Changes in the Thermal Regime of Permafrost in the Headwater Area of the Yellow River in 1979-2018 Based on the HYDRUS Model
Received date: 2024-01-11
Revised date: 2024-08-07
Online published: 2025-01-17
Supported by
the Science and Technology Program of Gansu Province(23ZDFA017);The National Natural Science Foundation of China(U2243214);The Western Young Scholars project of the Chinese Academy of Sciences of China
The thermal regime of soil is vital for determining the presence and thermal stability of permafrost. To study long-term changes in the permafrost thermal regime in the Headwater Area of the Yellow River (HAYR), a mathematical model for soil heat transfer to simulate the dynamics of ground temperatures at six boreholes using the HYDRUS-1D model. The model’s reliability and applicability were confirmed through parameter calibration. Changes in the permafrost thermal regime from 1979 to 2018 in the HAYR were then simulated using monthly air temperature data from the China Meteorological Forcing Dataset (CMFD). Model simulations revealed an abrupt change in the mean annual ground temperature in the HAYR after 1999. Prior to 1999, the changing rates were from -0.037 to 0.026 °C/a, whereas after 1999, they ranged from 0.0059 to 0.12 °C/a. The abrupt increase in mean annual air temperature in 1998 and the occurrence of extreme climate disasters in 1999 were identified as the primary reasons for the sudden changes in the permafrost thermal regime in 1999. The rise in permafrost temperature and decrease in its thermal stability are expected to impact water resource conservation and biogeochemical cycles. This study provides scientific and technological support for understanding the response patterns of plateau permafrost to climate change and strengthening the zoning and control of the ecological environment in the HAYR.
Wenjie LEI , Dongliang LUO , Fangfang CHEN , Jia LIU , Yifei PENG , Shizhen LI , Qi SHEN . Changes in the Thermal Regime of Permafrost in the Headwater Area of the Yellow River in 1979-2018 Based on the HYDRUS Model[J]. Advances in Earth Science, 2024 , 39(11) : 1183 -1195 . DOI: 10.11867/j.issn.1001-8166.2024.084
1 | ZHANG Yinsheng, MA Yingzhao, ZHANG Yanlin, et al. Hillslope patterns in thaw-freeze cycle and hydrothermal regimes on Tibetan Plateau[J]. Chinese Science Bulletin, 2015, 60(7): 664-673. |
1 | 张寅生, 马颖钊, 张艳林, 等. 青藏高原坡面尺度冻融循环与水热条件空间分布[J]. 科学通报, 2015, 60(7): 664-673. |
2 | BIBI S, WANG L, LI X P, et al. Climatic and associated cryospheric, biospheric, and hydrological changes on the Tibetan Plateau: a review[J]. International Journal of Climatology, 2018, 38(): E1-E17. |
3 | CAO Wei, SHENG Yu, WU Jichun, et al. Soil moisture infiltration characteristics of different types of frozen soil in the source area of the Yellow River[J]. Acta Ecologica Sinica, 2021, 41(2): 655-664. |
3 | 曹伟, 盛煜, 吴吉春, 等. 黄河源区不同类型冻土土壤水分入渗特性[J]. 生态学报, 2021, 41(2): 655-664. |
4 | WU Hailian, LIU Shengming. Eco-environmental situation in the source area of the Yellow River[J]. Journal of Grassland and Forage Science, 2011(7): 42-43. |
4 | 吴海莲, 刘生明. 黄河源区生态环境形势[J]. 草业与畜牧, 2011(7): 42-43. |
5 | WU Q B, HOU Y D, YUN H B, et al. Changes in active-layer thickness and near-surface permafrost between 2002 and 2012 in alpine ecosystems, Qinghai-Xizang (Tibet) Plateau, China[J]. Global and Planetary Change, 2015, 124: 149-155. |
