R, BAILEY R M, WIGGS G F S, et al. Modelling aeolian sand transport using a dynamic mass balancing approach[J]. Geomorphology, 2017, 280: 108-121. |
26 | NEARING M A, PARKER S C. Detachment of soil by flowing water under turbulent and laminar conditions[J]. Soil Science Society of America Journal, 1994, 58(6): 1 612-1 614. |
27 | BUTTERFIELD G R. Grain transport rates in steady and unsteady turbulent airflows [M]. Aeolian grain transport 1: mechanics. Vienna: Springer Vienna, 1991: 97-122. |
28 | ELLIS J T, MORRISON R F, PRIEST B H. Detecting impacts of sand grains with a microphone system in field conditions[J]. Geomorphology, 2009, 105(1/2): 87-94. |
29 | BARCHYN T E, HUGENHOLTZ C H. Field comparison of four piezoelectric sensors for detecting aeolian sediment transport[J]. Geomorphology, 2010, 120(3/4): 368-371. |
30 | STOUT J E, ZOBECK T M. Intermittent saltation[J]. Sedimentology, 1997, 44(5): 959-970. |
31 | HUGENHOLTZ C H, BARCHYN T E. Laboratory and field performance of a laser particle counter for measuring aeolian sand transport[J]. Journal of Geophysical Research: Earth Surface, 2011, 116(F1). DOI: 10.1029/2010JF001822 . |
32 | BARCHYN T E, HUGENHOLTZ C H, ELLIS J T. A call for standardization of aeolian process measurements: moving beyond relative case studies[J]. Earth Surface Processes and Landforms, 2011, 36(5): 702-705. |
33 | SHERMAN D J, LI B L, ELLIS J T, et al. Intermittent aeolian saltation: a protocol for quantification[J]. Geographical Review, 2018, 108(2): 296-314. |
34 | MARTIN R L, KOK J F, HUGENHOLTZ C H, et al. High-frequency measurements of aeolian saltation flux: field-based methodology and applications[J]. Aeolian Research, 2018, 30: 97-114. |
35 | MARTIN R L, KOK J F. Distinct thresholds for the initiation and cessation of aeolian saltation from field measurements[J]. Journal of Geophysical Research: Earth Surface, 2018, 123(7): 1 546-1 565. |
36 | REN Y, ZHANG H S, WEI W, et al. Effects of turbulence structure and urbanization on the heavy haze pollution process[J]. Atmospheric Chemistry and Physics, 2019, 19(2): 1 041-1 057. |
37 | WEI Z R, ZHANG L, REN Y, et al. Characteristics of the turbulence intermittency and its influence on the turbulent transport in the semi-arid region of the Loess Plateau[J]. Atmospheric Research, 2021, 249. DOI: 10.1016/j.atmosres.2020.105312 . |
38 | ZHANG L, ZHANG H S, LI Q H, et al. Vertical dispersion mechanism of long-range transported dust in Beijing: effects of atmospheric turbulence[J]. Atmospheric Research, 2022, 269. DOI: 10.1016/j.atmosres.2022.106033 . |
39 | REN Yan. Study on the mechanism of turbulence effect and the transport of fine particles in the pollution process[D]. Beijing: Peking University, 2021. |
任燕. 污染过程湍流作用机理及细颗粒物输送研究[D]. 北京:北京大学,2021. | |
40 | SHAO Y. Physics and modelling of wind erosion[M]. Dordrecht: Kluwer Academic Publishing, 2008. |
41 | LI Xiaolan, ZHANG Hongsheng. A study of determining dust emission thresholds over the Horqin Sandy Land area in Inner Mongolia[J]. Acta Meteorologica Sinica, 2016, 74(1): 76-88. |
李晓岚, 张宏升. 内蒙古科尔沁沙地临界起沙阈值的范围确定[J]. 气象学报, 2016, 74(1): 76-88. | |
42 | LI X L, ZHANG H S. Research on threshold friction velocities during dust events over the Gobi Desert in northwest China[J]. Journal of Geophysical Research: Atmospheres, 2011, 116(D20). DOI: 10.1029/2010JD015572 . |
