Extreme Runoff and Its Response to Extreme Climate in the Huangshui River Basin

  • Wenzheng YU ,
  • Minyan WANG ,
  • Zhudeng WEI ,
  • Longhui YU
Expand
  • College of Geographic Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
YU Wenzheng, research areas include climate change and its responses, regional sustainable development, renewable energy meteorological services. E-mail: Ywzheng519@126.com

Received date: 2024-10-23

  Revised date: 2024-11-25

  Online published: 2025-02-28

Supported by

the National Natural Science Foundation of China(U20A2098);The National Key Research and Development Program of China(2019QZKK0804)

Abstract

The Huangshui River Basin, a region highly sensitive to climate change, was selected as a case study to investigate the evolution of extreme runoff at a regional scale and its climatic driving mechanisms. Daily average flow data were collected from seven stations in the basin. Mann–Kendall trend analysis and mutation tests were applied to assess the interannual variation of extreme runoff and its associations with extreme precipitation and high temperatures. The results indicate that over the past 60 years, the extremely high flow index in the basin has significantly decreased, whereas the extremely low flow index has notably increased. The frequency index did not exhibit any significant trend; however, all indices demonstrated persistence. Mutations in the high-flow index occurred around 2000, whereas mutations in the low-flow and frequency indices occurred in 2010. Cyclic analysis revealed that all indices exhibited a short cycle of approximately 3 years, whereas the frequency index also showed a long cycle of 32.5 years. Runoff variations were significantly correlated with an overall increase in extreme precipitation intensity, a decrease in precipitation duration, and an intensification of extreme high temperatures in the basin. Extremely high flows showed a positive correlation with extreme precipitation and negative correlation with extreme high temperatures. By contrast, extremely low flows exhibited a primary positive correlation with extreme high temperatures and weaker correlation with extreme precipitation. These findings provide critical insights for water resource management and flood disaster mitigation in the Huangshui River Basin.

Cite this article

Wenzheng YU , Minyan WANG , Zhudeng WEI , Longhui YU . Extreme Runoff and Its Response to Extreme Climate in the Huangshui River Basin[J]. Advances in Earth Science, 2024 , 39(12) : 1272 -1284 . DOI: 10.11867/j.issn.1001-8166.2024.092