6 | CHENG Guodong, ZHAO Lin, LI Ren, et al. Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau[J]. Chinese Science Bulletin, 2019, 64(27): 2 783-2 795. |
6 | 程国栋, 赵林, 李韧, 等. 青藏高原多年冻土特征、变化及影响[J]. 科学通报, 2019, 64(27): 2 783-2 795. |
7 | LUO Dongliang, LEI Wenjie, KANG Jianfang, et al. A review of the spatial differentiation of ground surface temperature in alpine permafrost regions[J]. Pratacultural Science, 2023, 40(4): 942-964. |
7 | 罗栋梁, 雷汶杰, 康建芳, 等. 高山多年冻土区地面温度研究进展[J]. 草业科学, 2023, 40(4): 942-964. |
8 | HOELZLE M, MITTAZ C, ETZELMüLLER B, et al. Surface energy fluxes and distribution models of permafrost in European Mountain areas: an overview of current developments[J]. Permafrost and Periglacial Processes, 2001, 12(1): 53-68. |
9 | RAN Youhua, LI Xin. Progress, challenges and opportunities of permafrost mapping in China[J]. Advances in Earth Science, 2019, 34(10): 1 015-1 027. |
9 | 冉有华, 李新. 中国多年冻土制图: 进展、挑战与机遇[J]. 地球科学进展, 2019, 34(10): 1 015-1 027. |
10 | ZHU Zhiwu, NING Jianguo, MA Wei. Constitutive model and numerical analysis for the coupled problem of water, temperature and stress fields in the process of soil freeze-thaw[J]. Engineering Mechanics, 2007, 24(5): 138-144, 137. |
10 | 朱志武, 宁建国, 马巍. 土体冻融过程中水、热、力三场耦合本构问题及数值分析[J]. 工程力学, 2007, 24(5): 138-144, 137. |
11 | LI Shunqun, ZHANG Xuncheng, CHEN Zhixiang, et al. Model tests and similarity criteria for nonlinear freezing of rock and soil[J]. Engineering Mechanics, 2019, 36(1): 192-199. |
11 | 李顺群, 张勋程, 陈之祥, 等. 岩土的非线性冻结模型试验和相似准则[J]. 工程力学, 2019, 36(1): 192-199. |
12 | QIN Yanhui, WU Tonghua, LI Ren, et al. Thermal condition of the active layer on the Qinghai-Tibet Plateau simulated by using the model of GIPL2[J]. Journal of Glaciology and Geocryology, 2017, 39(5): 1 153-1 166. |
12 | 秦艳慧, 吴通华, 李韧, 等. 基于GIPL2模型的青藏高原活动层土壤热状况模拟研究[J]. 冰川冻土, 2017, 39(5): 1 153-1 166. |
13 | GUO D L, WANG A H, LI D, et al. Simulation of changes in the near-surface soil freeze/thaw cycle using CLM4.5 with four atmospheric forcing data sets[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(5): 2 509-2 523. |
14 | MYHRA K S, WESTERMANN S, ETZELMüLLER B. Modelled distribution and temporal evolution of permafrost in steep rock walls along a latitudinal transect in Norway by CryoGrid 2D[J]. Permafrost and Periglacial Processes, 2017, 28(1): 172-182. |
15 | WESTERMANN S, LANGER M, BOIKE J, et al. Simulating the thermal regime and thaw processes of ice-rich permafrost ground with the land-surface model CryoGrid 3[J]. Geoscientific Model Development, 2016, 9(2): 523-546. |
16 | LAI X M, LIAO K H, FENG H H, et al. Responses of soil water percolation to dynamic interactions among rainfall, antecedent moisture and season in a forest site[J]. Journal of Hydrology, 2016, 540: 565-573. |
17 | CAO Wei, SHENG Yu, WU Jichun, et al. Seasonal variation of soil hydrological processes of active layer in source region of the Yellow River[J]. Advances in Water Science, 2018, 29(1): 1-10. |
17 | 曹伟, 盛煜, 吴吉春, 等. 黄河源区多年冻土活动层土壤水文过程季节变异分析[J]. 水科学进展, 2018, 29(1): 1-10. |
18 | GAO Zhenguo, ZHONG Ruilin, YANG Shuai, et al. Recent progresses in research and applications of hydrus model in China[J]. Soils, 2022, 54(2): 219-231. |
18 | 高震国, 钟瑞林, 杨帅, 等. Hydrus模型在中国的最新研究与应用进展[J]. 土壤, 2022, 54(2): 219-231. |
19 | ?IM?NEK J, van GENUCHTEN M T, ?EJNA M. Recent developments and applications of the HYDRUS computer software packages[J]. Vadose Zone Journal, 2016, 15(7): 1-25. |
