Ocean Alkalinity Enhancement Technology and Outlook of Synergistic Application Pathways: A Review
Received date: 2024-10-25
Revised date: 2024-12-23
Online published: 2025-03-24
Supported by
the National Key Research and Development Program of China(2022YFF0800504);The Interdisciplinary Project of Tongji University(2023-1-YB-04);The National Natural Science Foundation of China(42306052)
Carbon neutrality is a crucial strategy for combating global warming, and negative emissions technologies are key to achieving this goal. As the largest carbon reservoir on Earth, the ocean plays an irreplaceable role in regulating global carbon cycling and holds significant potential for negative emissions. Ocean alkalinity enhancement is a highly efficient and ecologically beneficial negative emissions technology. This technology increases ocean alkalinity by adding alkaline minerals to seawater, thereby enhancing the absorption of atmospheric CO2 and improving the buffer capacity to resist ocean acidification. This study introduces the mechanisms and advancements in ocean alkalinity enhancement research at multiple scales based on the dissolution theory of carbonates in the ocean. Assessing the potential for negative emissions and associated costs reveals several challenges regarding implementation pathways, environmental impacts, and public acceptance. Considering the specific conditions of China’s coastal regions and the characteristics of ocean alkalinity enhancement technology, this study proposes a pathway integrated with wastewater treatment plants and coastal engineering. Furthermore, it provides an innovative concept on the application of ocean alkalinity enhancement and enriches the scientific understanding of blue carbon sinks.
Baorong HUANG , Zhe ZHOU , Huaqiang CHU , Chaomeng DAI , Shouye YANG , Yalei ZHANG . Ocean Alkalinity Enhancement Technology and Outlook of Synergistic Application Pathways: A Review[J]. Advances in Earth Science, 2025 , 40(1) : 68 -81 . DOI: 10.11867/j.issn.1001-8166.2024.087
1 | P?RTNER H. Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view[J]. Marine Ecology Progress Series, 2008, 373: 203-217. |
2 | JIAO Nianzhi. Developing ocean negative carbon emission technology to support national carbon neutralization[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(2): 179-187. |
焦念志. 研发海洋“负排放”技术支撑国家“碳中和” 需求[J]. 中国科学院院刊, 2021, 36(2): 179-187. | |
3 | WANG F, HARINDINTWALI J D, YUAN Z Z, et al. Technologies and perspectives for achieving carbon neutrality[J]. The Innovation, 2021, 2(4). DOI: 10.1016/j.xinn.2021.100180 . |
4 | Ministry of Ecology and Environment the People’s Republic of China. Responding to climate change: China’s policies and actions in 2023[Z]. 2023. |
中华人民共和国生态环境部. 《中国应对气候变化的政策与行动2023年度报告》[Z]. 2023. | |
5 | CAO Long. Climate system response to carbon dioxide removal[J]. Climate Change Research, 2021, 17(6): 664-670. |
曹龙. IPCC AR6报告解读: 气候系统对二氧化碳移除响应[J]. 气候变化研究进展, 2021, 17(6): 664-670. | |
6 | ZHANG C L, SHI T, LIU J H, et al. Eco-engineering approaches for ocean negative carbon emission[J]. Science Bulletin, 2022, 67(24): 2 564-2 573. |
7 | SABINE C L, FEELY R A, GRUBER N, et al. The oceanic sink for anthropogenic CO2 [J]. Science, 2004, 305(5 682): 367-371. |
8 | KHATIWALA S, PRIMEAU F, HALL T. Reconstruction of the history of anthropogenic CO2 concentrations in the ocean[J]. Nature, 2009, 462: 346-349. |