References

1 IPCC. Climate change 2021: the physical science basis[M]. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2021.
2 HU M C, SAYAMA T, DUAN W L, et al. Assessment of hydrological extremes in the Kamo River Basin, Japan[J]. Hydrological Sciences Journal201762(8): 1 255-1 265.
3 HE Yanhu, CHEN Xiaohong, LIN Kairong, et al. Temporal and spatial characteristics of runoff coefficient variations in the Dongjiang Basin during 1964-2012[J]. Geographical Research201433(6): 1 049-1 058.
  何艳虎,陈晓宏,林凯荣,等. 东江流域近50年径流系数时空变化特征[J]. 地理研究201433(6): 1 049-1 058.
4 DU Hong, XIA Jun, ZENG Sidong, et al. Temporal and spatial variations and statistical models of extreme runoff in Huaihe River Basin[J]. Acta Geographica Sinica201267(3): 398-409.
  杜鸿,夏军,曾思栋,等. 淮河流域极端径流的时空变化规律及统计模拟[J]. 地理学报201267(3): 398-409.
5 LIU Saiyan, XIE Yangyang, HUANG Qiang, et al. Method of partitioning water year, wet season and dry season of river basin[J]. Journal of China Hydrology201737(5): 49-53.
  刘赛艳,解阳阳,黄强,等. 流域水文年及丰枯水期划分方法[J]. 水文201737(5): 49-53.
6 HUANG Guifeng, SUN He, YAO Tandong. The relationship between extreme precipitation and extreme streamflow at the Nuxia Hydrological Station in the Yarlung Zangbo River Basin[J]. Journal of Glaciology and Geocryology202446(4): 1 099-1 112.
  黄桂锋,孙赫,姚檀栋. 雅鲁藏布江流域奴下水文站极端降水与极端径流的关系研究[J]. 冰川冻土202446(4): 1 099-1 112.
7 TAO Wangxiong, JIA Zhifeng. An analysis of characteristic of runoff extremum change in the midstream of Weihe River in recent 50 years[J]. China Rural Water and Hydropower2015(9): 7-11.
  陶望雄,贾志峰. 渭河干流中段近50 a径流极值变化特征分析[J]. 中国农村水利水电2015(9): 7-11.
8 CHU Qianqian, CHEN Jin, CHEN Guangcai. Variation trend of extreme runoff series in the source region of Yangtze River from 1978 to 2009[J]. Journal of Yangtze River Scientific Research Institute201431(2): 16-19.
  褚茜茜,陈进,陈广才. 长江源区1978—2009年径流极值序列变化趋势分析[J]. 长江科学院院报201431(2): 16-19.
9 YANG Yang, SHI Lu, WANG Gang, et al. Temporal evolution characteristics and trend attribution analysis of flood extreme value in Huangshui River Basin[J]. China Rural Water and Hydropower2019(8): 98-104.
  杨阳,时璐,王岗,等. 湟水流域洪水极值时间演变特征及趋势归因分析[J]. 中国农村水利水电2019(8): 98-104.
10 MA Xiaofang, LIN Aiwen, FANG Jian. Research on spatio-temporal variation of extreme precipitation and extreme run off in the middle and lower reaches of Yangtze River from 1960-2010[J]. Geomatics & Spatial Information Technology201841(2): 157-160, 163.
  马小芳,林爱文,方建. 1960—2012年长江中下游极端降水与极端径流时空演变研究[J]. 测绘与空间地理信息201841(2): 157-160, 163.
11 DAI C, QIN X S, ZHANG X L, et al. Study of climate change impact on hydro-climatic extremes in the Hanjiang River Basin, China, using CORDEX-EAS data[J]. Weather and Climate Extremes2022, 38. DOI:10.1016/j.wace.2022.100509 .
12 LI Zhengrong, PENG Tao, DONG Xiaohua, et al. Changes of extreme runoff and the influencing factors in Yalong River Basin[J]. Water Power202046(5): 33-37, 84.
  李峥嵘,彭涛,董晓华,等. 雅砻江流域径流极值变化规律及影响因素分析[J]. 水力发电202046(5): 33-37, 84.
13 LI X X, MAO R C, SONG J X, et al. Response of runoff change to soil and water conservation measures in the Jing River catchment of China[J]. Land202413(4). DOI:10.3390/land13040442 .
14 ZAHERPOUR J, GOSLING S N, MOUNT N, et al. Worldwide evaluation of mean and extreme runoff from six global-scale hydrological models that account for human impacts[J]. Environmental Research Letters201813(6). DOI:10.1088/1748-9326/aac547 .
15 XIA J, DU H, ZENG S D, et al. Temporal and spatial variations and statistical models of extreme runoff in Huaihe River Basin during 1956-2010[J]. Journal of Geographical Sciences201222(6): 1 045-1 060.
16 HU Guanglu, TAO Hu, JIAO Jiao, et al. Runoff trend and attribution analysis of the Zhengyi Gorge in the middle reaches of the Heihe River[J]. Arid Zone Research202340(9): 1 414-1 424.