43 | ZHOU Chenglong, YANG Xinghua, YANG Fan, et al. Analysis of calculated dust emission threshold wind speed based on the field experiments[J]. Journal of Arid Meteorology, 2018, 36(1): 90-96. |
周成龙, 杨兴华, 杨帆, 等. 基于野外试验对临界起沙风速的计算解析[J]. 干旱气象, 2018, 36(1): 90-96. | |
44 | LIU D W, ISHIZUKA M, MIKAMI M, et al. Turbulent characteristics of saltation and uncertainty of saltation model parameters[J]. Atmospheric Chemistry and Physics, 2018, 18(10): 7 595-7 606. |
45 | TAN L H, AN Z S, ZHANG K, et al. Intermittent aeolian saltation over a Gobi surface: threshold, saltation layer height, and high-frequency variability[J]. Journal of Geophysical Research: Earth Surface, 2020, 125(1). DOI: 10.1029/2019JF005329 . |
46 | DAVIDSON-ARNOTT R G D, BAUER B O, WALKER I J, et al. High-frequency sediment transport responses on a vegetated foredune[J]. Earth Surface Processes and Landforms, 2012, 37(11): 1 227-1 241. |
47 | GREELEY R, IVERSEN J D. Wind as a geological process: on Earth, Mars, Venus and Titan[M]. New York: Cambridge University Press, 1985. |
48 | SHAO Y P, LU H. A simple expression for wind erosion threshold friction velocity[J]. Journal of Geophysical Research: Atmospheres, 2000, 105(D17): 22 437-22 443. |
49 | ZHANG J, LI G, SHI L, et al. Impact of turbulence on aeolian particle entrainment: results from wind-tunnel experiments[J]. Atmospheric Chemistry and Physics, 2022, 22(14): 9 525-9 535. |
50 | SCH?NFELDT H J, von L?WIS S. Turbulence-driven saltation in the atmospheric surface layer[J]. Meteorologische Zeitschrift, 2003, 12(5): 257-268. |
51 | HAN Chaoxin, HAN Yongxiang, LI Jiaxin. Contribution of dust emission from gust to total dust aerosol under weak wind conditions[J]. Journal of Desert Research, 2025, 45(1): 259-265. |
韩超信, 韩永翔, 李嘉欣. 弱风背景下阵风起沙对大气沙尘气溶胶总量的贡献[J]. 中国沙漠, 2025, 45(1): 259-265. | |
52 | ZHAO Jianhua, LONG Xiao, ZHANG Feng, et al. The role of turbulent coherent structure in sand-dust emissions in a sand-dust storm of the middle China-Mongolia regime[J]. Chinese Journal of Geophysics, 2020, 63(11): 3 967-3 980. |
赵建华, 隆霄, 张峰, 等. 湍流相干结构在中蒙中区一次沙尘暴起沙中的作用[J]. 地球物理学报, 2020, 63(11): 3 967-3 980. | |
53 | ZHANG L, ZHANG H S, CAI X H, et al. Physical mechanisms of deep convective boundary layer leading to dust emission in the Taklimakan Desert[J]. Geophysical Research Letters, 2024, 51(10). DOI:10.1029/2024GL108521 . |
54 | WILCZAK J M. Large-scale eddies in the unstably stratified atmospheric surface layer. part I: velocity and temperature structure[J]. Journal of the Atmospheric Sciences, 1984, 41(24): 3 537-3 550. |
55 | LI Qilong, CHENG Xueling, ZENG Qingcun. Conditions for the formation of the coherent structure in gusty disturbances in the atmospheric boundary layer[J]. Climatic and Environmental Research, 2016, 21(6): 725-736. |
李奇龙, 程雪玲, 曾庆存. 大气边界层阵风相干结构的产生条件[J]. 气候与环境研究, 2016, 21(6): 725-736. | |
56 | ZHANG Lu. Physical mechanisms of atmospheric turbulent transport processes: dissimilarity, intermittency and coherence[D]. Beijing:Peking University, 2024. |
张璐. 大气边界层湍流输送机理研究——差异性、间歇性、相干性[D]. 北京:北京大学, 2024. | |
57 | SHAW R H, TAVANGAR J, WARD D P. Structure of the Reynolds stress in a canopy layer[J]. Journal of Climate and Applied Meteorology, 1983, 22(11): 1 922-1 931. |
58 | WALLACE J M. Quadrant analysis in turbulence research: history and evolution[J]. Annual Review of Fluid Mechanics, 2016, 48: 131-158. |
59 | DUPONT S, RAJOT J L, LABIADH M, et al. Dissimilarity between dust, heat, and momentum turbulent transports during aeolian soil erosion[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(2): 1 064-1 089. |