9 | FRIEDLINGSTEIN P, O’SULLIVAN M, JONES M W, et al. Global carbon budget 2023[J]. Earth System Science Data, 2023, 15(12): 5 301-5 069. |
10 | JIAO Nianzhi, DAI Minhan, JIAN Zhimin, et al. Research strategies for ocean carbon storage mechanisms and effects[J]. Chinese Science Bulletin, 2022, 67(15): 1 600-1 606. |
焦念志, 戴民汉, 翦知湣, 等. 海洋储碳机制及相关生物地球化学过程研究策略[J]. 科学通报, 2022, 67(15): 1 600-1 606. | |
11 | GUO Xuefei, ZHANG Minji, ZHOU Wei, et al. Technology development and future directions of ocean alkalinity enhancement[J]. Ocean Development and Management, 2023, 40(9): 30-36. |
郭雪飞, 张敏吉, 周微, 等. 海洋碱性矿物增汇技术发展方向研究[J]. 海洋开发与管理, 2023, 40(9): 30-36. | |
12 | JIAO Nianzhi, LUO Tingwei, LIU Jihua, et al. Ocean negative carbon emissions in the context of Earth system science[J]. Bulletin of Chinese Academy of Sciences, 2023, 38(9): 1 294-1 305. |
焦念志, 骆庭伟, 刘纪化, 等. 海洋负排放: 基于地球系统科学思维的海洋科技变革[J]. 中国科学院院刊, 2023, 38(9): 1 294-1 305. | |
13 | RAVEN J A, FALKOWSKI P G. Oceanic sinks for atmospheric CO2 [J]. Plant, Cell & Environment, 1999, 22(6): 741-755. |
14 | SARMIENTO J L, GRUBER N. Sinks for anthropogenic carbon[J]. Physics Today, 2002, 55(8): 30-36. |
15 | Intergovernmental Panel on Climate. Climate Change 2013—the physical science basis: working group I contribution to the fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 2014. |
16 | BEERLING D J, LEAKE J R, LONG S P, et al. Farming with crops and rocks to address global climate, food and soil security[J]. Nature Plants, 2018, 4(3): 138-147. |
17 | JIANG L Q, CARTER B R, FEELY R A, et al. Surface ocean pH and buffer capacity: past, present and future[J]. Scientific Reports, 2019, 9(1). DOI: 10.1038/s41598-019-55039-4 . |
18 | CAI W J, JIAO N Z. Wastewater alkalinity addition as a novel approach for ocean negative carbon emissions[J]. Innovation (Cambridge (Mass)), 2022, 3(4). DOI: 10.1016/j.xinn.2022.100272 . |
19 | HANSELL D A. Recalcitrant dissolved organic carbon fractions[J]. Annual Review of Marine Science, 2013, 5: 421-445. |
20 | CARROLL D, MENEMENLIS D, DUTKIEWICZ S, et al. Attribution of space-time variability in global-ocean dissolved inorganic carbon[J]. Global Biogeochemical Cycles, 2022, 36(3). DOI:10.1029/2021GB007162 . |
21 | LIU Jihua, ZHENG Qiang. From the frontier theory of marine carbon sink to China’s scheme of marine negative emissions[J]. Science China: Earth Sciences, 2021, 51(4): 644-652. |
刘纪化, 郑强. 从海洋碳汇前沿理论到海洋负排放中国方案[J]. 中国科学: 地球科学, 2021, 51(4): 644-652. | |
22 | HURD C L, HEPBURN C D, CURRIE K I, et al. Testing the effects of ocean acidification on algal metabolism: considerations for experimental designs(1)[J]. Journal of Phycology, 2009, 45(6): 1 236-1 251. |
23 | National Academies of Sciences E, Medicine, Division on E, et al. A research strategy for ocean-based carbon dioxide removal and sequestration[M]// A research strategy for ocean-based carbon dioxide removal and sequestration. Washington (DC): National Academies Press, 2021. |
24 | TURLEY C, NIGHTINGALE P, RILEY N, et al. Literature review: environmental impacts of a gradual or catastrophic release of CO2 into the marine environment following carbon dioxide capture[R]. UK Department for Environment, 2004. |
25 | RAYMOND P A, HAMILTON S K. Anthropogenic influences on riverine fluxes of dissolved inorganic carbon to the oceans[J]. Limnology and Oceanography Letters, 2018, 3(3): 143-155. |
26 | YU Lei, LI Sanzhong, SUO Yanhui, et al. Carbon cycling in costal ocean and CO2 negative emissions[J]. Journal of Marine Sciences, 2023, 41(1): 14-25. |