  胡广录,陶虎,焦娇,等. 黑河中游正义峡径流变化趋势及归因分析[J]. 干旱区研究202340(9): 1 414-1 424.
17 LIU Yu, GUAN Zilong, TIAN Jiyang, et al. Runoff change and its driving factors in Jinghe River Basin in recent 70 years[J]. Arid Land Geography202245(1): 17-26.
  刘宇,管子隆,田济扬,等. 近70a泾河流域径流变化及其驱动因素研究[J]. 干旱区地理202245(1): 17-26.
18 QI Xuejiao, YANG Ying, HAN Chuannan, et al. Effect of climate change on surface runoff in the source area of the Yangtze River[J]. Journal of Nanjing Normal University (Natural Science Edition)202245(4): 81-90.
  祁雪姣,杨颖,韩传楠,等. 气候变化对长江源区地表径流的影响[J]. 南京师大学报(自然科学版)202245(4): 81-90.
19 CHENG Wenju, XI Haiyang, ZHANG Jingtian. Response of runoff to extreme climate change in the upper reaches of the Heihe River[J]. Plateau Meteorology202039(1): 120-129.
  程文举,席海洋,张经天. 黑河上游径流对极端气候变化的响应研究[J]. 高原气象202039(1): 120-129.
20 LIAN Yaokang, HAO Yanhao, DU Deyan, et al. Response of Extreme Runoff from Heihe River to extreme precipitation and runoff from tributaries[J]. Yellow River202345(S2): 29-30.
  廉耀康,郝岩浩,杜得彦,等. 黑河出山口极端径流对支流极端降水和径流的响应[J]. 人民黄河202345(S2): 29-30.
21 MO C X, LAI S F, YANG Q, et al. A comprehensive assessment of runoff dynamics in response to climate change and human activities in a typical Karst watershed, southwest China[J]. Journal of Environmental Management2023, 332. DOI:10.1016/j.jenvman.2023.117380 .
22 HUANG A Q, GAO G Y, YAO L Q, et al. Spatiotemporal variations of inter- and intra-annual extreme streamflow in the Yangtze River Basin[J]. Journal of Hydrology2024, 629. DOI:10.1016/j.jhydro.2024.130634 .
23 WANG Q, CAI X T, TANG J Y, et al. Climate feedbacks associated with land-use and land-cover change on hydrological extremes over the Yangtze River Delta region, China[J]. Journal of Hydrology2023, 623. DOI:10.1016/j.jhydrol.2023.129855 .
24 ZOU Quan, WANG Guoya, HE Bin, et al. Responding of summer runoff and flood processes to extreme climate events in manas river basin, Tianshan Mountains during 1957-2010[J]. Journal of Glaciology and Geocryology201335(3): 733-740.
  邹全,王国亚,贺斌,等. 1957—2010年天山玛纳斯河流域夏季径流及洪水过程对极端气候事件的响应[J]. 冰川冻土201335(3): 733-740.
25 ZHANG Qiang, YE Peilong, WANG Jianshun, et al. Scientific discussion and ponder on the coordination of natural environmental in the upper Yellow River Basin[J]. Advances in Earth Science202338(3): 320-329.
  张强,叶培龙,王健顺,等. 对黄河上游自然环境要素协调性的几点科学探讨与思考[J]. 地球科学进展202338(3): 320-329.
26 QI Wenyan, QIAN Ju, GE Lei, et al. Runoff variation analysis on main stream of Huangshui River in recent 60 years[J]. Journal of Water Resources and Water Engineering201829(3): 45-49.
  祁文燕,钱鞠,葛雷,等. 湟水干流近60年径流变化特征分析[J]. 水资源与水工程学报201829(3): 45-49.
27 ZHANG Tiaofeng, ZHU Xide, WANG Yongjian, et al. The impact of climate variability and human activity on runoff changes in the Huangshui River Basin[J]. Resources Science201436(11): 2 256-2 262.
  张调风,朱西德,王永剑,等. 气候变化和人类活动对湟水河流域径流量影响的定量评估[J]. 资源科学201436(11): 2 256-2 262.
28 DU Jiani, CAI Yiqing, LIU Xisheng, et al. Attribution analysis of runoff in the Huangshui River based on the Budyko hypothesis[J]. China Rural Water and Hydropower2022(7): 116-121.
  杜嘉妮,蔡宜晴,刘希胜,等. 基于Budyko假设的湟水径流变化归因识别[J]. 中国农村水利水电2022(7): 116-121.
29 ZHAO Yibang, WANG Kezhen. Analysis of design flood at Minhe section of Huangshuihe River in Qinghai Province[J]. Journal of Water Resources and Water Engineering201223(4): 182-184.
  赵毅邦,王克祯. 青海省湟水干流民和段设计洪水分析[J]. 水资源与水工程学报201223(4): 182-184.
30 LIU Yu, ZHAI Xiaoyan, ZHANG Yongyong, et al. Valuation of aquatic ecological products based on water cycle simulation: taking the Huangshui River Basin as an example[J]. Progress in Geography202342(9): 1 704-1 716.
  刘玉,翟晓燕,张永勇,等. 基于水循环模拟的水生态产品价值量核算: 以黄河上游湟水河流域为例[J]. 地理科学进展202342(9): 1 704-1 716.
