Carbon Cycling Processes in Onshore Wind and Solar Farms: A Review
Received date: 2024-12-03
Revised date: 2025-01-15
Online published: 2025-04-10
Supported by
the National Natural Science Foundation of China(U23A2063);Gansu Leading Talents Program(E339040101)
Wind and solar energy have unparalleled advantages in reducing greenhouse gas emissions and promoting energy transitions. However, the construction of onshore wind/solar farms occupies a tremendous amount of land resources and changes land use considerably. The operation of power generation facilities further changes the local microclimate and ecohydrological processes, profoundly affecting terrestrial carbon cycle processes. Therefore, it is important to clarify the potential impacts of wind/solar farms on the carbon cycle process at the site for sustainable development of the new energy industry. A systematic review of the research undertaken over the past two decades was conducted in this study, with special emphasis on the carbon cycle characteristics, impact mechanisms, and the dynamics and stability of carbon pools in onshore wind/solar farms. The results indicate that these wind/solar farms have the potential to improve local climate conditions, promote the restoration of vegetation, and thus increase the carbon sequestration potential in arid desert environments. However, considerable uncertainties exist regarding the recovery potential of either vegetation or soil carbon pools for wind/solar farms. We argue that there is an urgent need to
Xiaoxue YANG , Chuandong WU , Hu LIU , Wenzhi ZHAO , Zhibin HE . Carbon Cycling Processes in Onshore Wind and Solar Farms: A Review[J]. Advances in Earth Science, 2025 , 40(2) : 193 -206 . DOI: 10.11867/j.issn.1001-8166.2025.013
1 | ARMSTRONG A, PAGE T, THACKERAY S J, et al. Integrating environmental understanding into freshwater floatovoltaic deployment using an effects hierarchy and decision trees[J]. Environmental Research Letters, 2020, 15(11). DOI: 10.1088/1748-9326/abbf7b . |
2 | AL-SHETWI A Q. Sustainable development of renewable energy integrated power sector: trends, environmental impacts, and recent challenges[J]. Science of the Total Environment, 2022, 822. DOI: 10.1016/j.scitotenv.2022.153645 . |
3 | International Renewable Energy Agency. Renewable capacity statistics 2024[R]. Abu Dhabi: International Renewable Energy Agency, 2024. |
4 | HUANG Zhen, XIE Xiaomin. Energy revolution under vision of carbon neutrality[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(9): 1 010-1 018. |
黄震, 谢晓敏. 碳中和愿景下的能源变革[J]. 中国科学院院刊, 2021, 36(9): 1 010-1 018. | |
5 | YANG Weidong, ZENG Lianbo, LI Xiang. Advances in research of carbon sinks and their influencing factors evaluation[J]. Advances in Earth Science, 2023, 38(2): 151-167. |
杨卫东, 曾联波, 李想. 碳汇效应及其影响因素研究进展[J]. 地球科学进展, 2023, 38(2): 151-167. | |
6 | LU X, CHEN S, NIELSEN C P, et al. Combined solar power and storage as cost-competitive and grid-compatible supply for China’s future carbon-neutral electricity system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(42). DOI: 10.1073/pnas.2103471118 . |
7 | TAN Xianchun, GUO Wen, FAN Jie, et al. Policy framework and technology innovation policy of carbon peak and carbon neutrality[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(4): 435-443. |
谭显春, 郭雯, 樊杰, 等. 碳达峰、碳中和政策框架与技术创新政策研究[J]. 中国科学院院刊, 2022, 37(4): 435-443. | |
8 | LIU L B, WANG Y, WANG Z, et al. Potential contributions of wind and solar power to China’s carbon neutrality[J]. Resources, Conservation and Recycling, 2022, 180. DOI: 10.1016/j.resconrec.2022.106155 . |