20 | LUO D L, JIN H J, JIN R, et al. The extraction of watershed characteristics of the source area of Yellow River based on SRTM DEM with ArcGIS[C]// 2011 international conference on remote sensing, environment and transportation engineering. Nanjing, China: IEEE, 2011: 1 799-1 802. |
21 | WANG Genxu, SHEN Yongping, CHENG Guodong. Eco-environmental changes and causal analysis in the source regions of the Yellow River[J]. Journal of Glaciology and Geocryology, 2000, 22(3): 200-205. |
21 | 王根绪, 沈永平, 程国栋. 黄河源区生态环境变化与成因分析[J]. 冰川冻土, 2000, 22(3): 200-205. |
22 | CAO H Y, GAO B, GONG T T, et al. Analyzing changes in frozen soil in the source region of the Yellow River using the MODIS land surface temperature products[J]. Remote Sensing, 2021, 13(2). DOI:10.3390/rs13020180 . |
23 | LUO D L, JIN H J, JIN X Y, et al. Elevation-dependent thermal regime and dynamics of frozen ground in the Bayan Har Mountains, northeastern Qinghai-Tibet Plateau, southwest China[J]. Permafrost and Periglacial Processes, 2018, 29(4): 257-270. |
24 | YANG J J, WANG T H, YANG D W, et al. Insights into runoff changes in the source region of Yellow River under frozen ground degradation[J]. Journal of Hydrology, 2023, 617. DOI:10.1016/j.jhydrol.2022.128892 . |
25 | YANG Z C, DAI X A, LU H, et al. Evaluation and prediction of water conservation of the Yellow River Basin in Sichuan Province, China, based on Google Earth Engine and CA-Markov[J]. Heliyon, 2023, 9(7). DOI:10.1016/j.heliyon.2023.e17903 . |
26 | YANG Kun, HE Jie, TANG Wenjun, et al. China Meteorological Forcing Dataset (1979-2018)[DB]. National Tibetan Plateau / Third Pole Environment Data Center,2019. |
26 | 阳坤, 何杰, 唐文君, 等. 中国区域地面气象要素驱动数据集(1979—2018)[DB]. 国家青藏高原数据中心/时空三极环境大数据平台,2019. |
27 | HE J, YANG K, TANG W J, et al. The first high-resolution meteorological forcing dataset for land process studies over China[J]. Scientific Data, 2020, 7. DOI:10.1038/s41597-020-0369-y . |
28 | YANG K, HE J, TANG W J, et al. On downward shortwave and longwave radiations over high altitude regions: observation and modeling in the Tibetan Plateau[J]. Agricultural and Forest Meteorology, 2010, 150(1): 38-46. |
29 | WANG Y W, WANG L, LI X P, et al. Temporal and spatial changes in estimated near-surface air temperature lapse rates on Tibetan Plateau[J]. International Journal of Climatology, 2018, 38(7): 2 907-2 921. |
30 | LI X F, WU T H, ZHU X F, et al. Improving the noah-MP model for simulating hydrothermal regime of the active layer in the permafrost regions of the Qinghai-Tibet Plateau[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(16). DOI:10.1029/e2020JD032588 . |
31 | SUN Z, ZHAO L, HU G J, et al. Modeling permafrost changes on the Qinghai-Tibetan Plateau from 1966 to 2100: a case study from two boreholes along the Qinghai-Tibet engineering corridor[J]. Permafrost and Periglacial Processes, 2020, 31(1): 156-171. |
32 | WU Qingbai, JIANG Guanli, PU Yibin, et al. Relationship between permafrost and gas hydrates on Qinghai-Tibet Plateau[J]. Geological Bulletin of China, 2006, 25(1): 29-33. |
32 | 吴青柏, 蒋观利, 蒲毅彬, 等. 青藏高原天然气水合物的形成与多年冻土的关系[J]. 地质通报, 2006, 25(1): 29-33. |
33 | LUO D L, JIN H J, MARCHENKO S S, et al. Difference between near-surface air, land surface and ground surface temperatures and their influences on the frozen ground on the Qinghai-Tibet Plateau[J]. Geoderma, 2018, 312: 74-85. |