60 | SCHMUTZ M, VOGT R. Flux similarity and turbulent transport of momentum, heat and carbon dioxide in the urban boundary layer[J]. Boundary-Layer Meteorology, 2019, 172(1): 45-65. |
61 | LIANG L H, MA S X, ZHANG W M, et al. Turbulent structures at the bottom of the Gobi desert boundary layer and their impact on aeolian sand transport and dust emission[J]. Geomorphology, 2025, 472. DOI: 10.1016/j.geomorph.2025.109593 . |
62 | WANG P, ZHENG X J. Saltation transport rate in unsteady wind variations[J]. The European Physical Journal E. Soft Matter, 2014, 37. DOI:10.1140/epje/i2014-14040-3 . |
63 | VINKOVIC I, AGUIRRE C, AYRAULT M, et al. Large-eddy simulation of the dispersion of solid particles in a turbulent boundary layer[J]. Boundary-Layer Meteorology, 2006, 121(2): 283-311. |
64 | BAAS A C W, SHERMAN D J. Formation and behavior of aeolian streamers[J]. Journal of Geophysical Research: Earth Surface, 2005, 110(F3). DOI: 10.1029/2004JF000270 . |
65 | LI G, ZHANG J, HERRMANN H J, et al. Study of aerodynamic grain entrainment in aeolian transport[J]. Geophysical Research Letters, 2020, 47(11). DOI: 10.1029/2019GL086574 . |
66 | KLAMT J, GIERSCH S, RAASCH S. Saltation-induced dust emission of dust Devils in the convective boundary layer: an LES study on the meter scale[J]. Journal of Geophysical Research: Atmospheres, 2024, 129(7). DOI: 10.1029/2023JD040058 . |
67 | SHAO Y, ZHANG J, ISHIZUKA M, et al. Dependency of particle size distribution at dust emission on friction velocity and atmospheric boundary-layer stability[J]. Atmospheric Chemistry and Physics, 2020, 20(21): 12 939-12 953. |
68 | KHALFALLAH B, BOUET C, LABIADH M T, et al. Influence of atmospheric stability on the size distribution of the vertical dust flux measured in eroding conditions over a flat bare sandy field[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(4). DOI: 10.1029/2019JD031185 . |
69 | MEI A, LIAO Y A, ZHOU S L, et al. Study of turbulence intermittency in unstable atmospheric surface layer and its effect on saltation sand motion based on wavelet transform[J]. Physics of Fluids, 2024, 36(8). DOI: 10.1063/5.0225167 . |
70 | REN Y, ZHANG H S, ZHANG L, et al. Quantitative description and characteristics of submeso motion and turbulence intermittency[J]. Quarterly Journal of the Royal Meteorological Society, 2023, 149(754): 1 726-1 744. |
71 | WEI W, ZHANG H S, WU B G, et al. Intermittent turbulence contributes to vertical dispersion of PM2.5 in the North China Plain: cases from Tianjin[J]. Atmospheric Chemistry and Physics, 2018, 18(17): 12 953-12 967. |
72 | CHEN S Y, HUANG J P, QIAN Y, et al. An overview of mineral dust modeling over East Asia[J]. Journal of Meteorological Research, 2017, 31(4): 633-653. |
73 | ZHANG Y, CHEN Y, CHEN S Y, et al. Mongolia dust transport across borders under the background of global warming[J]. Global and Planetary Change, 2024, 239. DOI: 10.1016/j.gloplacha.2024.104509 . |
74 | ZHOU C H, ZHANG X C, ZHANG J, et al. Representations of dynamics size distributions of mineral dust over East Asia by a regional sand and dust storm model[J]. Atmospheric Research, 2021, 250. DOI: 10.1016/j.atmosres.2020.105403 . |
75 | TIAN R, MA X Y, ZHAO J Q. A revised mineral dust emission scheme in GEOS-Chem: improvements in dust simulations over China[J]. Atmospheric Chemistry and Physics, 2021, 21(6): 4 319-4 337. |
