Progress and Prospects of Research on Assessment Models and Scenario Analysis for Sustainable Development of Human-Earth Systems
Received date: 2025-01-05
Revised date: 2025-02-08
Online published: 2025-05-07
Supported by
the National Key Research and Development Program of China(2023YFC3804903);The National Natural Science Foundation of China(W2412141)
Human-earth system science, as a foundation of sustainable development research, can help decision-makers design sustainable pathways through multidimensional perspectives, integrated concepts, and systematic thinking. It plays an increasingly important role in the construction of national economies, societies, and ecological civilizations. Human-earth system sustainable development assessment models and scenario analysis techniques have become important tools that are widely used and studied. However, current research lacks a summary of the progress and limitations of these models and scenario analysis techniques. To keep pace with international developments and promote the understanding and advancement of human-earth system modeling and decision analysis of Chinese scholars, it is necessary to review the current international research in this field systematically. By combining literature analysis and quantitative analysis, this study summarizes the difficulty of models in simultaneously supporting multiple sustainable development goals and the challenges in simulating the social dimension. We also analyze the challenges in capturing systematic change, scale conversion, interdisciplinary knowledge integration, uncertainty management, data mining, and the use of new technologies. Additionally, we summarize the methods for setting up scenarios, the general types of scenarios, the content of scenarios, the limitations in addressing internal scenario conflict cross-scale linkages, and connections with decision-making. This study provides an important reference for promoting innovative development among Chinese scholars in this field.
Yumian ZHANG , Junze ZHANG , Shuai WANG , Bojie FU . Progress and Prospects of Research on Assessment Models and Scenario Analysis for Sustainable Development of Human-Earth Systems[J]. Advances in Earth Science, 2025 , 40(3) : 255 -270 . DOI: 10.11867/j.issn.1001-8166.2025.019
1 | FU Bojie. UN sustainable development goals and historical mission of geography[J]. Science & Technology Review, 2020, 38(13): 19-24. |
傅伯杰. 联合国可持续发展目标与地理科学的历史任务[J]. 科技导报, 2020, 38(13): 19-24. | |
2 | LU Dadao. Some key issues concerning development of geographical science in China[J]. Acta Geographica Sinica, 2003, 58(1): 3-8. |
陆大道. 中国地理学发展若干值得思考的问题[J]. 地理学报, 2003, 58(1): 3-8. | |
3 | LIU Yansui, LIU Yaqun, Cong OU. Scientific cognition and detection methods of modern human-Earth system[J]. Chinese Science Bulletin, 2024, 69(3): 447-463. |
刘彦随, 刘亚群, 欧聪. 现代人地系统科学认知与探测方法[J]. 科学通报, 2024, 69(3): 447-463. | |
4 | LIU Yansui. Modern human-Earth relationship and human-Earth system science[J]. Scientia Geographica Sinica, 2020, 40(8): 1 221-1 234. |
刘彦随. 现代人地关系与人地系统科学[J]. 地理科学, 2020, 40(8): 1 221-1 234. | |
5 | ZHANG J Z, WANG S, ZHAO W W, et al. Finding pathways to synergistic development of sustainable development goals in China[J]. Humanities and Social Sciences Communications, 2022, 9(1). DOI: 10.1057/s41599-022-01036-4 . |
6 | SOERGEL B, KRIEGLER E, WEINDL I, et al. A sustainable development pathway for climate action within the UN 2030 Agenda[J]. Nature Climate Change, 2021, 11(8): 656-664. |
7 | United Nations. The Sustainable Development Goals report 2024 [R]. New York: United Nations, 2024. |