34 | ZHANG H X, YUAN N M, MA Z G, et al. Understanding the soil temperature variability at different depths: effects of surface air temperature, snow cover, and the soil memory[J]. Advances in Atmospheric Sciences, 2021, 38(3): 493-503. |
35 | CHAO Qingchen. Blue book on climate change in China 2022[M]. Beijing:Science Press, 2022. |
35 | 巢清尘. 中国气候变化蓝皮书(2022)[M]. 北京:科学出版社, 2022. |
36 | WANG Youheng, TAN Dan, HAN Lanying, et al. Review of climate change in the Yellow River Basin[J]. Journal of Desert Research, 2021, 41(4): 235-246. |
36 | 王有恒, 谭丹, 韩兰英, 等. 黄河流域气候变化研究综述[J]. 中国沙漠, 2021, 41(4): 235-246. |
37 | LUO Dongliang, JIN Huijun. Variations of air temperature and precipitation from 1953 to 2012 in the Madoistation in the sources areas of the Yellow River[J]. Journal of Arid Land Resources and Environment, 2014, 28(11): 185-192. |
37 | 罗栋梁, 金会军. 黄河源区玛多县1953—2012年气温和降水特征及突变分析[J]. 干旱区资源与环境, 2014, 28(11): 185-192. |
38 | KAUFMANN R K, KAUPPI H, MANN M L, et al. Reconciling anthropogenic climate change with observed temperature 1998-2008[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(29): 11 790-11 793. |
39 | ZHAO Zongci, LUO Yong, HUANG Jianbin. Global warming and abrupt climate change[J]. Climate Change Research, 2021, 17(1): 114-120. |
39 | 赵宗慈, 罗勇, 黄建斌. 全球变暖与气候突变[J]. 气候变化研究进展, 2021, 17(1 ): 114-120. |
40 | WANG Yi, ZHANG Xiaomei, ZHOU Ningfang, et al. Evolution characteristics of global meteorological and hydrological disasters from 1990 to 2019[J]. Transactions of Atmospheric Sciences, 2021, 44(4): 496-506. |
40 | 王毅, 张晓美, 周宁芳, 等. 1990—2019年全球气象水文灾害演变特征[J]. 大气科学学报, 2021, 44(4): 496-506. |
41 | TAI Tuoya, ZHENG Yuejun, WANG Jinsheng. Simulation and analysis of PFCs migration in the soil column using the HYDRUS-1D model[J]. Journal of Agro-Environment Science, 2018, 37(10): 2 175-2 182. |
41 | 邰托娅, 郑跃军, 王金生. 应用HYDRUS-1D模型模拟分析PFCs在土壤中的迁移特征[J]. 农业环境科学学报, 2018, 37(10): 2 175-2 182. |
42 | ZHANG Wei, ZHAO Xining, GAO Xiaodong, et al. Numerical simulation of soil water infiltration under rainwater collection and infiltration systems based on HYDRUS-2D[J]. Agricultural Research in the Arid Areas, 2019, 37(6): 78-85, 100. |
42 | 张伟, 赵西宁, 高晓东, 等. 基于HYDRUS-2D的雨水集聚深层入渗系统土壤水分运移模拟[J]. 干旱地区农业研究, 2019, 37(6): 78-85, 100. |
43 | LI Qiaoyuan, XIE Zichu. Analyses on the characteristics of the vertical lapse rates of temperature—taking Tibetan Plateau and its adjacent area as an example[J]. Journal of Shihezi University (Natural Science), 2006, 24(6): 719-723. |
43 | 李巧媛, 谢自楚. 高原区气温垂直递减率的分布及其特点分析: 以青藏高原及其周边地区为例[J]. 石河子大学学报(自然科学版), 2006, 24(6): 719-723. |
44 | CHEN Dongli, YU Xinxiao, LIAO Banghong. Analysis on the function of conservation water of the Chinese forest ecosystem[J]. World Forestry Research, 2005, 18(1): 49-54. |
44 | 陈东立, 余新晓, 廖邦洪. 中国森林生态系统水源涵养功能分析[J]. 世界林业研究, 2005, 18(1): 49-54. |
45 | HE Ruixia, JIN Huijun, ZHAO Shuping, et al. Review of status and progress of the study in thermal conductivity of frozen soil[J]. Journal of Glaciology and Geocryology, 2018, 40(1): 116-126. |
45 | 何瑞霞, 金会军, 赵淑萍, 等. 冻土导热系数研究现状及进展[J]. 冰川冻土, 2018, 40(1): 116-126. |
46 | RAN Hongwu, FAN Jihui, HUANG Jing. Review of the coupling of water and heat in the freeze-thaw process and its model of frozen soil[J]. Pratacultural Science, 2019, 36(4): 991-999. |
46 | 冉洪伍, 范继辉, 黄菁. 冻融过程土壤水热力耦合作用及其模型研究进展[J]. 草业科学, 2019, 36(4): 991-999. |