于雷, 李三忠, 索艳慧, 等. 海岸海洋碳循环过程与CO2负排放[J]. 海洋学研究, 2023, 41(1): 14-25. | |
27 | BAUER J E, CAI W J, RAYMOND P A, et al. The changing carbon cycle of the coastal ocean[J]. Nature, 2013, 504(7 478): 61-70. |
28 | BOIX CANADELL M, ESCOFFIER N, ULSETH A J, et al. Alpine glacier shrinkage drives shift in dissolved organic carbon export from quasi-chemostasis to transport limitation[J]. Geophysical Research Letters, 2019, 46(15): 8 872-8 881. |
29 | TIAN H Q, YAO Y Z, LI Y, et al. Increased terrestrial carbon export and CO2 evasion from global inland waters since the preindustrial era[J]. Global Biogeochemical Cycles, 2023, 37(10). DOI:10.1029/2023GB007776 . |
30 | YU Z T, WANG X J, HAN G X, et al. Organic and inorganic carbon and their stable isotopes in surface sediments of the Yellow River Estuary[J]. Scientific Reports, 2018, 8. DOI:10.1038/s41598-018-29200-4 . |
31 | KWAK K, SONG H, MARSHALL J, et al. Suppressed pCO2 in the Southern Ocean due to the interaction between current and wind[J]. Journal of Geophysical Research: Oceans, 2021, 126(12). DOI:10.1029/2021JC017884 . |
32 | LI Y X, XUE L, YANG X F, et al. Wastewater inputs reduce the CO2 uptake by coastal oceans[J]. Science of the Total Environment, 2023, 901. DOI:10.1016/j.scitotenv.2023.165700 . |
33 | CHEN T Y, ROBINSON L F, LI T, et al. Radiocarbon evidence for the stability of polar ocean overturning during the Holocene[J]. Nature Geoscience, 2023, 16: 631-636. |
34 | H?NISCH B, RIDGWELL A, SCHMIDT D N, et al. The geological record of ocean acidification[J]. Science, 2012, 335(6 072): 1 058-1 063. |
35 | LIANG H D, LUNSTRUM A M, DONG S J, et al. Constraining CaCO3 export and dissolution with an ocean alkalinity inverse model[J]. Global Biogeochemical Cycles, 2023, 37(2). DOI: 10.1029/2022gb007535 . |
36 | JELTSCH-TH?MMES A, TRAN G, LIENERT S, et al. Earth system responses to carbon dioxide removal as exemplified by ocean alkalinity enhancement: tradeoffs and lags[J]. Environmental Research Letters, 2024, 19(5). DOI:10.1088/1748-9326/ad4401 . |
37 | KHESHGI H S. Sequestering atmospheric carbon dioxide by increasing ocean alkalinity[J]. Energy, 1995, 20(9): 915-922. |
38 | PLOCAN hosts the OceanNETs 2021 study: making the ocean an ally in climate protection[Z]. Plataforma Oceánica de Canarias, 2021. |
39 | HARTMANN J, SUITNER N, LIM C, et al. Stability of alkalinity in Ocean Alkalinity Enhancement (OAE) approaches-consequences for durability of CO2 storage[J]. Biogeosciences, 2023, 20(4): 781-802. |
40 | PAN S Y, CHEN Y H, FAN L S, et al. CO2 mineralization and utilization by alkaline solid wastes for potential carbon reduction[J]. Nature Sustainability, 2020, 3: 399-405. |
41 | DING Z S, ZHANG X, CHENG T L, et al. Unlocking high carbonation efficiency: direct CO2 mineralization with fly ash and seawater[J]. Chemical Engineering Science, 2023, 282. DOI:10.1016/j.ces.2023.119349 . |
42 | RAU G H, CALDEIRA K. Enhanced carbonate dissolution: a means of sequestering waste CO2 as ocean bicarbonate[J]. Energy Conversion and Management, 1999, 40(17): 1 803-1 813. |
43 | CHOU W C, GONG G C, HSIEH P S, et al. Potential impacts of effluent from accelerated weathering of limestone on seawater carbon chemistry: a case study for the hoping power plant in northeastern Taiwan [J]. Marine Chemistry, 2015, 168: 27-36. |
