Research Progress on the Adaptation Mechanisms and Stable State Transition of Groundwater-Dependent Vegetation in Drylands
Received date: 2024-11-05
Revised date: 2025-02-10
Online published: 2025-05-07
Supported by
the Gansu Science and Technology Program(25JRRA493);National Key Research and Development Program of China(2024YFF1306402);Innovation Team of Key Laboratory of Ecological Security and Sustainable Development in Arid Regions(E455041401)
Groundwater-dependent vegetation is essential in arid ecosystems, where it maintains ecological balance and supports biodiversity. The health and functionality of this vegetation are closely linked to groundwater characteristics, including groundwater quality, distribution, and fluctuations. This review explores the relationship between vegetation and groundwater, methods for identifying groundwater-dependent vegetation, the impact of groundwater on the plants, adaptation mechanisms of these plants, and the nonlinear dependencies and thresholds of vegetation in groundwater environments. The objectives of the study are to provide a theoretical foundation for protecting and restoring arid ecosystems and to provide support for the sustainable development and utilization of groundwater resources. Future research should focus on plant responses to groundwater changes at the individual, population, and community scales; the effects of climate change and human activities on groundwater-dependent vegetation; innovative methods for studying ecosystem resilience and state-transition mechanisms for groundwater-dependent vegetation; and identifying stable water environment factors and catastrophic thresholds for typical groundwater-dependent vegetation.
Yongyong ZHANG , Wenrong KANG , Wenzhi ZHAO . Research Progress on the Adaptation Mechanisms and Stable State Transition of Groundwater-Dependent Vegetation in Drylands[J]. Advances in Earth Science, 2025 , 40(3) : 243 -254 . DOI: 10.11867/j.issn.1001-8166.2025.020
1 | REYNOLDS J F, SMITH D M S, LAMBIN E F, et al. Global desertification: building a science for dryland development[J]. Science, 2007, 316(5 826): 847-851. |
2 | HORTON J L, KOLB T E, HART S C. Physiological response to groundwater depth varies among species and with river flow regulation[J]. Ecological Applications, 2001, 11(4). DOI:10.1890/1051-0761(2001)011 [1046:prtgdv]2.0.co;2. |
3 | ORELLANA F, VERMA P, LOHEIDE S P II, et al. Monitoring and modeling water-vegetation interactions in groundwater-dependent ecosystems[J]. Reviews of Geophysics, 2012, 50(3). DOI:10.1029/2011RG000383 . |
4 | KATH J, REARDON-SMITH K, le BROCQUE A F, et al. Groundwater decline and tree change in floodplain landscapes: identifying non-linear threshold responses in canopy condition[J]. Global Ecology and Conservation, 2014, 2: 148-160. |
5 | FAN Y, LI H, MIGUEZ-MACHO G. Global patterns of groundwater table depth[J]. Science, 2013, 339(6 122): 940-943. |
6 | OKI T, KANAE S. Global hydrological cycles and world water resources[J]. Science, 2006, 313(5 790): 1 068-1 072. |
7 | KUANG X X, LIU J G, SCANLON B R, et al. The changing nature of groundwater in the global water cycle[J]. Science, 2024, 383(6 686). DOI: 10.1126/science.adf0630 . |
8 | LIU Hu, ZHAO Wenzhi, LI Zhongkai. Ecohydrology of groundwater dependent ecosystems: a review[J]. Advances in Earth Science, 2018, 33(7): 741-750. |
