Understanding Global Warming from the Perspective of Earth’s Energy Budget Estimation
Received date: 2024-11-18
Revised date: 2024-12-04
Online published: 2025-03-24
Supported by
the National Natural Science Foundation of China(42375022);The National Key Research and Development Program of China(2023YFC3008002)
Tracking the Earth’s energy imbalance is one of the key methods for studying the contribution of human activities to climate change. Energy imbalance directly reflects the complex responses and feedback of the climate system and is an important indicator of climate change. However, accurately estimating the Earth’s energy budget has long been a challenge. Observations of the top of the atmosphere and surface radiative fluxes have high uncertainties, and it is difficult to validate different observation datasets. In addition, these high uncertainties lead to inaccurate estimates of changes in Earth’s energy budget fluxes. Furthermore, estimating surface radiative fluxes is challenging because of the lack of high-quality, high-resolution observational data. Recently, methods using ocean heat content/sea-level height data for the indirect estimation of the Earth’s energy budget have been widely applied. Considering that most of the energy imbalance flows into the ocean heat content, ocean data observations can yield estimates of the Earth’s energy imbalance with lower uncertainty. Additionally, reasonable estimates of the Earth’s energy budget can be obtained through multi-model ensemble methods using Earth system model outputs, supplemented with appropriate weighting strategies. By improving data integration capabilities and developing related technologies, climate scientists continuously enhance their understanding of the Earth’s energy budget, providing more precise scientific evidence for understanding and addressing increasingly severe global warming.
Xuqian LI , Qingxiang LI . Understanding Global Warming from the Perspective of Earth’s Energy Budget Estimation[J]. Advances in Earth Science, 2025 , 40(1) : 57 -67 . DOI: 10.11867/j.issn.1001-8166.2025.006
1 | TETT S F B, STOTT P A, ALLEN M R, et al. Causes of twentieth-century temperature change near the Earth’s surface[J]. Nature, 1999, 399: 569- 572. |
2 | Intergovernmental Panel on Climate Change. Detection and attribution of climate change: from global to regional[M]// Climate change 2013—the physical science basis. Cambridge: Cambridge University Press, 2014: 867- 952. |
3 | LI Q X, SUN W B, HUANG B Y, et al. Consistency of global warming trends strengthened since 1880s[J]. Science Bulletin, 2020, 65( 20): 1 709- 1 712. |
4 | LI Z C, LI Q X, CHEN T Y. Record-breaking high-temperature outlook for 2023: an assessment based on the China Global Merged Temperature (CMST) dataset[J]. Advances in Atmospheric Sciences, 2024, 41( 2): 369- 376. |
5 | IPCC AR 6 Synthesis Report: climate change 2023[EB/OL]. [ 2024-06-07]. . |
6 | HARTMANN D L. Global physical climatology[M]. Cambridge: Academic Press, 2015. |
7 | BROWN P T, LI W H, LI L F, et al. Top-of-atmosphere radiative contribution to unforced decadal global temperature variability in climate models[J]. Geophysical Research Letters, 2014, 41( 14): 5 175- 5 183. |
8 | STOTT P A, TETT S F B. Scale-dependent detection of climate change[J]. Journal of Climate, 1998, 11( 12): 3 282- 3 294. |
9 | QIAN G Z, LI Q X, LI C, et al. A novel statistical decomposition of the historical change in global mean surface temperature[J]. Environmental Research Letters, 2021, 16( 5). DOI: 10.1088/1748-9326/abea34 . |
10 | PACHAURI R K, MEYE L A. Climate change 2014 synthesis report. contribution of working groups I, II, and III to the fifth assessment report of the Intergovernmental Panel on Climate Change [M]. Cambridge, UK, and New York, USA: Cambridge University Press, 2014. |
11 | LI X Q, LI Q X, WILD M, et al. An intensification of surface Earth’s energy imbalance since the late 20th century[J]. Communications Earth & Environment, 2024, 5. DOI: 10.1038/s43247-024-01802-z . |