9 | BREYER C, BOGDANOV D, GULAGI A, et al. On the role of solar photovoltaics in global energy transition scenarios[J]. Progress in Photovoltaics: Research and Applications, 2017, 25(8): 727-745. |
10 | YANG L W, GAO X Q, LV F, et al. Study on the local climatic effects of large photovoltaic solar farms in desert areas[J]. Solar Energy, 2017, 144: 244-253. |
11 | JIANG Junxia, YANG Liwei, LI Zhenchao, et al. Progress in the research on the impact of wind farms on climate and environment[J]. Advances in Earth Science, 2019, 34(10): 1 038-1 049. |
蒋俊霞, 杨丽薇, 李振朝, 等. 风电场对气候环境的影响研究进展[J]. 地球科学进展, 2019, 34(10): 1 038-1 049. | |
12 | CHOI C S, CAGLE A E, MACKNICK J, et al. Effects of revegetation on soil physical and chemical properties in solar photovoltaic infrastructure[J]. Frontiers in Environmental Science, 2020, 8. DOI:10.3389/fenvs.2020.00140 . |
13 | WU Z Y, HOU A P, CHANG C, et al. Environmental impacts of large-scale CSP plants in northwestern China[J]. Environmental Science Process Impacts, 2014, 16(10): 2 432-2 441. |
14 | de MARCO A, PETROSILLO I, SEMERARO T, et al. The contribution of utility-scale solar energy to the global climate regulation and its effects on local ecosystem services[J]. Global Ecology and Conservation, 2014, 2: 324-337. |
15 | ARMSTRONG A, BURTON R R, LEE S E, et al. Ground-level climate at a peatland wind farm in Scotland is affected by wind turbine operation[J]. Environmental Research Letters, 2016, 11(4). DOI: 10.1088/1748-9326/11/4/044024 . |
16 | ARMSTRONG A, OSTLE N J, WHITAKER J. Solar park microclimate and vegetation management effects on grassland carbon cycling[J]. Environmental Research Letters, 2016, 11(7). DOI: 10.1088/1748-9326/11/7/074016 . |
17 | ARMSTRONG A, WALDRON S, WHITAKER J, et al. Wind farm and solar park effects on plant-soil carbon cycling: uncertain impacts of changes in ground-level microclimate[J]. Global Change Biology, 2014, 20(6): 1 699-1 706. |
18 | LIANG Hong, WEI Ke, MA Jiao. Climate effect assessment of ideal large-scale solar and wind power farms in northwest China[J]. Climatic and Environmental Research, 2021, 26(2): 124-142. |
梁红, 魏科, 马骄. 我国西北大规模太阳能与风能发电场建设产生的可能气候效应[J]. 气候与环境研究, 2021, 26(2): 124-142. | |
19 | SCHUUR E A G, ABBOTT B W, COMMANE R, et al. Permafrost and climate change: carbon cycle feedbacks from the warming Arctic[J]. Annual Review of Environment and Resources, 2022, 47: 343-371. |
20 | XIA Z L, LI Y J, ZHANG W, et al. Quantitatively distinguishing the impact of solar photovoltaics programs on vegetation in dryland using satellite imagery[J]. Land Degradation & Development, 2023, 34(14): 4 373-4 385. |
21 | XU K, HE L C, HU H J, et al. Positive ecological effects of wind farms on vegetation in China’s Gobi desert[J]. Scientific Reports, 2019, 9. DOI: 10.1038/s41598-019-42569-0 . |
22 | WU D H, GRODSKY S M, XU W F, et al. Observed impacts of large wind farms on grassland carbon cycling[J]. Science Bulletin, 2023: S2095-9273(23)00716-8. DOI: 10.1016/j.scib.2023.10.016 . |
23 | MA B R, YANG J H, CHEN X H, et al. Revealing the ecological impact of low-speed mountain wind power on vegetation and soil erosion in South China: a case study of a typical wind farm in Yunnan[J]. Journal of Cleaner Production, 2023, 419. DOI: 10.1016/j.jclepro.2023.138020 . |
24 | LIU Y, ZHANG R Q, HUANG Z, et al. Solar photovoltaic panels significantly promote vegetation recovery by modifying the soil surface microhabitats in an arid sandy ecosystem[J]. Land Degradation & Development, 2019, 30(18): 2 177-2 186. |