刘鹄, 赵文智, 李中恺. 地下水依赖型生态系统生态水文研究进展[J]. 地球科学进展, 2018, 33(7): 741-750. | |
9 | MEINZER O E. Plants as indicators of ground water [M]. US Government Printing Office, 1927. |
10 | HATTON T, EVANS R, MERZ S K. Dependence of ecosystems on groundwater and its significance to Australia[M]. The Communication Station, Canberra: Land and Water Resources Research and Development Corporation, 1997. |
11 | HULTINE K R, FROEND R, BLASINI D, et al. Hydraulic traits that buffer deep-rooted plants from changes in hydrology and climate[J]. Hydrological Processes, 2020, 34(2): 209-222. |
12 | DALU T, CHILOANE C, DONDOFEMA F, et al. Chapter 7 application of remote sensing techniques to monitor climate variability effects on groundwater-dependent ecosystems[M]. Elsevier Inc. 2024. |
13 | WANG Wenke, GONG Chengcheng, ZHANG Zaiyong, et al. Research status and prospect of the subsurface hydrology and ecological effect in arid regions[J]. Advances in Earth Science, 2018, 33(7): 702-718. |
王文科, 宫程程, 张在勇, 等. 旱区地下水文与生态效应研究现状与展望[J]. 地球科学进展, 2018, 33(7): 702-718. | |
14 | DANG Xueya, LU Na, GU Xiaofan, et al. Groundwater threshold of ecological vegetation in Qaidam Basin[J]. Hydrogeology & Engineering Geology, 2019, 46(3): 1-8. |
党学亚, 卢娜, 顾小凡, 等. 柴达木盆地生态植被的地下水阈值[J]. 水文地质工程地质, 2019, 46(3): 1-8. | |
15 | ROHDE M M, ALBANO C M, HUGGINS X, et al. Groundwater-dependent ecosystem map exposes global dryland protection needs[J]. Nature, 2024, 632(8 023): 101-107. |
16 | CHEN Yaning, LI Weihong, CHEN Yapeng, et al. Water use process of constructive plants in desert riparian forest[J]. Arid Zone Research, 2018, 35(1): 130-136. |
陈亚宁, 李卫红, 陈亚鹏, 等. 荒漠河岸林建群植物的水分利用过程分析[J]. 干旱区研究, 2018, 35(1): 130-136. | |
17 | XU Hailiang, SONG Yudong, WANG Qiang, et al. The effect of groundwater level on vegetation in the middle and lower reaches of the Tarim River, Xinjiang, China[J]. Acta Phytoecologica Sinica, 2004, 28(3): 400-405. |
徐海量, 宋郁东, 王强, 等. 塔里木河中下游地区不同地下水位对植被的影响[J]. 植物生态学报, 2004, 28(3): 400-405. | |
18 | HAO Haichao, HAO Xingming, CHENG Xiaoli, et al. Effects of ecological water conveyance on water use efficiency of desert riparian forest ecosystem in the lower reaches of Tarim River[J]. Arid Land Geography, 2021, 44(3): 691-699. |
郝海超, 郝兴明, 成晓丽, 等. 塔里木河下游输水对荒漠河岸林生态系统水分利用效率的影响[J]. 干旱区地理, 2021, 44(3): 691-699. | |
19 | SU Y H, FENG Q, ZHU G F, et al. A new method of estimating groundwater evapotranspiration at sub-daily scale using water table fluctuations[J]. Water, 2022, 14(6). DOI:10.3390/w14060876 . |
20 | ZENG Y, ZHAO C Y, LI J, et al. Effect of groundwater depth on riparian plant diversity along riverside-desert gradients in the Tarim River[J]. Journal of Plant Ecology, 2019, 12(3): 564-573. |
21 | DAWSON T E, EHLERINGER J R. Streamside trees that do not use stream water[J]. Nature, 1991, 350: 335-337. |
22 | SI J H, FENG Q, CAO S K, et al. Water use sources of desert riparian Populus euphratica forests[J]. Environmental Monitoring and Assessment, 2014, 186(9): 5 469-5 477. |
23 | ZHOU H, ZHAO W Z, ZHANG G F. Varying water utilization of Haloxylon ammodendron plantations in a desert-oasis ecotone[J]. Hydrological Processes, 2017, 31(4): 825-835. |
24 | MILLER G R, CHEN X Y, RUBIN Y, et al. Groundwater uptake by woody vegetation in a semiarid oak savanna[J]. Water Resources Research, 2010, 46(10). DOI:10.1029/2009WR008902 . |