8 | DONG Wenjie, YUAN Wenping, TENG Fei, et al. Coupling Earth system model and integrated assessment model[J]. Advances in Earth Science, 2016, 31(12): 1 215-1 219. |
董文杰, 袁文平, 滕飞, 等. 地球系统模式与综合评估模型的双向耦合及应用[J]. 地球科学进展, 2016, 31(12): 1 215-1 219. | |
9 | FU Bojie. Geography: from knowledge, science to decision making support[J]. Acta Geographica Sinica, 2017, 72(11): 1 923-1 932. |
傅伯杰. 地理学: 从知识、科学到决策[J]. 地理学报, 2017, 72(11): 1 923-1 932. | |
10 | CONNOLLY D, LUND H, MATHIESEN B V, et al. A review of computer tools for analysing the integration of renewable energy into various energy systems[J]. Applied Energy, 2010, 87(4): 1 059-1 082. |
11 | DUINKER P N, GREIG L A. Scenario analysis in environmental impact assessment: improving explorations of the future[J]. Environmental Impact Assessment Review, 2007, 27(3): 206-219. |
12 | KOSOW H, GA?NER R. Methods of future and scenario analysis: overview, assessment, and selection criteria[M]. DEU, 2008. |
13 | ALLEN C, METTERNICHT G, WIEDMANN T. National pathways to the Sustainable Development Goals (SDGs): a comparative review of scenario modelling tools[J]. Environmental Science & Policy, 2016, 66: 199-207. |
14 | ELSAWAH S, HAMILTON S H, JAKEMAN A J, et al. Scenario processes for socio-environmental systems analysis of futures: a review of recent efforts and a salient research Agenda for supporting decision making[J]. Science of the Total Environment, 2020, 729. DOI: 10.1016/j.scitotenv.2020.138393 . |
15 | GERNAAT D E H J, de BOER H S, DAIOGLOU V, et al. Climate change impacts on renewable energy supply[J]. Nature Climate Change, 2021, 11: 119-125. |
16 | BANDARI R, MOALLEMI E A, KHARRAZI A, et al. Transdisciplinary approaches to local sustainability: aligning local governance and navigating spillovers with global action towards the sustainable development goals[J]. Sustainability Science, 2024, 19(4): 1 293-1 312. |
17 | BANDARI R, MOALLEMI E A, SZETEY K, et al. Participatory modeling for analyzing interactions between high-priority sustainable development goals to promote local sustainability[J]. Earth’s Future, 2023, 11(12). DOI: 10.1029/2023EF003948 . |
18 | MOALLEMI E A, EKER S, GAO L, et al. Early systems change necessary for catalyzing long-term sustainability in a post-2030 Agenda[J]. One Earth, 2022, 5(7): 792-811. |
19 | ANDERSON C C, DENICH M, WARCHOLD A, et al. A systems model of SDG target influence on the 2030 Agenda for Sustainable Development[J]. Sustainability Science, 2022, 17(4): 1 459-1 472. |
20 | ZHANG J Z, WANG S, PRADHAN P, et al. Untangling the interactions among the Sustainable Development Goals in China[J]. Science Bulletin, 2022, 67(9): 977-984. |
21 | CAO M, CHEN M, ZHANG J Z, et al. Spatio-temporal changes in the causal interactions among Sustainable Development Goals in China[J]. Humanities and Social Sciences Communications, 2023, 10(1). DOI: 10.1057/s41599-023-01952-z . |
22 | ZHU H S, YUE J C, WANG H. Will China’s urbanization support its carbon peak goal?—A forecast analysis based on the improved GCAM[J]. Ecological Indicators, 2024, 163. DOI: 10.1016/j.ecolind.2024.112072 . |
23 | QU W S, SHI W Z, ZHANG J Z, et al. T21 China 2050: a tool for national sustainable development planning[J]. Geography and Sustainability, 2020, 1(1): 33-46. |
24 | LUO L, ZHANG J Z, WANG H J, et al. Innovations in Science, Technology, Engineering, And Policy (iSTEP) for addressing environmental issues towards sustainable development[J]. The Innovation Geoscience, 2024, 2(3). DOI: 10.59717/j.xinn-geo.2024.100087 . |
25 | CLARK W C, HARLEY A G. Sustainability science: toward a synthesis[J]. Annual Review of Environment and Resources, 2020, 45: 331-386. |
26 | FU Bojie, ZHANG Junze. Progress and challenges of Sustainable Development Goals(SDGs) in the world and in China[J]. Bulletin of Chinese Academy of Sciences, 2024, 39(5): 804-808. |