44 | RAU G H. Electrochemical splitting of calcium carbonate to increase solution alkalinity: implications for mitigation of carbon dioxide and ocean acidity[J]. Environmental Science & Technology, 2008, 42(23): 8 935-8 940. |
45 | HOUSE K Z, HOUSE C H, SCHRAG D P, et al. Electrochemical acceleration of chemical weathering as an energetically feasible approach to mitigating anthropogenic climate change[J]. Environmental Science & Technology, 2007, 41(24): 8 464-8 470. |
46 | EISAMAN M D, PARAJULY K, TUGANOV A, et al. CO2 extraction from seawater using bipolar membrane electrodialysis[J]. Energy & Environmental Science, 2012, 5(6): 7 346-7 352. |
47 | PHIL R. The negative emission potential of alkaline materials[J]. Nature Communications, 2019, 10(1). DOI:10.1038/s41467-019-09475-5 . |
48 | RINDER T, von HAGKE C. The influence of particle size on the potential of enhanced basalt weathering for carbon dioxide removal-Insights from a regional assessment[J]. Journal of Cleaner Production, 2021, 315. DOI: 10.1016/j.jclepro.2021.128178 . |
49 | RENFORTH P. The potential of enhanced weathering in the UK[J]. International Journal of Greenhouse Gas Control, 2012, 10: 229-243. |
50 | YANG B, LEONARD J, LANGDON C. Seawater alkalinity enhancement with magnesium hydroxide and its implication for carbon dioxide removal[J]. Marine Chemistry, 2023, 253. DOI: 10.1016/j.marchem.2023.104251 . |
51 | FOTEINIS S, CAMPBELL J S, RENFORTH P. Life cycle assessment of coastal enhanced weathering for carbon dioxide removal from air[J]. Environmental Science & Technology, 2023, 57(15): 6 169-6 178. |
52 | OELKERS E H, DECLERCQ J, SALDI G D, et al. Olivine dissolution rates: a critical review[J]. Chemical Geology, 2018, 500: 1-19. |
53 | SHIROKOVA L S, BéNéZETH P, POKROVSKY O S, et al. Effect of the heterotrophic bacterium Pseudomonas reactans on olivine dissolution kinetics and implications for CO2 storage in basalts[J]. Geochimica et Cosmochimica Acta, 2012, 80: 30-50. |
54 | WANG F, GIAMMAR D E. Forsterite dissolution in saline water at elevated temperature and high CO2 pressure[J]. Environmental Science & Technology, 2013, 47(1): 168-173. |
55 | GESAMP. High level review of a wide range of proposed marine geoengineering techniques[Z]. GESAMP, 2019. |
56 | MORAS C A, BACH L T, CYRONAK T, et al. Ocean alkalinity enhancement-avoiding runaway CaCO3 precipitation during quick and hydrated lime dissolution[J]. Biogeosciences, 2022, 19(15): 3 537-3 557. |
57 | HARTMANN J, WEST A J, RENFORTH P, et al. Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification[J]. Reviews of Geophysics, 2013, 51(2): 113-149. |
58 | RENFORTH P, HENDERSON G. Assessing ocean alkalinity for carbon sequestration[J]. Reviews of Geophysics, 2017, 55(3): 636-674. |
59 | K?HLER P, ABRAMS J F, V?LKER C, et al. Geoengineering impact of open ocean dissolution of olivine on atmospheric CO2, surface ocean pH and marine biology[J]. Environmental Research Letters, 2013, 8(1). DOI 10.1088/1748-9326/8/1/014009. |
60 | ADKINS J, DONG S J, BERELSON W. Accelerated weathering of limestone on cargo ships[C]//Goldschmidt 2021 abstracts. France: European Association of Geochemistry, 2021. |
61 | MEYSMAN F J R, MONTSERRAT F. Negative CO2 emissions via enhanced silicate weathering in coastal environments[J]. Biology Letters, 2017, 13(4). DOI:10.1098/rsbl.2016.0905 . |
62 | CASERINI S, PAGANO D, CAMPO F, et al. Potential of maritime transport for ocean liming and atmospheric CO2 removal[J]. Frontiers in Climate, 2021, 3. DOI: 10.3389/fclim.2021.575900 . |