25 | ZHAO Wenzhi, CHENG Guodong. Review on some problems of eco-hydrological process research in arid areas[J]. Chinese Science Bulletin, 2001, 46(22): 1 851-1 857. |
赵文智, 程国栋. 干旱区生态水文过程研究若干问题评述[J]. 科学通报, 2001, 46(22): 1 851-1 857. | |
26 | JI X B, ZHAO W Z, KANG E S, et al. Transpiration from three dominant shrub species in a desert-oasis ecotone of arid regions of northwestern China[J]. Hydrological Processes, 2016, 30(25): 4 841-4 854. |
27 | SCOTT R L, CABLE W L, HUXMAN T E, et al. Multiyear riparian evapotranspiration and groundwater use for a semiarid watershed[J]. Journal of Arid Environments, 2008, 72(7): 1 232-1 246. |
28 | WHITE W N. A method of estimating ground-water supplies based on discharge by plants and evaporation from soil: results of investigations in Escalante Valley, Utah[R]. Contributions to the hydrology of the United States, 1932. |
29 | WANG T Y, WANG P, YU J J, et al. Revisiting the white method for estimating groundwater evapotranspiration: a consideration of sunset and sunrise timings[J]. Environmental Earth Sciences, 2019, 78(14). DOI:10.1007/s12665-019-8422-x . |
30 | EL-HOKAYEM L, de VITA P, CONRAD C. Local identification of groundwater dependent vegetation using high-resolution Sentinel-2 data—a mediterranean case study[J]. Ecological Indicators, 2023, 146. DOI:10.2139/ssrn.4132042 . |
31 | MARTíNEZ-SANTOS P, DíAZ-ALCAIDE S, HERA-PORTILLO A D L, et al. Mapping groundwater-dependent ecosystems by means of multi-layer supervised classification[J]. Journal of Hydrology, 2021, 603. DOI:10.1016/j.jhydrol.2021.126873 . |
32 | BARRON O, FROEND R, HODGSON G, et al. Projected risks to groundwater-dependent terrestrial vegetation caused by changing climate and groundwater abstraction in the Central Perth Basin, western Australia[J]. Hydrological Processes, 2014, 28(22): 5 513-5 529. |
33 | GOU S, MILLER G R, SAVILLE C, et al. Simulating groundwater uptake and hydraulic redistribution by phreatophytes in a high-resolution, coupled subsurface-land surface model[J]. Advances in Water Resources, 2018, 121: 245-262. |
34 | CHEN Yaning, ZHANG Hongfeng, LI Weihong, et al. The relationship between species diversity and groundwater table in the low reaches of the Tarin River Xinjiang China [J]. Advances in Earth Science, 2005, 20(2): 158-165. |
陈亚宁, 张宏锋, 李卫红, 等. 新疆塔里木河下游物种多样性变化与地下水位的关系[J]. 地球科学进展, 2005, 20(2): 158-165. | |
35 | PETTIT N E, FROEND R H. How important is groundwater availability and stream perenniality to riparian and floodplain tree growth?[J]. Hydrological Processes, 2018, 32(10): 1 502-1 514. |
36 | DONG S G, LIU B W, MA M Y, et al. Effects of groundwater level decline to soil and vegetation in arid grassland: a case study of Hulunbuir open pit coal mine[J]. Environmental Geochemistry and Health, 2023, 45(5): 1 793-1 806. |
37 | FAN Y, MIGUEZ-MACHO G, JOBBáGY E G, et al. Hydrologic regulation of plant rooting depth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(40): 10 572-10 577. |
38 | PATEL M K, PANDEY S, BURRITT D J, et al. Plant responses to low-oxygen stress: interplay between ROS and NO signaling pathways[J]. Environmental and Experimental Botany, 2019, 161: 134-142. |
39 | WANG P, ZHANG Y C, YU J J, et al. Vegetation dynamics induced by groundwater fluctuations in the lower Heihe River Basin, northwestern China[J]. Journal of Plant Ecology, 2011, 4(1/2): 77-90. |