傅伯杰, 张军泽. 全球及中国可持续发展目标进展与挑战[J]. 中国科学院院刊, 2024, 39(5): 804-808. | |
27 | ALLEN C, METTERNICHT G, WIEDMANN T. An iterative framework for national scenario modelling for the Sustainable Development Goals (SDGs)[J]. Sustainable Development, 2017, 25(5): 372-385. |
28 | United Nations Environment Programme (UNEP). Global environment outlook: environment for development [R]. Nairobi: UNEP, 2007. |
29 | United Nations Environment Programme (UNEP). Emissions gap report 2019 [R]. Nairobi: UNEP, 2019. |
30 | LIU J G, MOONEY H, HULL V, et al. Systems integration for global sustainability[J]. Science, 2015, 347(6 225). DOI: 10.1126/science.1258832 . |
31 | HAK T, JANOUSKOVA S, MOLDAN B. Development goals: a need for relevant indicators[J]. Ecological indicators,2016,60: 565-573. |
32 | SAHLE M, LAHOTI S A, LEE S Y, et al. Revisiting the sustainability science research agenda[J]. Sustainability Science, 2025, 20(1): 1-19. |
33 | FORRESTER J W. Urban dynamics [M]. Cambridge: MIT Press, 1969. |
34 | SHOVEN J B, WHALLEY J. Applied general-equilibrium models of taxation and international trade: an introduction and survey[J]. Journal of Economic Literature, 1984, 22(3): 1 007-1 051. |
35 | van SOEST H L, van VUUREN D P, HILAIRE J, et al. Analysing interactions among sustainable development goals with integrated assessment models[J]. Global Transitions, 2019, 1: 210-225. |
36 | BAZILIAN M, ROGNER H, HOWELLS M, et al. Considering the energy, water and food nexus: towards an integrated modelling approach[J]. Energy Policy, 2011, 39(12): 7 896-7 906. |
37 | MO L D, ZOHNER C M, REICH P B, et al. Integrated global assessment of the natural forest carbon potential[J]. Nature, 2023, 624(7 990): 92-101. |
38 | SOERGEL B, KRIEGLER E, BODIRSKY B L, et al. Combining ambitious climate policies with efforts to eradicate poverty[J]. Nature Communications, 2021, 12(1). DOI: 10.1038/s41467-021-22315-9 . |
39 | REID W V, CHEN D, GOLDFARB L, et al. Earth system science for global sustainability: grand challenges[J]. Science, 2010, 330(6 006): 916-917. |
40 | PURVIS B, MAO Y, ROBINSON D. A multi-scale integrated assessment model to support urban sustainability[J]. Sustainability Science, 2022, 17(1): 151-169. |
41 | SALVIA A L, LEAL F W, BRANDLI L L, et al. Assessing research trends related to sustainable development goals: local and global issues[J]. Journal of Cleaner Production, 2019, 208: 841-849. |
42 | LI K, GAO L, GUO Z X, et al. Safeguarding China’s long-term sustainability against systemic disruptors[J]. Nature Communications, 2024, 15(1). DOI: 10.1038/s41467-024-49725-9 . |
43 | HUGHES B B. International Futures (IFs) and integrated, long-term forecasting of global transformations[J]. Futures, 2016, 81: 98-118. |
44 | Earth4All. SDGs for all: strategic scenarios Earth4All system dynamics modelling of SDG progress[R]. Earth4All, 2024. |
45 | van VUUREN D P, KOK M, LUCAS P L, et al. Pathways to achieve a set of ambitious global sustainability objectives by 2050: explorations using the IMAGE integrated assessment model[J]. Technological Forecasting and Social Change, 2015, 98: 303-323. |
46 | LUCAS P L, HILDERINK H B M, JANSSEN P H M, et al. Future impacts of environmental factors on achieving the SDG target on child mortality: a synergistic assessment[J]. Global Environmental Change, 2019, 57. DOI: 10.1016/j.gloenvcha.2019.05.009 . |
47 | NGUYEN T B, WAGNER F, SCHOEPP W. EC4MACS—an integrated assessment toolbox of well-established modeling tools to explore the synergies and interactions between climate change, air quality and other policy objectives[M]. Berlin, Heidelberg: Springer, 2012. |