63 | HARVEY L D D. Mitigating the atmospheric CO2 increase and ocean acidification by adding limestone powder to upwelling regions[J]. Journal of Geophysical Research: Oceans, 2008, 113(C4). DOI: 10.1029/2007JC004373 . |
64 | BACH L T, GILL S J, RICKABY R E M, et al. CO2 removal with enhanced weathering and ocean alkalinity enhancement: potential risks and co-benefits for marine pelagic ecosystems[J]. Frontiers in Climate, 2019, 1. DOI:10.3389/fdim.2019.00007 . |
65 | RAU G H, CARROLL S A, BOURCIER W L, et al. Direct electrolytic dissolution of silicate minerals for air CO2 mitigation and carbon-negative H2 production[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(25): 10 095-10 100. |
66 | HANGX S J T, SPIERS C J. Coastal spreading of olivine to control atmospheric CO2 concentrations: a critical analysis of viability[J]. International Journal of Greenhouse Gas Control, 2009, 3(6): 757-767. |
67 | BURT D J, FR?B F, ILYINA T. The sensitivity of the marine carbonate system to regional ocean alkalinity enhancement[J]. Frontiers in Climate, 2021, 3. DOI: 10.3389/fclim.2021.624075 . |
68 | RIEBESELL U, BACH L, BELLERBY R, et al. Competitive fitness of a predominant pelagic calcifier impaired by ocean acidification[J]. Nature Geoscience, 2017, 10: 19-23. |
69 | LaROWE D E, ARNDT S, BRADLEY J A, et al. The fate of organic carbon in marine sediments—new insights from recent data and analysis[J]. Earth-Science Reviews, 2020, 204. DOI: 10.1016/j.earscirev.2020.103146 . |
70 | KROEKER K J, KORDAS R L, CRIM R N, et al. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms[J]. Ecology Letters, 2010, 13(11): 1 419-1 434. |
71 | MONTSERRAT F, RENFORTH P, HARTMANN J, et al. Olivine dissolution in seawater: implications for CO2 sequestration through enhanced weathering in coastal environments[J]. Environmental Science & Technology, 2017, 51(7): 3 960-3 972. |
72 | ANDERSON M A, MOREL F M M. The influence of aqueous iron chemistry on the uptake of iron by the coastal diatom Thalassiosira weissflogii[J]. Limnology and Oceanography, 1982, 27(5): 789-813. |
73 | NELSON D M, TRéGUER P, BRZEZINSKI M A, et al. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation[J]. Global Biogeochemical Cycles, 1995, 9(3): 359-372. |
74 | HUMBORG C, ITTEKKOT V, COCIASU A, et al. Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure[J]. Nature, 1997, 386: 385-388. |
75 | HAUCK J, K?HLER P, WOLF-GLADROW D, et al. Iron fertilisation and century-scale effects of open ocean dissolution of olivine in a simulated CO2 removal experiment[J]. Environmental Research Letters, 2016, 11(2). DOI:10.1088/1748-9326/11/2/024007 . |
76 | MILLWARD G E, KADAM S, JHA A N. Tissue-specific assimilation, depuration and toxicity of nickel in Mytilus edulis [J]. Environmental Pollution, 2012, 162: 406-412. |
77 | BLEWETT T A, GLOVER C N, FEHSENFELD S, et al. Making sense of nickel accumulation and sub-lethal toxic effects in saline waters: fate and effects of nickel in the green crab, Carcinus maenas [J]. Aquatic Toxicology, 2015, 164: 23-33. |
78 | ZHU T Q, ZHENG L W, LI F, et al. Sustainable carbon sequestration via olivine based ocean alkalinity enhancement in the east and South China Sea: adhering to environmental norms for nickel and chromium[J]. Science of the Total Environment, 2024, 930. DOI: 10.1016/j.scitotenv.2024.172853 . |