40 | WANG T Y, WANG P, WU Z N, et al. Modeling revealed the effect of root dynamics on the water adaptability of phreatophytes[J]. Agricultural and Forest Meteorology, 2022, 320. DOI:10.1016/j.agrformet.2022.108959 . |
41 | ZHAO Siteng, ZHAO Xueyong, LI Yulin, et al. A review on the driving effect of groundwater depth on the evolution of sandy plant soil systems in arid and semiarid region[J]. Acta Ecologica Sinica, 2022, 42(23): 9 898-9 908. |
赵思腾, 赵学勇, 李玉霖, 等. 干旱半干旱区地下水埋深对沙地植物土壤系统演变的驱动作用综述[J]. 生态学报, 2022, 42(23): 9 898-9 908. | |
42 | MARTINETTI S, FATICHI S, FLORIANCIC M, et al. Field evidence of riparian vegetation response to groundwater levels in a gravel-bed river[J]. Ecohydrology, 2021, 14(2). DOI:10.1002/eco.2264 . |
43 | CHEN G G, YUE D X, ZHOU Y Y, et al. Driving factors of community-level plant functional traits and species distributions in the desert-wetland ecosystem of the Shule River Basin, China[J]. Land Degradation & Development, 2021, 32(1): 323-337. |
44 | LUO Y, CHEN Y, PENG Q W, et al. Nitrogen and phosphorus resorption of desert plants with various degree of propensity to salt in response to drought and saline stress[J]. Ecological Indicators, 2021, 125. DOI:10.1016/j.ecolind.2021.107488 . |
45 | MA Rui, LIU Chenyu, HAN Lu, et al. Trade-off relationship between leaf number and leaf size on current-year twigs of Populus euphratica Oliv. in response to groundwater gradients in extreme arid area of northwestern China[J]. Plant Science Journal, 2022, 40(2): 240-249. |
马蕊, 刘辰宇, 韩路, 等. 胡杨叶片大小与叶数量的权衡关系对地下水埋深的响应[J]. 植物科学学报, 2022, 40(2): 240-249. | |
46 | SONG G, HUANG J T, NING B H, et al. Effects of groundwater level on vegetation in the arid area of western China[J]. China Geology, 2021, 4(3): 527-535. |
47 | LIU Shensi, XU Guiqing, MI Xiaojun, et al. Effects of groundwater depth and seasonal drought on the physiology and growth of Haloxylon ammodendron at the southern edge of Gurbantonggut desert[J]. Acta Ecologica Sinica, 2022, 42(21): 8 881-8 891. |
刘深思, 徐贵青, 米晓军, 等. 地下水埋深和季节性干旱对古尔班通古特沙漠南缘梭梭生理和生长的影响[J]. 生态学报, 2022, 42(21): 8 881-8 891. | |
48 | ZHU J T, YU J J, WANG P, et al. Variability in groundwater depth and composition and their impacts on vegetation succession in the lower Heihe River Basin, north-western China[J]. Marine and Freshwater Research, 2014, 65(3). DOI:10.1071/mf13082 . |
49 | TUTEJA N. Mechanisms of high salinity tolerance in plants[J]. Methods in Enzymology, 2007, 428: 419-438. |
50 | YANG Y Q, GUO Y. Elucidating the molecular mechanisms mediating plant salt-stress responses[J]. New Phytologist, 2018, 217(2): 523-539. |
51 | LIU X, ZHOU Z Q, DING Y B. Vegetation coverage change and erosion types impacts on the water chemistry in western China[J]. Science of the Total Environment, 2021, 772. DOI:10.1016/j.scitotenv.2021.145543 . |
52 | HUGGINS X, GLEESON T, SERRANO D, et al. Overlooked risks and opportunities in groundwatersheds of the world’s protected areas[J]. Nature Sustainability, 2023, 6: 855-864. |
53 | GREEN A J, GUARDIOLA-ALBERT C, BRAVO-UTRERA M á, et al. Groundwater abstraction has caused extensive ecological damage to the do?ana world heritage site, Spain[J]. Wetlands, 2024, 44(2). DOI:10.20350/digitalCSIC/15316 . |