12 | WILD M. The global energy balance as represented in CMIP6 climate models[J]. Climate Dynamics, 2020, 55( 3): 553- 577. |
13 | WILD M, FOLINI D, HAKUBA M Z, et al. The energy balance over land and oceans: an assessment based on direct observations and CMIP5 climate models[J]. Climate Dynamics, 2015, 44( 11): 3 393- 3 429. |
14 | WILD M, HAKUBA M Z, FOLINI D, et al. The cloud-free global energy balance and inferred cloud radiative effects: an assessment based on direct observations and climate models[J]. Climate Dynamics, 2019, 52( 7/8): 4 787- 4 812. |
15 | TRENBERTH K E. Understanding climate change through Earth’s energy flows[J]. Journal of the Royal Society of New Zealand, 2020, 50( 2): 331- 347. |
16 | KATO S, ROSE F G, RUTAN D A, et al. Surface irradiances of edition 4.0 Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced And Filled (EBAF) data product[J]. Journal of Climate, 2018, 31( 11): 4 501- 4 527. |
17 | STEPHENS G L, LI J, WILD M, et al. An update on Earth’s energy balance in light of the latest global observations[J]. Nature Geoscience, 2012, 5: 691- 696. |
18 | 国家能源局. 2023年全社会用电量92241亿千瓦时同比增长6.7%[EB/OL].( 2024-01-26)[ 2024-07-20]. . |
19 | IEA. Electricity market report 2023[R/OL]. [ 2024-06-03]. . |
20 | von SCHUCKMANN K, MINIèRE A, GUES F, et al. Heat stored in the Earth system 1960-2020: where does the energy go?[J]. Earth System Science Data, 2023, 15( 4): 1 675- 1 709. |
21 | CHENG L J, von SCHUCKMANN K, ABRAHAM J P, et al. Past and future ocean warming[J]. Nature Reviews Earth & Environment, 2022, 3( 11): 776- 794. |
22 | CHENG L J, TRENBERTH K E, FASULLO J, et al. Improved estimates of ocean heat content from 1960 to 2015[J]. Science Advances, 2017, 3( 3). DOI: 10.1126/sciadv.1601545 . |
23 | ABRAM N, GATTUSO J P, MASSON-DELMOTTE V, et al. Special report on the ocean and cryosphere in a changing climate[M]. Cambridge: Cambridge University Press, 2019: 73- 129. |
24 | NEREM R S, BECKLEY B D, FASULLO J T, et al. Climate-change-driven accelerated sea-level rise detected in the altimeter era[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115( 9): 2 022- 2 025. |
25 | LOEB N G, MAYER M, KATO S, et al. Evaluating twenty-year trends in Earth’s energy flows from observations and reanalyses[J]. Journal of Geophysical Research: Atmospheres, 2022, 127( 12). DOI: 10.1029/2022JD036686 . |
26 | SMITH D M, ALLAN R P, COWARD A C, et al. Earth’s energy imbalance since 1960 in observations and CMIP5 models[J]. Geophysical Research Letters, 2015, 42( 4): 1 205- 1 213. |
27 | CHENG L, FOSTER G, HAUSFATHER Z, et al. Improved quantification of the rate of ocean warming[J]. Journal of Climate, 2022, 35( 14): 4 827- 4 840. |
28 | RAGHURAMAN S P, PAYNTER D, RAMASWAMY V. Anthropogenic forcing and response yield observed positive trend in Earth’s energy imbalance[J]. Nature Communications, 2021, 12( 1). DOI: 10.1038/s41467-021-24544-4 . |
29 | HODNEBROG ?, MYHRE G, JOUAN C, et al. Recent reductions in aerosol emissions have increased Earth’s energy imbalance[J]. Communications Earth & Environment, 2024, 5. DOI: 10.1038/s41467-021-24544-4 . |
30 | MINIèRE A, von SCHUCKMANN K, SALLéE J B, et al. Robust acceleration of Earth system heating observed over the past six decades[J]. Scientific Reports, 2023, 13( 1). DOI: 10.1038/s41598-023-49353-1 . |
31 | BARKSTROM B R. The Earth Radiation Budget Experiment (ERBE)[J]. Bulletin of the American Meteorological Society, 1984, 65( 11): 1 170- 1 185. |
32 | JIAO B Y, LI Q X, SUN W B, et al. Uncertainties in the global and continental surface solar radiation variations: inter-comparison of in situ observations, reanalyses, and model simulations[J]. Climate Dynamics, 2022, 59( 7): 2 499- 2 516. |
33 | OHMURA A, GILGEN H, HEGNER H, et al. Baseline surface radiation network (BSRN/WCRP): new precision radiometry for climate research[J]. Bulletin of the American Meteorological Society, 1998, 79( 10): 2 115- 2 136. |