31 HU Xiangxiang, KE Fuyang, SHI Yaya, et al. Research on groundwater storage and surface subsidence in Huangshui Valley based on GRACE and Sentinel-1A[J]. Bulletin of Surveying and Mapping2024(6): 46-52.
  胡祥祥,柯福阳,石亚亚,等. 基于GRACE和Sentinel-1A的河湟谷地地下水储量与地表沉降研究[J]. 测绘通报2024(6): 46-52.
32 WANG Rui, BAI Dezhen, YIN Fang, et al. Trends and continuity analysis of vegetation change in Huangshui River Basin from 2000 to 2019[J]. Remote Sensing Technology and Application202237(6): 1 504-1 512.
  王蕊,拜得珍,尹芳,等. 湟水流域2000—2019年植被变化趋势特征和延续性分析[J]. 遥感技术与应用202237(6): 1 504-1 512.
33 LIU Rongna, ZHANG Guoqing, XIAO Hongbin, et al. Analysis on the characteristics of daily variation of cloud and precipitation over the Huangshui River valley in summer[J]. Arid Zone Research201027(1): 135-141.
  刘蓉娜,张国庆,肖宏斌,等. 湟水河谷夏季云和降水的日变化特征[J]. 干旱区研究201027(1): 135-141.
34 LI Xiuyun, FU Suxing, SONG Xianfeng. Forming mechanism of river low flow and its extremum[J]. Journal of Desert Research199919(3): 228-233.
  李秀云,傅肃性, 宋现锋. 河川枯水径流与极值形成机理研究[J]. 中国沙漠199919(3): 228-233.
35 JIANG Tianhan, DENG Liantang. Some problems in estimating a Hurst exponent:a case study of applicatings to climatic change[J]. Scientia Geographica Sinica200424(2): 177-182.
  江田汉,邓莲堂. Hurst指数估计中存在的若干问题:以在气候变化研究中的应用为例[J]. 地理科学200424(2): 177-182.
36 CHEN Fuhong, YI Lei, ZHANG Rong, et al. Trend and abrupt change features of surface runoff of Golmud River[J]. Journal of Salt Lake Research202129(4): 30-42.
  陈富洪,易磊,张荣,等. 格尔木河地表径流的趋势和突变特征分析[J]. 盐湖研究202129(4): 30-42.
37 GE Jie, ZHANG Xin. Spatio-temporal variations of temperature and precipitation in Huangshui River Basin within Qinghai Province[J]. Journal of Irrigation and Drainage201736(11): 94-100.
  葛杰,张鑫. 青海湟水流域气温与降水时空变化特征[J]. 灌溉排水学报201736(11): 94-100.
38 LI Huanhuan. Evolution mechanism and carrying capacity research of groundwater in valley-type city on the Qinghai-Tibet Plateau [ D]. Xi’an: Chang’an University, 2022.
  李环环. 青藏高原河谷型城市地下水演化机制及承载力研究[D]. 西安: 长安大学, 2022.
39 WANG Qingxu, SHI Lu, DONG Shenghu. The change law and causes analysis of surface water resources and water consumption in Huangshui River Basin in recent 20 years[J]. Technical Supervision in Water Resources202129(2): 104-109.
  汪清旭,时璐,董胜虎. 近20年湟水流域地表水资源量及用水量变化规律与成因分析[J]. 水利技术监督202129(2): 104-109.
40 XU Zongxue, YE Chenlei, LIAO Ruting. Integrated management technology for urban flooding/waterlogging disaster: research progress and case study[J]. Advances in Earth Science202338(11): 1 107-1 120.
  徐宗学,叶陈雷,廖如婷. 城市洪涝灾害协同治理:研究进展与应用案例[J]. 地球科学进展202338(11): 1 107-1 120.
41 HE Xiaohui, WANG Fang, GONG Jiaguo, et al. Hydrological changes under climate change in Xining reach of the Huangshui River[J]. Yellow River201537(9): 11-13, 16.
  赫晓慧,王芳,龚家国,等. 气候变化下湟水河西宁段区域水文变化研究[J]. 人民黄河201537(9): 11-13, 16.
42 SONG Xuanyu, XU Min, LI Zhenzhong, et al. Study on variation characteristics of extreme climate and its impacts on runoff in Yarkant Basin[J]. Journal of China Hydrology202343(2): 52-57.
  宋轩宇,许民,李振中,等. 叶尔羌流域极端气候变化特征及其对径流的影响研究[J]. 水文202343(2): 52-57.
43 CHENG Yufei, CHENG Wenju, HU Xiangquan, et al. Response of extreme hydrological events to extreme climate in the Shule River Basin[J]. Plateau Meteorology201938(3): 583-592.
  程玉菲,程文举,胡想全,等. 疏勒河流域极端水文事件对极端气候的响应[J]. 高原气象201938(3): 583-592.
44 NING Yinan, YANG Xiaonan, SUN Wenyi, et al. The trend of runoff change and its attribution in the middle reaches of the Yellow River[J]. Journal of Natural Resources202136(1): 256-269.
  宁怡楠,杨晓楠,孙文义,等. 黄河中游河龙区间径流量变化趋势及其归因[J]. 自然资源学报202136(1): 256-269.
45 PIAO Zhenggang, LI Xiangyi, XU Hao, et al. Threshold of climate extremes that impact vegetation productivity over the Tibetan[J]. Scientia China: Earth Sciences202454(6): 1 996-2 007.
  朴正刚,李湘怡,徐浩,等. 影响青藏高原植被生产力的极端气候阈值[J]. 中国科学(地球科学)202454(6): 1 996-2 007.
Outlines

/