25 | LIU Yi. The influence of photovoltaic power station on two typical degraded ecosystems in north of Shanxi[D]. Taiyuan: Shanxi University of Finance & Economics, 2020. |
刘怡. 光伏电站对晋北两种典型退化生态系统的影响[D]. 太原: 山西财经大学, 2020. | |
26 | YANG Kaidi, LI Guoqing, LU Xiaonan. Effects of PV power stations on vegetation spatial aggregation in northwest China[J]. Solar Energy, 2023(10): 38-44. |
杨凯迪, 李国庆, 卢潇楠. 中国西北地区光伏电站对植被空间聚集的影响[J]. 太阳能, 2023(10): 38-44. | |
27 | CHOI C S, MACKNICK J, LI Y D, et al. Environmental co-benefits of maintaining native vegetation with solar photovoltaic infrastructure[J]. Earth’s Future, 2023, 11(6). DOI: 10.1029/2023EF003542 . |
28 | RUDMAN J, GAUCHé P, ESLER K J. Direct environmental impacts of solar power in two arid biomes: an initial investigation[J]. South African Journal of Science, 2017, 113(11/12). DOI:10.17159/sajs.2017/20170113 . |
29 | QIN Z C, DENG X, GRISCOM B, et al. Natural climate solutions for China: the last mile to carbon neutrality[J]. Advances in Atmospheric Sciences, 2021, 38(6): 889-895. |
30 | XIE Guohui, LI Nana. Development potential and prospect of global large-scale wind power generation bases[N]. State Grid News, 2018-12-04: 008. |
谢国辉, 李娜娜. 全球大型风光发电基地开发潜力和前景[N]. 国家电网报, 2018-12-04: 008. | |
31 | LI Yan, WANG Yuan, TANG Jianping. Temporal and spatial variety characteristics in near-surface wind energy in China[J]. Journal of Nanjing University (Natural Sciences), 2007, 43(3): 280-291. |
李艳, 王元, 汤剑平. 中国近地层风能资源的时空变化特征[J]. 南京大学学报(自然科学版), 2007, 43(3): 280-291. | |
32 | WANG Xiao. The exploration of domestic solar resource and its power generation base[J]. Wireless Internet Technology, 2016, 13(11): 24-25. |
王晓. 我国太阳能资源及其发电基地探讨[J]. 无线互联科技, 2016, 13(11): 24-25. | |
33 | SHEN Yi. The spatial distribution of solar energy and the comprehensive potential evaluation of regional exploitation and utilization in China[D]. Lanzhou: Lanzhou University, 2014. |
沈义. 我国太阳能的空间分布及地区开发利用综合潜力评价[D]. 兰州: 兰州大学, 2014. | |
34 | FLAKSMAN A S, MOZGOVOY A I, LOPATKIN D S, et al. Prospects for the development of alternative energy sources in the world energy[J]. IOP Conference Series: Earth and Environmental Science, 2021, 723(5). DOI: 10.1088/1755-1315/723/5/052040 . |
35 | KRUITWAGEN L, STORY K T, FRIEDRICH J, et al. A global inventory of photovoltaic solar energy generating units[J]. Nature, 2021, 598(7 882): 604-610. |
36 | Global Wind Energy Council. Global wind report 2021[R]. 2021. |
37 | LIU J X. China’s renewable energy law and policy: a critical review[J]. Renewable and Sustainable Energy Reviews, 2019, 99: 212-219. |
38 | LI Keyu. Total installed capacity of wind and solar power to exceed 1.2 billion kilowatts by 2030, and the proportion of non-fossil energy consumption to reach more than 80 percent by 2060[N]. Daily Economic News, 2021-10-26:002. |
李可愚. 2030年风电、太阳能发电总装机超12亿千瓦2060年非化石能源消费比重达80%以上[N]. 每日经济新闻, 2021-10-26: 002. | |
39 | MA Weiwei. Current situation and development tend of international wind power industry[J]. Enterprise Reform and Management, 2019(15): 209-213. |
马维唯. 国际风电产业现状及发展趋势[J]. 企业改革与管理, 2019(15): 209-213. | |
40 | WANG Wenjing. Trend analysis: the reality and illusion of changes in the global photovoltaic industry[J]. Fortune World, 2011(13): 55-58. |
王文静. 大趋势解读: 国际光伏产业变动的虚实[J]. 中国科技财富, 2011(13): 55-58. | |
41 | ZHANG N, DUAN H B, SHAN Y L, et al. Booming solar energy is encroaching on cropland[J]. Nature Geoscience, 2023, 16(11): 932-934. |