34 | GILGEN H, WILD M, OHMURA A. Means and trends of shortwave irradiance at the surface estimated from global energy balance archive data[J]. Journal of Climate, 1998, 11( 8): 2 042- 2 061. |
35 | AUGUSTINE J A, DELUISI J J, LONG C N. SURFRAD: a national surface radiation budget network for atmospheric research[J]. Bulletin of the American Meteorological Society, 2000, 81( 10): 2 341- 2 357. |
36 | WILD M, OHMURA A, SCH?R C, et al. The Asian Surface Radiation Budget Network (ASRB)[J]. Journal of Geophysical Research: Atmospheres, 2017, 122( 1): 265- 286. |
37 | TRENBERTH K E. The ASRB and its contribution to understanding the global energy balance[J]. Journal of Climate, 2020, 33( 4): 1 351- 1 362. |
38 | YU L S, JIN X Z, WELLER R. Multidecade global flux datasets from the Objectively Analyzed air-sea Fluxes (OAFlux) project: latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables[R]. Woods Hole Oceanographic Institution, 2008. |
39 | CURRY J A, SCHRAMM J L, ROSSOW W B, et al. Overview of Arctic cloud and radiation characteristics[J]. Journal of Climate, 1996, 9( 8): 1 731- 1 764. |
40 | ROBERTS J B, CLAYSON C A, ROBERTSON F R, et al. Predicting near-surface atmospheric variables from special sensor microwave/imager using neural networks with a first-guess approach[J]. Journal of Geophysical Research: Atmospheres, 2010, 115( D19). DOI: 10.1029/2009JD013099 . |
41 | WORLEY S J, WOODRUFF S D, REYNOLDS R W, et al. ICOADS release 2.1 data and products[J]. International Journal of Climatology, 2005, 25( 7): 823- 842. |
42 | LOEB N G, WIELICKI B A, DOELLING D R, et al. Toward optimal closure of the Earth’s top-of-atmosphere radiation budget[J]. Journal of Climate, 2009, 22( 3): 748- 766. |
43 | L’ECUYER T S, BEAUDOING H K, RODELL M, et al. The observed state of the energy budget in the early twenty-first century[J]. Journal of Climate, 2015, 28( 21): 8 319- 8 346. |
44 | WILD M, OHMURA A, SCH?R C, et al. The Global Energy Balance Archive (GEBA) version 2017: a database for worldwide measured surface energy fluxes[J]. Earth System Science Data, 2017, 9( 2): 601- 613. |
45 | GCOS. The 2022 GCOS implementation plan [EB/OL]. ( 2022) [ 2024-07-16]. . |
46 | LEVITUS S, ANTONOV J I, BOYER T P, et al. Warming of the world ocean[J]. Science, 2000, 287( 5 461): 2 225- 2 229. |
47 | MARTI F, BLAZQUEZ A, MEYSSIGNAC B, et al. Monitoring the ocean heat content change and the Earth energy imbalance from space altimetry and space gravimetry[J]. Earth System Science Data, 2022, 14( 1): 229- 249. |
48 | von SCHUCKMANN K, PALMER M D, TRENBERTH K E, et al. An imperative to monitor Earth’s energy imbalance[J]. Nature Climate Change, 2016, 6: 138- 144. |
49 | LOEB N G, DOELLING D R, WANG H L, et al. Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Top-Of-Atmosphere (TOA) edition-4.0 data product[J]. Journal of Climate, 2018, 31( 2): 895- 918. |
50 | STAMMER D, BALMASEDA M, HEIMBACH P, et al. Ocean data assimilation in support of climate applications: status and perspectives[J]. Annual Review of Marine Science, 2016, 8: 491- 518. |
51 | PALMER M D, ROBERTS C D, BALMASEDA M, et al. Ocean heat content variability and change in an ensemble of ocean reanalyses[J]. Climate Dynamics, 2017, 49( 3): 909- 930. |
52 | MEYSSIGNAC B, BOYER T, ZHAO Z X, et al. Measuring global ocean heat content to estimate the Earth energy imbalance[J]. Frontiers in Marine Science, 2019, 6. DOI: 10.3389/fmars.2019.00432 . |
53 | HAKUBA M Z, FREDERIKSE T, LANDERER F W. Earth’s energy imbalance from the ocean perspective (2005-2019)[J]. Geophysical Research Letters, 2021, 48( 16). DOI: 10.1029/2021GL093624 . |
54 | KIEHL J T, TRENBERTH K E. Earth’s annual global mean energy budget[J]. Bulletin of the American Meteorological Society, 1997, 78( 2): 197- 208. |
55 | PALMER M D, MCNEALL D J. Internal variability of Earth’s energy budget simulated by CMIP5 climate models[J]. Environmental Research Letters, 2014, 9( 3). DOI: 10.1088/1748-9326/9/3/034016 . |