48 | GUO J H, HEPBURN C J, TOL R S J, et al. Discounting and the social cost of carbon: a closer look at uncertainty[J]. Environmental Science & Policy, 2006, 9(3): 205-216. |
49 | QU W S, BARNEY G O, SYMALLA D, et al. Threshold 21: national sustainable development model[J]. Integrated Global Models of Sustainable Development, 1995, 2: 78-87. |
50 | ORBONS K, van VUUREN D P, AMBROSIO G, et al. A review of existing model-based scenarios achieving SDGs: progress and challenges[J]. Global Sustainability, 2024, 7. DOI: 10.1017/sus.2023.20 . |
51 | CHEN M, QIAN Z, BOERS N, et al. Collaboration between artificial intelligence and Earth science communities for mutual benefit[J]. Nature Geoscience, 2024, 17: 949-952. |
52 | LOZANO F J, SUáREZ-SEOANE S, KELLY M, et al. A multi-scale approach for modeling fire occurrence probability using satellite data and classification trees: a case study in a mountainous Mediterranean region[J]. Remote Sensing of Environment, 2008, 112(3): 708-719. |
53 | FILATOVA T, POLHILL J G, van EWIJK S. Regime shifts in coupled socio-environmental systems: review of modelling challenges and approaches[J]. Environmental Modelling & Software, 2016, 75: 333-347. |
54 | de HAAN F J, ROTMANS J. A proposed theoretical framework for actors in transformative change[J]. Technological Forecasting and Social Change, 2018, 128: 275-286. |
55 | DRESSLER G, GROENEVELD J, HETZER J, et al. Upscaling in socio-environmental systems modelling: current challenges, promising strategies and insights from ecology[J]. Socio-Environmental Systems Modelling, 2022, 4. DOI: 10.18174/sesmo.18112 . |
56 | CONTRERAS D, GUIOT J, SUAREZ R, et al. Reaching the human scale: a spatial and temporal downscaling approach to the archaeological implications of paleoclimate data[J]. Journal of Archaeological Science, 2018, 93: 54-67. |
57 | PEDERCINI M, ARQUITT S, COLLSTE D, et al. Harvesting synergy from sustainable development goal interactions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(46): 23 021-23 028. |
58 | ELSAWAH S, FILATOVA T, JAKEMAN A J, et al. Eight grand challenges in socio-environmental systems modeling[J]. Socio-Environmental Systems Modelling, 2020, 2. DOI: 10.18174/sesmo.1811 . |
59 | SAREWITZ D. How science makes environmental controversies worse[J]. Environmental Science & Policy, 2004, 7(5): 385-403. |
60 | KETTNER A J, SYVITSKI J P M. Uncertainty and sensitivity in surface dynamics modeling[J]. Computers & Geosciences, 2016, 90: 1-5. |
61 | DELETIC A, DOTTO C B S, MCCARTHY D T, et al. Assessing uncertainties in urban drainage models[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2012, 42: 3-10. |
62 | SUN Z H, SANDOVAL L, CRYSTAL-ORNELAS R, et al. A review of Earth artificial intelligence[J]. Computers & Geosciences, 2022, 159. DOI: 10.1016/j.cageo.2022.105034 . |
63 | European Environment Agency. Scenarios as tools for international environmental assessments[R]. Copenhagen: European Environment Agency, 2001. |
64 | van VUUREN D P, KOK M T J, GIROD B, et al. Scenarios in global environmental assessments: key characteristics and lessons for future use[J]. Global Environmental Change, 2012, 22(4): 884-895. |
65 | HICHERT T, BIGGS R, de VOS A, et al. Scenario development [M]// BIGGS R, de VOS A, PREISER R, et al. The routledge handbook of research methods for social-ecological systems. London: Routledge, 2021. |
66 | WESCHE S D, ARMITAGE D R. Using qualitative scenarios to understand regional environmental change in the Canadian North[J]. Regional Environmental Change, 2014, 14(3): 1 095-1 108. |
67 | LI X, ZHANG F, HUI E C, et al. Collaborative workshop and community participation: a new approach to urban regeneration in China[J]. Cities, 2020, 102. DOI: 10.1016/j.cities.2020.102743 . |