42 | HARRISON-ATLAS D, LOPEZ A, LANTZ E. Dynamic land use implications of rapidly expanding and evolving wind power deployment[J]. Environmental Research Letters, 2022, 17(4). DOI: 10.1088/1748-9326/ac5f2c . |
43 | ADEH E H, GOOD S P, CALAF M, et al. Solar PV power potential is greatest over croplands[J]. Scientific Reports, 2019, 9(1). DOI: 10.1038/s41598-019-47803-3 . |
44 | National Development and Reform Commission, National Energy Administration. 14th Five-Year Plan for modern energy system[EB/OL]. (2022-03-22) [2023-10-08]. . |
国家发展和改革委员会, 国家能源局. “十四五”现代能源体系规划[EB/OL]. (2022-03-22) [2023-10-08]. . | |
45 | LAL R. Carbon cycling in global drylands[J]. Current Climate Change Reports, 2019, 5(3): 221-232. |
46 | LI Peidu, GAO Xiaoqing. The impact of photovoltaic power plants on ecological environment and climate: a literature review[J]. Plateau Meteorology, 2021, 40(3): 702-710. |
李培都, 高晓清. 光伏电站对生态环境气候的影响综述[J]. 高原气象, 2021, 40(3): 702-710. | |
47 | BARTIE N J, COBOS-BECERRA Y L, FR?HLING M, et al. The resources, exergetic and environmental footprint of the silicon photovoltaic circular economy: assessment and opportunities[J]. Resources, Conservation and Recycling, 2021, 169. DOI: 10.1016/j.resconrec.2021.105516 . |
48 | RAMESH D, CHANDRASEKARAN M, SOUNDARARAJAN R P, et al. Solar-powered plant protection equipment: perspective and prospects[J]. Energies, 2022, 15(19). DOI: 10.3390/en15197379 . |
49 | OSMANI K, HADDAD A, LEMENAND T, et al. A review on maintenance strategies for PV systems[J]. Science of the Total Environment, 2020, 746. DOI:10.1016/j.scitotenv.2020.141753 . |
50 | LUO L H, ZHUANG Y L, DUAN Q T, et al. Local climatic and environmental effects of an onshore wind farm in North China[J]. Agricultural and Forest Meteorology, 2021, 308/309. DOI: 10.1016/j.agrformet.2021.108607 . |
51 | AMADUCCI S, YIN X Y, COLAUZZI M. Agrivoltaic systems to optimise land use for electric energy production[J]. Applied Energy, 2018, 220: 545-561. |
52 | QIN Y Z, LI Y, XU R, et al. Impacts of 319 wind farms on surface temperature and vegetation in the United States[J]. Environmental Research Letters, 2022, 17(2). DOI: 10.1088/1748-9326/ac49ba . |
53 | XIA Z L, LI Y J, ZHANG W, et al. Solar photovoltaic program helps turn deserts green in China: evidence from satellite monitoring[J]. Journal of Environmental Management, 2022, 324. DOI: 10.1016/j.jenvman.2022.116338 . |
54 | CHEN Zhenghong, HE Fei, CUI Yang, et al. Advances in research of influence on climate of the group of wind farms in past 20 years[J]. Climate Change Research, 2018, 14(4): 381-391. |
陈正洪, 何飞, 崔杨, 等. 近20年来风电场(群)对气候的影响研究进展[J]. 气候变化研究进展, 2018, 14(4): 381-391. | |
55 | LI Y, KALNAY E, MOTESHARREI S, et al. Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation[J]. Science, 2018, 361(6 406): 1 019-1 022. |
56 | XIA G, ZHOU L M. Detecting wind farm impacts on local vegetation growth in Texas and Illinois using MODIS vegetation greenness measurements[J]. Remote Sensing, 2017, 9(7). DOI:10.3390/rs9070698 . |
57 | BAIDYA R S, TRAITEUR J J. Impacts of wind farms on surface air temperatures[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(42): 17 899-17 904. |
58 | ZHOU L M, TIAN Y H, BAIDYA R S, et al. Diurnal and seasonal variations of wind farm impacts on land surface temperature over western Texas[J]. Climate Dynamics, 2013, 41(2): 307-326. |
59 | BAIDYA R S. Simulating impacts of wind farms on local hydrometeorology[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99(4): 491-498. |