79 | FUJII M, YEUNG A C Y, WAITE T D. Competitive effects of calcium and magnesium ions on the photochemical transformation and associated cellular uptake of iron by the freshwater cyanobacterial phytoplankton Microcystis aeruginosa [J]. Environmental Science & Technology, 2015, 49(15): 9 133-9 142. |
80 | RENFORTH P, JENKINS B G, KRUGER T. Engineering challenges of ocean liming[J]. Energy, 2013, 60: 442-452. |
81 | GAO Weibin, CHEN Yang, WANG Haoxian. Enhanced silicate rock weathering—a new path of “carbon neutrality”[J]. Advances in Earth Science, 2023, 38(2): 137-150. |
高伟斌, 陈旸, 王浩贤. 增强硅酸盐岩风化: “碳中和” 之新路径[J]. 地球科学进展, 2023, 38(2): 137-150. | |
82 | STREFLER J, AMANN T, BAUER N, et al. Potential and costs of carbon dioxide removal by enhanced weathering of rocks[J]. Environmental Research Letters, 2018, 13(3). DOI:10.1088/1748-9326/aaa9c4 . |
83 | HOUSE K Z, BACLIG A C, RANJAN M, et al. Economic and energetic analysis of capturing CO2 from ambient air[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(51): 20 428-20 433. |
84 | SMITH P. Soil carbon sequestration and biochar as negative emission technologies[J]. Global Change Biology, 2016, 22(3): 1 315-1 324. |
85 | BEERLING D J, KANTZAS E P, LOMAS M R, et al. Potential for large-scale CO2 removal via enhanced rock weathering with croplands[J]. Nature, 2020, 583(7 815): 242-248. |
86 | FUSS S, LAMB W F, CALLAGHAN M W, et al. Negative emissions: part 2: costs, potentials and side effects[J]. Environmental Research Letters, 2018, 13(6). DOI:10.1088/1748-9326/aabf9f . |
87 | HARRISON D P. A method for estimating the cost to sequester carbon dioxide by delivering iron to the ocean[J]. International Journal of Global Warming, 2013, 5(3). DOI:10.1504/IJGW.2013.055360 . |
88 | Carbon Pricing Dashboard[EB/OL]. The World Bank,2024.[2024-07-06]. . |
89 | SLATER H, de BOER D, QIAN Guoqiang, et al. 2020 China carbon pricing survey[R]. China Carbon Forum,2020. |
Slater H, de Boer D,钱国强,等. 2020年中国碳价调查报告[R]. 中国碳论坛, 2020. | |
90 | ALBRIGHT R, CALDEIRA L, HOSFELT J, et al. Reversal of ocean acidification enhances net coral reef calcification[J]. Nature, 2016, 531(7 594): 362-365. |
91 | OceanNETs public engagement event on Gran Canaria[Z]. OceanNETs, 2021. |
92 | GEOMAR. Ocean alkalinity enhancement [Z]. GEOMAR, 2022. |
93 | Carbon-Removing Shoreline Protection[Z]. Vesta, 2022. |
94 | TOLLEFSON J. Start-ups are adding antacids to the ocean to slow global warming. Will it work?[J]. Nature, 2023, 618(7 967): 902-904. |
95 | REN Hongwei. Study on carbon sequestration by seawater olivine addition and its impact on microbial community structure[D]. Jinan: Shandong University, 2022. |
任宏伟. 海水橄榄石增汇效应及其对微生物群落结构影响研究[D]. 济南:山东大学, 2022. | |
96 | Planetary’s OAE-We remove carbon from the atmosphere safely and permanently[Z]. Planetary Technologies, 2023. |
97 | GRABOWSKI M. $4M for UH-led marine carbon removal projects[Z]. UH News, 2023. |
98 | RENFORTH P, BALTRUSCHAT S, PETERSON K, et al. Using ikaite and other hydrated carbonate minerals to increase ocean alkalinity for carbon dioxide removal and environmental remediation[J]. Joule, 2022, 6(12): 2 674-2 679. |
99 | Carbon to Sea announces first grants to advance OAE Research and Technology[Z]. Carbon to Sea Initiative,2023. |
100 | EISAMAN M D, RIVEST J L B, KARNITZ S D, et al. Indirect ocean capture of atmospheric CO2: part II. understanding the cost of negative emissions[J]. International Journal of Greenhouse Gas Control, 2018, 70: 254-261. |