47 | ZHU Liang, YANG Mingnan, LIU Jingtao, et al. The influence of permafrost degradation on the change of suprapermafrost water: a case study in the source area of the Yellow River[J]. Hydrogeology & Engineering Geology, 2023, 50(6): 3-13. |
47 | 朱亮, 杨明楠, 刘景涛, 等. 多年冻土退化对冻结层上水变化的影响研究——以黄河源区为例[J]. 水文地质工程地质, 2023, 50(6): 3-13. |
48 | GONG Shihan, XIAO Yang, ZHENG Hua, et al. Spatial patterns of ecosystem water conservation in China and its impact factors analysis[J]. Acta Ecologica Sinica, 2017, 37(7): 2 455-2 462. |
48 | 龚诗涵, 肖洋, 郑华, 等. 中国生态系统水源涵养空间特征及其影响因素[J]. 生态学报, 2017, 37(7): 2 455-2 462. |
49 | YIN Yunhe, WU Shaohong, ZHAO Dongsheng, et al. Ecosystem water conservation changes in response to climate change in the Source Region of the Yellow River from 1981 to 2010[J]. Geographical Research, 2016, 35(1): 49-57. |
49 | 尹云鹤, 吴绍洪, 赵东升, 等. 过去30年气候变化对黄河源区水源涵养量的影响[J]. 地理研究, 2016, 35(1): 49-57. |
50 | WANG Daoxi, TIAN Shimin, JIANG Siqi, et al. Research progress of the evolution of runoff in the source area of the Yellow River[J]. Yellow River, 2020, 42(9): 90-95. |
50 | 王道席, 田世民, 蒋思奇, 等. 黄河源区径流演变研究进展[J]. 人民黄河, 2020, 42(9): 90-95. |
51 | ZHANG Lei, HUANG Jianping, LIANG Jiening, et al. Impact of climate change on the Yellow River Basin and respons[J]. Science & Technology Review, 2020, 38(17): 42-51. |
51 | 张镭, 黄建平, 梁捷宁, 等. 气候变化对黄河流域的影响及应对措施[J]. 科技导报, 2020, 38(17): 42-51. |
52 | LI Maohua, DU Jinkang, LI Wantong, et al. Global vegetation change and its relationship with precipitation and temperature based on GLASS-LAI in 1982-2015[J]. Scientia Geographica Sinica, 2020, 40(5): 823-832. |
52 | 李茂华, 都金康, 李皖彤, 等. 1982—2015年全球植被变化及其与温度和降水的关系[J]. 地理科学, 2020, 40(5): 823-832. |
53 | WANG Yanfen, CHEN Yiping, WANG Houjie, et al. Ecosystem change and its ecohydrological effect in the Yellow River Basin[J]. Bulletin of National Natural Science Foundation of China, 2021, 35(4): 520-528. |
53 | 王艳芬, 陈怡平, 王厚杰, 等. 黄河流域生态系统变化及其生态水文效应[J]. 中国科学基金, 2021, 35(4): 520-528. |
54 | SI J H, LI J M, LU S J, et al. Effects of climate change on surface runoff and soil moisture in the source region of the Yellow River[J]. Water, 2023, 15(11). DOI: 10.3390/w15112104 . |
55 | LIU Huifeng, WU Xing, LI Ya, et al. Effects of land use change on greenhouse gas fluxes from soils: a review[J]. Chinese Journal of Ecology, 2014, 33(7): 1 960-1 968. |
55 | 刘慧峰, 伍星, 李雅, 等. 土地利用变化对土壤温室气体排放通量影响研究进展[J]. 生态学杂志, 2014, 33(7): 1 960-1 968. |
56 | LI Yijia, MA Junwei, LI Yuqian, et al. Responses of soil microbial community to global climate change: a review[J]. Microbiology China, 2023, 50(4): 1 700-1 719. |
56 | 李怡佳, 马俊伟, 李玉倩, 等. 土壤微生物群落对全球气候变化响应的研究进展[J]. 微生物学通报, 2023, 50(4): 1 700-1 719. |
57 | WANG Lanxiang, DONG Huike, GONG Ping, et al. Cycling of carbon, nitrogen and pollutants under permafrost degradation: a review[J]. Journal of Glaciology and Geocryology, 2021, 43(5): 1 365-1 382. |
57 | 王蓝翔, 董慧科, 龚平, 等. 多年冻土退化下碳、氮和污染物循环研究进展[J]. 冰川冻土, 2021, 43(5): 1 365-1 382. |
58 | LI Zongxing, ZHANG Baijuan, FENG Qi, et al. A review of isotope ecohydrology in the cold regions of western China[J]. Earth Science, 2023, 48(3): 1 156-1 178. |
58 | 李宗省, 张百娟, 冯起, 等. 我国西部高寒山区同位素生态水文研究进展[J]. 地球科学, 2023, 48(3): 1 156-1 178. |
59 | ZHANG L, LIU Y F, JIN M G, et al. Spatiotemporal variability in extreme temperature events in an arid-semiarid region of China and their teleconnections with large-scale atmospheric circulation[J]. Journal of Earth Science, 2023, 34(4): 1 201-1 217. |
/
〈 |
|
〉 |