60 | WANG C, PRINN R G. Potential climatic impacts and reliability of very large-scale wind farms[J]. Atmospheric Chemistry and Physics, 2010, 10(4): 2 053-2 061. |
61 | VAUTARD R, THAIS F, TOBIN I, et al. Regional climate model simulations indicate limited climatic impacts by operational and planned European wind farms[J]. Nature Communications, 2014, 5. DOI: 10.1038/ncomms4196 . |
62 | KEITH D W, de CAROLIS J F, DENKENBERGER D C, et al. The influence of large-scale wind power on global climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(46): 16 115-16 120. |
63 | XU Yongming, Shihai Lü. Effects of wind erosion desertification on the biodiversity of grassland vegetation of Hulunbeir steppe[J]. Journal of Arid Land Resources and Environment, 2011, 25(4): 133-137. |
徐永明, 吕世海. 风蚀沙化对草原植被生物多样性的影响: 以呼伦贝尔草原为例[J]. 干旱区资源与环境, 2011, 25(4): 133-137. | |
64 | WANG G, LI G Q, LIU Z. Wind farms dry surface soil in temporal and spatial variation[J]. Science of the Total Environment, 2023, 857(Pt. 1). DOI:10.1016/j.scitotenv.2022.159293 . |
65 | TANG B J, WU D H, ZHAO X, et al. The observed impacts of wind farms on local vegetation growth in northern China[J]. Remote Sensing, 2017, 9(4). DOI:10.3390/rs9040332 . |
66 | RAJEWSKI D A, TAKLE E S, LUNDQUIST J K, et al. Changes in fluxes of heat, H2O, and CO2 caused by a large wind farm[J]. Agricultural and Forest Meteorology, 2014, 194: 175-187. |
67 | MARIA M. Assessment on the local climate effects of solar parks[D]. Lancaster, North West England, UK: Lancaster University, 2020. |
68 | van de VEN D J, CAPELLAN-PERéZ I, ARTO I, et al. The potential land requirements and related land use change emissions of solar energy[J]. Scientific Reports, 2021, 11(1). DOI: 10.1038/s41598-021-82042-5 . |
69 | NOOR N M, REEZA A A. Effects of solar photovoltaic installation on microclimate and soil properties in UiTM 50MWac Solar Park, Malaysia[J]. IOP Conference Series: Earth and Environmental Science, 2022, 1 059(1). DOI: 10.1088/1755-1315/1059/1/012031 . |
70 | LI C, LIU J X, BAO J B, et al. Effect of light heterogeneity caused by photovoltaic panels on the plant-soil-microbial system in solar park[J]. Land, 2023, 12(2). DOI:10.3390/land12020367 . |
71 | WANG Ying, LI Guoqing, ZHOU Jie, et al. Research on influence of pv array on soil moisture[J]. Solar Energy, 2021(7): 53-58. |
王颖, 李国庆, 周洁, 等. 光伏阵列对土壤水分的影响研究[J]. 太阳能, 2021(7): 53-58. | |
72 | WU Chuandong, SU Zebing, LIU Hu, et al. Eco-hydrological effects of photovoltaic power generation facilities on dryland ecosystems: a review[J]. Plateau Meteorology, 2021, 40(3): 690-701. |
吴川东, 苏泽兵, 刘鹄, 等. 干旱、半干旱区光伏发电设施的生态—水文效应研究评述[J]. 高原气象, 2021, 40(3): 690-701. | |
73 | HASSANPOUR A E, SELKER J S, HIGGINS C W. Remarkable agrivoltaic influence on soil moisture, micrometeorology and water-use efficiency[J]. PLoS One, 2018, 13(11). DOI: 10.1371/journal.pone.0203256 . |
74 | LAMBERT Q, BISCHOFF A, CUEFF S, et al. Effects of solar park construction and solar panels on soil quality, microclimate, CO2 effluxes, and vegetation under a Mediterranean climate[J]. Land Degradation & Development, 2021, 32(18): 5 190-5 202. |
75 | MOSCATELLI M C, MARABOTTINI R, MASSACCESI L, et al. Soil properties changes after seven years of ground mounted photovoltaic panels in Central Italy coastal area[J]. Geoderma Regional, 2022, 29. DOI: 10.1016/j.geodrs.2022.e00500 . |
76 | ZHANG X H, XU M. Assessing the effects of photovoltaic powerplants on surface temperature using remote sensing techniques[J]. Remote Sensing, 2020, 12(11). DOI: 10.3390/rs12111825 . |