68 | KEYS P W, WANG-ERLANDSSON L, MOORE M L, et al. The dry sky: future scenarios for humanity’s modification of the atmospheric water cycle[J]. Global Sustainability, 2024, 7. DOI: 10.1017/sus.2024.9 . |
69 | BENTZ J, O’BRIEN K, SCOVILLE-SIMONDS M. Beyond “blah blah blah”: exploring the “how” of transformation[J]. Sustainability Science, 2022, 17(2): 497-506. |
70 | O’NEILL B C, KRIEGLER E, EBI K L, et al. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century[J]. Global Environmental Change, 2017, 42: 169-180. |
71 | GALLOPIN G C, HAMMOND A, RASKIN P, et al. Branch points: global scenarios and human choice[R]. Stockholm: Stockholm Environment Institute, 1997. |
72 | RIAHI K, van VUUREN D P, KRIEGLER E, et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview[J]. Global Environmental Change, 2017, 42: 153-168. |
73 | FRICKO O, HAVLIK P, ROGELJ J, et al. The marker quantification of the shared socioeconomic pathway 2: a middle-of-the-road scenario for the 21st century[J]. Global Environmental Change, 2017, 42: 251-267. |
74 | CARLSEN H, TALEBIAN S, PEDDE S, et al. Diversity in global environmental scenario sets[J]. Global Environmental Change, 2024, 86. DOI: 10.1016/j.gloenvcha.2024.102839 . |
75 | ROGELJ J, POPP A, CALVIN K V, et al. Scenarios towards limiting global mean temperature increase below 1.5 ℃[J]. Nature Climate Change, 2018, 8: 325-332. |
76 | HARRISS R. Review of journey to earthland: the great transition to planetary civilization[J]. Environment: Science and Policy for Sustainable Development, 2017, 59(3). DOI: 10.1080/00139157.2017.1301169 . |
77 | MCKIBBEN B. Deep economy: the wealth of communities and the durable future[M]. New York: Times Books, 2007. |
78 | SMITH A. An inquiry into the nature and causes of the wealth of nations [M]. London: W. Strahan and T. Cadell, 1776. |
79 | WU Jinglian. China’s economic reform process[M]. 2nd ed. Beijing: Encyclopedia of China Publishing House, 2023. |
吴敬琏. 中国经济改革进程[M]. 2版. 北京: 中国大百科全书出版社, 2023. | |
80 | ELECTRIS C, RASKIN P, ROSEN R, et al. The century ahead: four global scenarios[M]. Boston: Tellus Institute, 2009. |
81 | RASKIN P D, ELECTRIS C, ROSEN R A. The century ahead: searching for sustainability[J]. Sustainability, 2010, 2(8): 2 626-2 651. |
82 | RASKIN P D. World lines: a framework for exploring global pathways[J]. Ecological Economics, 2008, 65(3): 461-470. |
83 | MAIER H R, GUILLAUME J H A, van DELDEN H, et al. An uncertain future, deep uncertainty, scenarios, robustness and adaptation: how do they fit together?[J]. Environmental Modelling & Software, 2016, 81: 154-164. |
84 | VOLKERY A, RIBEIRO T, HENRICHS T, et al. Your vision or my model? Lessons from participatory land use scenario development on a European scale[J]. Systemic Practice and Action Research, 2008, 21(6): 459-477. |
85 | LIPPE M, BITHELL M, GOTTS N, et al. Using agent-based modelling to simulate social-ecological systems across scales[J]. GeoInformatica, 2019, 23(2): 269-298. |
86 | CHERMACK T J. Improving decision-making with scenario planning[J]. Futures, 2004, 36(3): 295-309. |
87 | POVITKINA M, CARLSSON J S, MATTI S, et al. Why are carbon Taxes unfair?Disentangling public perceptions of fairness[J]. Global Environmental Change, 2021, 70. DOI: 10.1016/j.gloenvcha.2021.102356 . |
88 | HE X B, ZHAI F, MA J. An analysis of the IMF’s international carbon price floor[J]. Journal of Globalization and Development, 2024, 15(2): 95-112. |
89 | DILLION D, TANDON N, GU Y L, et al. Can AI language models replace human participants?[J]. Trends in Cognitive Sciences, 2023, 27(7): 597-600. |
/
〈 |
|
〉 |