54 | LI Weihong, HAO Xingming, QIN Xinwen, et al. Ecological process of desert riparian forest communities and its hydrological mechanism of inland river basin in arid area[J]. Journal of Desert Research, 2008, 28(6): 1 113-1 117. |
李卫红, 郝兴明, 覃新闻, 等. 干旱区内陆河流域荒漠河岸林群落生态过程与水文机制研究[J]. 中国沙漠, 2008, 28(6): 1 113-1 117. | |
55 | LIND K R, SIEMIANOWSKI O, YUAN B, et al. Evidence for root adaptation to a spatially discontinuous water availability in the absence of external water potential gradients[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(1). DOI:10.1073/pnas.2012892118 . |
56 | ORMAN-LIGEZA B, MORRIS E C, PARIZOT B, et al. The xerobranching response represses lateral root formation when roots are not in contact with water[J]. Current Biology, 2018, 28(19): 3 165-3 173. |
57 | GOMES G B, SCORTECCI K C. Auxin and its role in plant development: structure, signalling, regulation and response mechanisms[J]. Plant Biology, 2021, 23(6): 894-904. |
58 | CHANG J K, LI X P, FU W H, et al. Asymmetric distribution of cytokinins determines root hydrotropism in Arabidopsis thaliana[J]. Cell Research, 2019, 29(12): 984-993. |
59 | DAI Yue, ZHENG Xinjun, TANG Lisong, et al. Dynamics of water usage in Haloxylon ammodendron in the southern edge of the Gurbantünggüt Desert[J]. Chinese Journal of Plant Ecology, 2014, 38(11): 1 214-1 225. |
戴岳, 郑新军, 唐立松, 等. 古尔班通古特沙漠南缘梭梭水分利用动态[J]. 植物生态学报, 2014, 38(11): 1 214-1 225. | |
60 | XI B Y, DI N, LIU J Q, et al. Hydrologic regulation of plant rooting depth: pay attention to the widespread scenario with intense seasonal groundwater table fluctuation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(17): E3863-E3864. |
61 | NAUMBURG E, MATA-GONZALEZ R, HUNTER R G, et al. Phreatophytic vegetation and groundwater fluctuations: a review of current research and application of ecosystem response modeling with an emphasis on great basin vegetation[J]. Environmental Management, 2005, 35(6): 726-740. |
62 | GOU S, MILLER G. A groundwater-soil-plant-atmosphere continuum approach for modelling water stress, uptake, and hydraulic redistribution in phreatophytic vegetation[J]. Ecohydrology, 2014, 7(3): 1 029-1 041. |
63 | ZHAO S T, ZHAO X Y, LI Y L. Relationship between the trait response of aboveground and belowground parts of dominant plant species to groundwater depth change in Horqin Sandy Land, Eastern China[J]. Ecological Indicators, 2023, 156. DOI:10.1016/j.ecolind.2023.111001 . |
64 | PRIETO I, ARMAS C, PUGNAIRE F I. Water release through plant roots: new insights into its consequences at the plant and ecosystem level[J]. New Phytologist, 2012, 193(4): 830-841. |
65 | ZHAO Wenzhi, LIU Hu. Recent advances in desert vegetation response to groundwater table changes[J]. Acta Ecologica Sinica, 2006, 26(8): 2 702-2 708. |
赵文智, 刘鹄. 荒漠区植被对地下水埋深响应研究进展[J]. 生态学报, 2006, 26(8): 2 702-2 708. | |
66 | WANG T Y, WANG P, WANG Z L, et al. Drought adaptability of phreatophytes: insight from vertical root distribution in drylands of China[J]. Journal of Plant Ecology, 2021, 14(6): 1 128-1 142. |
67 | WANG Tianye, WANG Ping, WU Zening, et al. Progress in the study of ecological resilience of vegetation under drought stress[J]. Advances in Earth Science, 2023, 38(8): 790-801. |
王田野, 王平, 吴泽宁, 等. 干旱胁迫下植被生态韧性研究进展[J]. 地球科学进展, 2023, 38(8): 790-801. | |
68 | BURGESS S S O, ADAMS M A, TURNER N C, et al. The redistribution of soil water by tree root systems[J]. Oecologia, 1998, 115(3): 306-311. |