76 | PARK S U, CHOE A, PARK M S. Estimates of Asian dust deposition over the Asian region by using ADAM2 in 2007[J]. Science of the Total Environment, 2010, 408(11): 2 347-2 356. |
77 | HONG S K, RYOO S B, KIM J, et al. Prediction of Asian dust days over northern China using the KMA-ADAM2 model[J]. Weather and Forecasting, 2019, 34(6): 1 777-1 787. |
78 | SHAO Y, DONG C H. A review on East Asian dust storm climate, modelling and monitoring[J]. Global and Planetary Change, 2006, 52(1/2/3/4): 1-22. |
79 | GILLETTE D A, PASSI R. Modeling dust emission caused by wind erosion[J]. Journal of Geophysical Research: Atmospheres, 1988, 93(D11): 14 233-14 242. |
80 | MARTICORENA B, BERGAMETTI G. Modeling the atmospheric dust cycle: 1. design of a soil-derived dust emission scheme[J]. Journal of Geophysical Research: Atmospheres, 1995, 100(D8): 16 415-16 430. |
81 | ZHANG Hongsheng, ZHU Hao, PENG Yan, et al. Experiment on dust flux during dust storm periods over sand desert area[J]. Acta Meteorologica Sinica, 2007, 65(5): 744-752. |
张宏升, 朱好, 彭艳, 等. 沙尘天气过程沙地下垫面沙尘通量的获取与分析研究[J]. 气象学报, 2007, 65(5): 744-752. | |
82 | LI X L, ZHANG H S. Seasonal variations in dust concentration and dust emission observed over Horqin Sandy Land area in China from December 2010 to November 2011[J]. Atmospheric Environment, 2012, 61: 56-65. |
83 | SHAO Y, RAUPACH M R, FINDLATER P A. Effect of saltation bombardment on the entrainment of dust by wind[J]. Journal of Geophysical Research: Atmospheres, 1993, 98(D7): 12 719-12 726. |
84 | ALFARO S C, GAUDICHET A, GOMES L, et al. Modeling the size distribution of a soil aerosol produced by sandblasting[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D10): 11 239-11 249. |
85 | LU H, SHAO Y. A new model for dust emission by saltation bombardment[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D14): 16 827-16 842. |
86 | KOK J F, MAHOWALD N M, FRATINI G, et al. An improved dust emission model-Part 1: model description and comparison against measurements[J]. Atmospheric Chemistry and Physics, 2014, 14(23): 13 023-13 041. |
87 | SHAO Y. A model for mineral dust emission[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D17): 20 239-20 254. |
88 | SHAO Y. Simplification of a dust emission scheme and comparison with data[J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D10). DOI: 10.1029/2003JD004372 . |
89 | KLOSE M, SHAO Y. Stochastic parameterization of dust emission and application to convective atmospheric conditions[J]. Atmospheric Chemistry and Physics, 2012, 12(16): 7 309-7 320. |
90 | JU T T, LI X L, ZHANG H S, et al. Parameterization of dust flux emitted by Convective Turbulent Dust Emission (CTDE) over the Horqin Sandy Land area[J]. Atmospheric Environment, 2018, 187: 62-69. |
91 | WANG Ping, ZHENG Xiaojing. Development of unsteady windblown sand transport[J]. Advances in Earth Science, 2014, 29(7): 786-794. |
王萍, 郑晓静. 非平稳风沙运动研究进展[J]. 地球科学进展, 2014, 29(7): 786-794. | |
92 | JIANG P, YUAN J L, WU K N, et al. Turbulence detection in the atmospheric boundary layer using coherent Doppler wind LiDAR and microwave radiometer[J]. Remote Sensing, 2022, 14(12). DOI: 10.5194/amt-2021-288 . |
93 | SONG M Q, WANG Y, MAMTIMIN A, et al. Applicability assessment of coherent Doppler wind LiDAR for monitoring during dusty weather at the northern edge of the Tibetan Plateau[J]. Remote Sensing, 2022, 14(20). DOI: 10.3390/rs14205264 . |
/
〈 |
|
〉 |