101 | LOC-NESS: a research program to study ocean alkalinity enhancement on the Northeast Shelf and Slope of the U.S[Z]. Woods Hole Oceanographic Institution, 2023. |
102 | RIEBESELL U, BASSO D, GEILERT S, et al. Mesocosm experiments in ocean alkalinity enhancement research[J]. State Planet Discuss, 2023, 2-oae-2023(6): 1-21. |
103 | FUHR M, GEILERT S, SCHMIDT M, et al. Kinetics of olivine weathering in seawater: an experimental study[J]. Frontiers in Climate, 2022, 4. DOI: 10.3389/fclim.2022.831587 . |
104 | LAWFORD-SMITH H, CURRIE A. Accelerating the carbon cycle: the ethics of enhanced weathering[J]. Biology Letters, 2017, 13(4). DOI: 10.1098/rsbl.2016.0859 . |
105 | NAWAZ S, LEZAUN J, VALENZUELA J M, et al. Broaden research on ocean alkalinity enhancement to better characterize social impacts[J]. Environmental Science & Technology, 2023, 57(24): 8 863-8 869. |
106 | RIEBESELL U, GATTUSO J P. Lessons learned from ocean acidification research[J]. Nature Climate Change, 2015, 5: 12-14. |
107 | GATTUSO J P, MAGNAN A K, BOPP L, et al. Ocean solutions to address climate change and its effects on marine ecosystems[J]. Frontiers in Marine Science, 2018, 5. DOI:10.3389/fmars.2018.00337 . |
108 | BORGES A V, DELILLE B, FRANKIGNOULLE M. Budgeting sinks and sources of CO2 in the coastal ocean: diversity of ecosystems counts[J]. Geophysical Research Letters, 2005, 32(14). DOI:10.1029/2005GL023053 . |
109 | CAI W J, DAI M H, WANG Y C. Air-sea exchange of carbon dioxide in ocean margins: a province-based synthesis[J]. Geophysical Research Letters, 2006, 33(12). DOI:10.1029/2006GL026219 . |
110 | ZHANG Y Y, ZHANG J H, LIANG Y T, et al. Carbon sequestration processes and mechanisms in coastal mariculture environments in China[J]. Science China Earth Sciences, 2017, 60(12): 2 097-2 107. |
111 | PARK J H, NAYNA O K, BEGUM M S, et al. Reviews and syntheses: anthropogenic perturbations to carbon fluxes in Asian river systems-concepts, emerging trends, and research challenges[J]. Biogeosciences, 2018, 15(9): 3 049-3 069. |
112 | DAI M H, SU J Z, ZHAO Y Y, et al. Carbon fluxes in the coastal ocean: synthesis, boundary processes, and future trends[J]. Annual Review of Earth and Planetary Sciences, 2022, 50: 593-626. |
113 | YANG X F, XUE L, LI Y X, et al. Treated wastewater changes the export of dissolved inorganic carbon and its isotopic composition and leads to acidification in coastal oceans[J]. Environmental Science & Technology, 2018, 52(10): 5 590-5 599. |
114 | LU L, GUEST J S, PETERS C A, et al. Wastewater treatment for carbon capture and utilization[J]. Nature Sustainability, 2018, 1: 750-758. |
115 | Biodiversity conservation in China[Z]. The State Council Information Office of the People’s Republic of China, 2021. |
中国的生物多样性保护[Z]. 国务院新闻办公室, 2021. | |
116 | National maritime development for 12th Five-Year Plan [Z]. General Office of the State Council of the People’s Republic of China,2012. [国家海洋事业发展“十二五”规划[Z]. 国务院办公厅, 2012.] |
117 | WANG Faming, TANG Jianwu, YE Siyuan, et al. Blue carbon sink function of Chinese coastal wetlands and carbon neutrality strategy[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(3): 241-251. |
王法明, 唐剑武, 叶思源, 等. 中国滨海湿地的蓝色碳汇功能及碳中和对策[J]. 中国科学院院刊, 2021, 36(3): 241-251. | |
118 | SHAO Chao, TANG Yingying, SUN Wei, et al. Current situation and application prospect of beach nourishment evaluation in China[J]. Coastal Engineering, 2023, 42(1): 75-87. |
邵超, 唐迎迎, 孙伟, 等. 我国海滩养护效果评价的现状分析与应用展望[J]. 海岸工程, 2023, 42(1): 75-87. |
/
〈 |
|
〉 |