69 | RICHARDS J H, CALDWELL M M. Hydraulic lift: substantial nocturnal water transport between soil layers by Artemisia tridentata roots[J]. Oecologia, 1987, 73(4): 486-489. |
70 | O’KEEFE K, NIPPERT J B. An assessment of diurnal water uptake in a mesic prairie: evidence for hydraulic lift?[J]. Oecologia, 2017, 183(4): 963-975. |
71 | PRIETO I, KIKVIDZE Z, PUGNAIRE F I. Hydraulic lift: soil processes and transpiration in the Mediterranean leguminous shrub Retama sphaerocarpa (L.) Boiss[J]. Plant and Soil, 2010, 329(1): 447-456. |
72 | BARRON-GAFFORD G A, SANCHEZ-CA?ETE E P, MINOR R L, et al. Impacts of hydraulic redistribution on grass-tree competition vs facilitation in a semi-arid savanna[J]. New Phytologist, 2017, 215(4): 1 451-1 461. |
73 | YUAN Guofu, ZHANG Pei, XUE Shasha, et al. Change characteristics in soil water content in root zone and evidence of root hydraulic lift in Tamarix ramosissima thickets on sand dunes[J]. Chinese Journal of Plant Ecology, 2012, 36(10): 1 033-1 042. |
袁国富, 张佩, 薛沙沙, 等. 沙丘多枝柽柳灌丛根层土壤含水量变化特征与根系水力提升证据[J]. 植物生态学报, 2012, 36(10): 1 033-1 042. | |
74 | GALLO E L, SCOTT R L, BIEDERMAN J A. Two decades of riparian woodland water vapor and carbon dioxide flux responses to environmental variability[J]. Agricultural and Forest Meteorology, 2024, 355. DOI:10.1016/j.agrformet.2024.110147 . |
75 | YANG G S, HUANG L, SHI Y F. Magnitude and determinants of plant root hydraulic redistribution: a global synthesis analysis[J]. Frontiers in Plant Science, 2022, 13. DOI:10.3389/fpls.2022.918585 . |
76 | TRINIDAD TORRES-GARCíA M, SALINAS-BONILLO M J, GáZQUEZ-SáNCHEZ F, et al. Squandering water in drylands: the water-use strategy of the phreatophyte Ziziphus lotus in a groundwater-dependent ecosystem[J]. American Journal of Botany, 2021, 108(2): 236-248. |
77 | YU T F, FENG Q, SI J H, et al. Hydraulic redistribution of soil water by roots of two desert riparian phreatophytes in northwest China’s extremely arid region[J]. Plant and Soil, 2013, 372(1): 297-308. |
78 | GERJETS R, RICHTER F, JANSEN M, et al. Hydraulic redistribution by hybrid poplars (Populus nigra x Populus maximowiczii) in a greenhouse soil column experiment[J]. Plant and Soil, 2021, 463(1): 145-154. |
79 | LIU Yang, MA Xu, DI Nan, et al. Root sap flow and hydraulic redistribution of Populus tomentosa [J]. Chinese Journal of Plant Ecology, 2022, 47(1): 123-133. |
刘洋, 马煦, 邸楠, 等. 毛白杨根系液流与水力再分配特征[J]. 植物生态学报, 2023, 47(1): 123-133. | |
80 | WU H H, FU C S, WU H W, et al. Plant hydraulic stress strategy improves model predictions of the response of gross primary productivity to drought across China[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(24). DOI: 10.1029/2020jd033476 . |
81 | HE Xingdong, GAO Yubao. Discussion on ecological role of hydraulic lift in arid region[J]. Acta Ecologica Sinica, 2003, 23(5): 996-1 002. |
何兴东, 高玉葆. 干旱区水力提升的生态作用[J]. 生态学报, 2003, 23(5): 996-1 002. | |
82 | REYNOLDS J F, VIRGINIA R A, KEMP P R, et al. Impact of drought on desert shrubs: effects of seasonality and degree of resource island development[J]. Ecological Monographs, 1999, 69(1): 69-106. |
83 | RYEL R J, LEFFLER A J, PEEK M S, et al. Water conservation in Artemisia tridentata through redistribution of precipitation[J]. Oecologia, 2004, 141(2): 335-345. |