77 | HU A X, LEVIS S, MEEHL G, et al. Impact of solar panels on global climate[J]. Nature Climate Change, 2016, 6: 290-294. |
78 | ULDRIJAN D, KOVá?IKOVá M, JAKIMIUK A, et al. Ecological effects of preferential vegetation composition developed on sites with photovoltaic power plants[J]. Ecological Engineering, 2021, 168. DOI: 10.1016/j.ecoleng.2021.106274 . |
79 | PIAO S L, FANG J Y, CIAIS P, et al. The carbon balance of terrestrial ecosystems in China[J]. Nature, 2009, 458(7 241): 1 009-1 013. |
80 | MA Songyao, CHEN Long, TENG Zeyu, et al. Vegetation changes in wind farm in desert steppe region[J]. Journal of Desert Research, 2019, 39(2): 186-192. |
马松尧, 陈龙, 滕泽宇, 等. 荒漠草原区风力发电场建设前后的植被变化[J]. 中国沙漠, 2019, 39(2): 186-192. | |
81 | PEKKAN O I, SENYEL K M A, CABUK S N, et al. Assessing the effects of wind farms on soil organic carbon[J]. Environmental Science and Pollution Research International, 2021, 28(14): 18 216-18 233. |
82 | LIU Pengtao. Landscape pattern evolution and ecological effect of the Inner Mongolia wind farm[D]. Hohhot: Inner Mongolia University, 2021. |
刘朋涛. 内蒙古风电场景观格局演变及生态效应[D]. 呼和浩特: 内蒙古大学, 2021. | |
83 | WU X L, ZHANG L X, ZHAO C F, et al. Satellite-based assessment of local environment change by wind farms in China[J]. Earth and Space Science, 2019, 6(6): 947-958. |
84 | URZICEANU M, ANASTASIU P, ROZYLOWICZ L, et al. Local-scale impact of wind energy farms on rare, endemic, and threatened plant species[J]. PeerJ, 2021, 9. DOI: 10.7717/peerj.11390 . |
85 | ARYA M, GEETHA P, SOMAN K P. Effect of wind farms in crop production of kanyakumari district[J]. Indian Journal of Science and Technology, 2015, 8(28): 1-4. |
86 | KAFFINE D T. Microclimate effects of wind farms on local crop yields[J]. Journal of Environmental Economics and Management, 2019, 96: 159-173. |
87 | ZHOU Maorong, WANG Xijun. Influence of photovoltaic power station engineering on soil and vegetation: taking the Gobi Desert area in the Hexi Corridor of Gansu as an example[J]. Science of Soil and Water Conservation, 2019, 17(2): 132-138. |
周茂荣, 王喜君. 光伏电站工程对土壤与植被的影响: 以甘肃河西走廊荒漠戈壁区为例[J]. 中国水土保持科学, 2019, 17(2): 132-138. | |
88 | YOUSUF H, KOO L, CHO Y H. A review on the agri-voltaic and fence PV system[J]. Current Photovoltaic Research, 2022, 10(4): 116-120. |
89 | BEATTY B, MACKNICK J, MCCALL J, et al. Native vegetation performance under a Solar PV array at the National Wind Technology Center[R]. Golden, Colorado: National Renewable Energy Laboratory, 2017. DOI: 10.2172/1357887 . |
90 | MA S, LIU J H, ZHANG P, et al. Characterizing the development of photovoltaic power stations and their impacts on vegetation conditions from landsat time series during 1990-2022[J]. Remote Sensing, 2023, 15(12). DOI: 10.3390/rs15123101 . |
91 | WU C D, LIU H, YU Y, et al. Ecohydrological insight: solar farms facilitate carbon sink enhancement in drylands[J]. Journal of Environmental Management, 2023, 342. DOI: 10.1016/j.jenvman.2023.118304 . |
92 | POTTER C. Landsat time series analysis of vegetation changes in solar energy development areas of the lower Colorado desert, southern California[J]. Journal of Geoscience and Environment Protection, 2016, 4(2): 1-6. |
93 | YU Jian, FANG Li, BIAN Zhengfu, et al. A review of the composition of soil carbon pool[J]. Acta Ecologica Sinica, 2014, 34(17): 4 829-4 838. |
余健, 房莉, 卞正富, 等. 土壤碳库构成研究进展[J]. 生态学报, 2014, 34(17): 4 829-4 838. | |