56 | EYRING V, COX P M, FLATO G M, et al. Taking climate model evaluation to the next level[J]. Nature Climate Change, 2019, 9: 102- 110. |
57 | DONG X, JIN J B, LIU H L, et al. CAS-ESM2.0 model datasets for the CMIP6 Ocean Model Intercomparison Project phase 1 (OMIP1)[J]. Advances in Atmospheric Sciences, 2021, 38( 2): 307- 316. |
58 | QIAO L, ZUO Z Y, XIAO D. Evaluation of soil moisture in CMIP6 simulations[J]. Journal of Climate, 35( 2): 779- 800. |
59 | BURKE E J, ZHANG Y, KRINNER G. Evaluating permafrost physics in the Coupled Model Intercomparison Project 6 (CMIP6) models and their sensitivity to climate change[J]. The Cryosphere, 2020, 14( 9): 3 155- 3 174. |
60 | BODAS-SALCEDO A, WILLIAMS K D, RINGER M A, et al. Evaluation of cloud-related radiative properties in the Hadley Centre climate model using CALIPSO data[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D 00A 13). |
61 | WILD M. Short-wave and long-wave surface radiation budgets in GCMs: a reviewbased on the IPCC-AR4/CMIP3 models[J]. Tellus A: Dynamic Meteorology and Oceanography, 2008, 60( 5). DOI: 10.1111/j.1600-0870.2008.00342.x . |
62 | TANG T, SHINDELL D, FALUVEGI G, et al. Comparison of effective radiative forcing calculations using multiple methods, drivers, and models[J]. Journal of Geophysical Research: Atmospheres, 2019, 124( 8): 4 382- 4 394. |
63 | XU Z F, HOU Z L, HAN Y, et al. A diagram for evaluating multiple aspects of model performance in simulating vector fields[J]. Geoscientific Model Development, 2016, 9( 12): 4 365- 4 380. |
64 | TEBALDI C, KNUTTI R. The use of the multi-model ensemble in probabilistic climate projections[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365( 1 857): 2 053- 2 075. |
65 | RANDALL D A, WOOD R A, BONY S, et al. Climate models and their evaluation [M]// Climate change 2007: the physical science basis. contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2007. |
66 | COLLINS M, GROUPS T C M. El Ni?o- or La Ni?a-like climate change?[J]. Climate Dynamics, 2005, 24( 1): 89- 104. |
67 | FLATO G, MAROTZKE J, ABIODUN B, et al. Evaluation of climate models[M]// Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2013. |
68 | WILD M, FOLINI D, SCH?R C, et al. The global energy balance from a surface perspective[J]. Climate Dynamics, 2013, 40( 11): 3 107- 3 134. |
69 | WANG Q Y, ZHANG H, YANG S, et al. An assessment of land energy balance over East Asia from multiple lines of evidence and the roles of the Tibet Plateau, aerosols, and clouds[J]. Atmospheric Chemistry and Physics, 2022, 22( 24): 15 867- 15 886. |
70 | KNUTTI R. The end of model democracy?[J]. Climatic Change, 2010, 102( 3): 395- 404. |
71 | SANDERSON B M, WEHNER M, KNUTTI R. Skill and independence weighting for multi-model assessments[J]. Geoscientific Model Development, 2017, 10( 6): 2 379- 2 395. |
72 | MISHRA N, PRODHOMME C, GUEMAS V. Multi-model skill assessment of seasonal temperature and precipitation forecasts over Europe[J]. Climate Dynamics, 2019, 52( 7): 4 207- 4 225. |
73 | RUANE A C, MCDERMID S P. Selection of a representative subset of global climate models that captures the profile of regional changes for integrated climate impacts assessment[J]. Earth Perspectives, 2017, 4( 1). DOI: 10.1186/s40322-017-0036-4 . |
74 | MERRIFIELD A L, BRUNNER L, LORENZ R, et al. Climate model Selection by Independence, Performance, and Spread (ClimSIPS v1.0.1) for regional applications[J]. Geoscientific Model Development, 2023, 16( 16): 4 715- 4 747. |
75 | LIU Z. Bayesian assessment of CMIP6 surface net radiation predictions for K?ppen-Geiger climate zones[J]. International Journal of Climatology, 2023, 43( 12): 5 387- 5 400. |
76 | TEBALDI C, MEARNS L O, NYCHKA D, et al. Regional probabilities of precipitation change: a Bayesian analysis of multimodel simulations[J]. Geophysical Research Letters, 2004, 31( 24). DOI: 10.1029/2004GL021276 . |
/
〈 |
|
〉 |