84 | ZHAO Y, WANG L, CHUN K P, et al. Dynamic hydrological niche segregation: how plants compete for water in a semi-arid ecosystem[J]. Journal of Hydrology, 2024, 630. DOI:10.1016/j.jhydrol.2024.130677 . |
85 | ZHAI Jiaqi, DONG Yiyang, QI Shenglin, et al. Advances in ecological groundwater level threshold in arid oasis regions[J]. Journal of China Hydrology, 2021, 41(1): 7-14. |
翟家齐, 董义阳, 祁生林, 等. 干旱区绿洲地下水生态水位阈值研究进展[J]. 水文, 2021, 41(1): 7-14. | |
86 | FENG H B, DUAN Y, ZHOU J W, et al. Effects of groundwater level decline on soil-vegetation system in semiarid grassland influenced by coal mining[J]. Land Degradation & Development, 2024, 35(6): 2 297-2 312. |
87 | HOLLING C S. Resilience and stability of ecological systems[J]. Annual Review of Ecology and Systematics, 1973, 4: 1-23. |
88 | PONCE C G E, MORAN M S, HUETE A, et al. Ecosystem resilience despite large-scale altered hydroclimatic conditions[J]. Nature, 2013, 494(7 437): 349-352. |
89 | YAO Y, FU B J, LIU Y X, et al. Evaluation of ecosystem resilience to drought based on drought intensity and recovery time[J]. Agricultural and Forest Meteorology, 2022, 314. DOI:10.1016/j.agrformet.2022.108809 . |
90 | JOHNSTONE J F, ALLEN C D, FRANKLIN J F, et al. Changing disturbance regimes, ecological memory, and forest resilience[J]. Frontiers in Ecology and the Environment, 2016, 14(7): 369-378. |
91 | XUE B L, HELMAN D, WANG G Q, et al. The low hydrologic resilience of Asian Water Tower basins to adverse climatic changes[J]. Advances in Water Resources, 2021, 155. DOI:10.1016/j.advwatres.2021.103996 . |
92 | ANDEREGG W R L, TRUGMAN A T, BADGLEY G, et al. Divergent forest sensitivity to repeated extreme droughts[J]. Nature Climate Change, 2020, 10: 1 091-1 095. |
93 | TURNBULL L, WILCOX B P, BELNAP J, et al. Understanding the role of ecohydrological feedbacks in ecosystem state change in drylands[J]. Ecohydrology, 2012, 5(2): 174-183. |
94 | TAURO F. River basins on the edge of change[J]. Science, 2021, 372(6 543): 680-681. |
95 | CHOAT B, BRODRIBB T J, BRODERSEN C R, et al. Triggers of tree mortality under drought[J]. Nature, 2018, 558(7 711): 531-539. |
96 | ZHAO Wenzhi, REN Heng, DU Jun, et al. Thoughts and suggestions on oasis ecological construction and agricultural development in Hexi Corridor[J]. Bulletin of Chinese Academy of Sciences, 2023, 38(3): 424-434. |
赵文智, 任珩, 杜军, 等. 河西走廊绿洲生态建设和农业发展的若干思考与建议[J]. 中国科学院院刊, 2023, 38(3): 424-434. | |
97 | MUNSON S M, REED S C, PE?UELAS J, et al. Ecosystem thresholds, tipping points, and critical transitions[J]. New Phytologist, 2018, 218(4): 1 315-1 317. |
98 | OUIMET C, LEGENDRE P. Practical aspects of modelling ecological phenomena using the cusp catastrophe[J]. Ecological Modelling, 1988, 42(3/4): 265-287. |
99 | DORE E, BIDDAU R, LORRAI M, et al. Combining hydrogeochemistry, statistics and explorative mapping to estimate regional threshold values of trace elements in groundwater (Sardinia, Italy)[J]. Journal of Geochemical Exploration, 2022, 243. DOI:10.1016/j.gexplo.2022.10710410.1016/j.gexplo.2022.107104 . |
100 | ZHANG Ming, FU Dongmei, CHENG Xuequn, et al. A two-step method for cusp catastrophe model construction based on the selection of important variables[J]. Chinese Journal of Engineering, 2023, 45(1): 128-136. |
张明, 付冬梅, 程学群, 等. 基于变量选择的尖点突变模型的两步构建方法[J]. 工程科学学报, 2023, 45(1): 128-136. |
/
〈 |
|
〉 |