94 | LIU Yalong, WANG Ping, WANG Jingkuan. Formation and stability mechanism of soil aggregates: progress and prospect[J]. Acta Pedologica Sinica, 2023, 60(3): 627-643. |
刘亚龙, 王萍, 汪景宽. 土壤团聚体的形成和稳定机制: 研究进展与展望[J]. 土壤学报, 2023, 60(3): 627-643. | |
95 | LI G L, FU Y, LI B Q, et al. Micro-characteristics of soil aggregate breakdown under raindrop action[J]. CATENA, 2018, 162: 354-359. |
96 | ZHAO Jing, GUAN Shiyu, ZHANG Youxin, et al. Distribution characteristics and stability changes of soil aggregates in photovoltaic power stations after vegetation restoration[J]. Journal of Arid Land Resources and Environment, 2021, 35(11): 172-177. |
赵晶, 关世羽, 张有新, 等. 植被恢复后光伏电站内土壤团聚体分布特征和稳定性研究[J]. 干旱区资源与环境, 2021, 35(11): 172-177. | |
97 | CHEN L Y, LIU L, QIN S Q, et al. Regulation of priming effect by soil organic matter stability over a broad geographic scale[J]. Nature Communications, 2019, 10(1). DOI:10.1038/s41467-019-13119-z . |
98 | SONG Wenjie, LIANG Yuzheng, TAO Zhen, et al. Advances on soil organic carbon dynamics mediated by microorganisms[J]. Advances in Earth Science, 2023, 38(12): 1 213-1 223. |
宋文婕, 梁誉正, 陶贞, 等. 微生物介导的土壤有机碳动态研究进展[J]. 地球科学进展, 2023, 38(12): 1 213-1 223. | |
99 | BAI Z Y, JIA A M, BAI Z J, et al. Photovoltaic panels have altered grassland plant biodiversity and soil microbial diversity[J]. Frontiers in Microbiology, 2022, 13. DOI: 10.3389/fmicb.2022.1065899 . |
100 | LIU Z Y, PENG T, MA S L, et al. Potential benefits and risks of solar photovoltaic power plants on arid and semi-arid ecosystems: an assessment of soil microbial and plant communities[J]. Frontiers in Microbiology, 2023, 14. DOI: 10.3389/fmicb.2023.1190650 . |
101 | LIU Y, DING C X, SU D R, et al. Solar park promoted microbial nitrogen and phosphorus cycle potentials but reduced soil prokaryotic diversity and network stability in alpine desert ecosystem[J]. Frontiers in Microbiology, 2022, 13. DOI: 10.3389/fmicb.2022.976335 . |
102 | DING Chengxiang, LIU Yu. Effects of solar photovoltaic park construction on soil microbial community in alpine desert of Qinghai Tibet Plateau[J]. Acta Agrestia Sinica, 2021, 29(5): 1 061-1 069. |
丁成翔, 刘禹. 光伏园区建设对青藏高原高寒荒漠草地土壤原核微生物群落的影响[J]. 草地学报, 2021, 29(5): 1 061-1 069. | |
103 | SU B Q, SU Z X, SHANGGUAN Z P. Trade-off analyses of plant biomass and soil moisture relations on the Loess Plateau[J]. CATENA, 2021, 197. DOI: 10.1016/j.catena.2020.104946 . |
104 | GHOSH S, YADAV R. Future of photovoltaic technologies: a comprehensive review[J]. Sustainable Energy Technologies and Assessments, 2021, 47. DOI: 10.1016/j.seta.2021.101410 . |
105 | CARVALHAIS N, FORKEL M, KHOMIK M, et al. Global covariation of carbon turnover times with climate in terrestrial ecosystems[J]. Nature, 2014, 514(7 521): 213-217. |
106 | LI B, LEI C, ZHANG W P, et al. Numerical model study on influences of photovoltaic plants on local microclimate[J]. Renewable Energy, 2024, 221. DOI: 10.1016/j.renene.2023.119551 . |
107 | KANNENBERG S A, STURCHIO M A, VENTURAS M D, et al. Grassland carbon-water cycling is minimally impacted by a photovoltaic array[J]. Communications Earth & Environment, 2023, 4. DOI:10.1038/s43247-023-00904-4 . |
108 | MEITZNER R, SCHUBERT U S, HOPPE H. Agrivoltaics: the perfect fit for the future of organic photovoltaics[J]. Advanced Energy Materials, 2021, 11(1). DOI: 10.1002/aenm.202002551 . |
109 | LIU Y, ZHANG R Q, MA X R, et al. Combined ecological and economic benefits of the solar photovoltaic industry in arid sandy ecosystems[J]. Journal of Cleaner Production, 2020, 262. DOI: 10.1016/j.jclepro.2020.121376 . |
/
〈 |
|
〉 |