Meteoric Cosmogenic Radionuclide 10Be Trace the Soil Evolution: Mechanism and Progress
Received date: 2024-03-18
Revised date: 2024-05-15
Online published: 2024-07-15
Supported by
the National Natural Science Foundation of China(42330712);Autonomous Strategy Project of the State Key Laboratory of Environmental Geochemistry(SKLEG2024104);Chinese Academy of Sciences “Light of West China” Program
Soil is currently facing serious pollution, erosion, and degradation owing to global change, threatening the ecosystem stability and food security of China. Quantifying soil formation and evolution (time, rate, etc.) is a critical scientific issue in Earth sciences. Meteoric radioactive isotope 10Be (hereinafter referred to as meteoric 10Be) serves as a natural tracer, and its inventory in soil is controlled by soil age, surface erosion, and chemical weathering processes. Therefore, meteoric 10Be is an effective tool for quantitatively tracing soil formation and evolution over ten million years and has broad application prospects. First, this study summarizes and reviews the latest progress in the production, delivery, and deposition of meteoric 10Be in the Earth atmosphere, as well as its accumulation and migration in the soil profile. Reasonable estimation of the long-term deposition rate of meteoric 10Be and its migration to weathering zones are important challenges that urgently require resolution. Second, this study introduces the main methods used by meteoric 10Be to estimate the soil formation (residence) age and formation rate, indicating soil erosion and transportation on hill slopes. The key premise for applying meteoric 10Be technology is an understanding of the geological and environmental processes in the study area and a rational assessment of the calculation model. With the rapid development of accelerator mass spectrometry analysis capabilities in China, the widespread application of meteoric 10Be technology in quantitative research on soil evolution has helped solve problems such as predicting environmental ecosystem evolution and soil conservation on arable land.
Key words: Meteoric 10Be; Soil; Soil residence age; Soil formation rate; Erosion rate
Yu LIU , Jintao LIU , Chengshuai LIU , Weijun LUO , Anyun CHENG , Shijie WANG . Meteoric Cosmogenic Radionuclide 10Be Trace the Soil Evolution: Mechanism and Progress[J]. Advances in Earth Science, 2024 , 39(6) : 565 -575 . DOI: 10.11867/j.issn.1001-8166.2024.046
1 | DUNAI T J. Cosmogenic nuclides: principles, concepts and applications in the Earth surface sciences[M]. Cambridge: Cambridge University Press, 2010. |
2 | SCHOENEMANN S W, BRYANT M M, LARSON W B, et al. A cosmogenic 10Be moraine chronology of arid, alpine Late Pleistocene glaciation in the Pioneer Mountains of Montana, USA[J]. Quaternary Science Reviews, 2023, 317. DOI: 10.1016/j.quascirev.2023.108283 . |
3 | ENGELBERG S, SAGY A, SHAAR R, et al. Northward propagation of the Gulf of Elat-Aqaba constrained by cosmogenic burial ages and magnetostratigraphy of onshore sediments[J]. Tectonophysics, 2024, 871. DOI:10.1016/j.tecto.2023.230178 . |
4 | BHATTACHARJEE S, BOOKHAGEN B, SINHA R, et al. 26Al and 10Be concentrations from alluvial drill cores across the Indo-Gangetic Plain reveal multimillion-year sediment-transport lag times[J]. Earth and Planetary Science Letters, 2023, 619. DOI: 10.1016/j.epsl.2023.118318 . |
5 | LIU Y, WANG S J, XU S, et al. New chronological constraints on the Plio-Pleistocene uplift of the Guizhou Plateau, SE margin of the Tibetan Plateau[J]. Quaternary Geochronology, 2022, 67. DOI:10.1016/j.quageo.2021.101237 . |
6 | CORBETT L B, BIERMAN P R, NEUMANN T A, et al. Measuring multiple cosmogenic nuclides in glacial cobbles sheds light on Greenland Ice Sheet processes[J]. Earth and Planetary Science Letters, 2021, 554. DOI:10.1016/j.epsl.2020.116673 . |
7 | WITTMANN H, OELZE M, GAILLARDET J, et al. A global rate of denudation from cosmogenic nuclides in the Earth’s largest rivers[J]. Earth-Science Reviews, 2020, 204. DOI:10.1016/j.earscirev.2020.103147 . |
8 | ZERATHE S, LITTY C, BLARD P H, et al. Cosmogenic 3He and 10Be denudation rates in the Central Andes: comparison with a natural sediment trap over the last 18 ka[J]. Earth and Planetary Science Letters, 2022, 599. DOI:10.1016/j.epsl.2022.117869 . |
9 | YANG Y, LANG Y C, XU S, et al. Combined unsteady denudation and climatic gradient factors constrain carbonate landscape evolution: new insights from in situ cosmogenic 36Cl[J]. Quaternary Geochronology, 2020, 58. DOI:10.1016/j.quageo.2020.101075 . |
10 | CORNU S, MONTAGNE D, VASCONCELOS P M. Dating constituent formation in soils to determine rates of soil processes: a review[J]. Geoderma, 2009, 153(3/4): 293-303. |
11 | SONG Yunhong, LIU Kai, DAI Huimin, et al. The first report of the AMS 14C age of Mollisol-Paleosol profile of Songliao Plain[J]. Geology in China, 2020, 47(6): 1 926-1 927. |
11 | 宋运红, 刘凯, 戴慧敏, 等. 松辽平原典型黑土—古土壤剖面AMS14C年龄首次报道[J]. 中国地质, 2020, 47(6): 1 926-1 927. |
12 | CUI Jingyi, GUO Licheng, CHEN Yulu, et al. Spatial distribution of 14C age and depth of mollisol sections in the Songnen Plain during the Holocene[J]. Quaternary Sciences, 2021, 41(5): 1 332-1 341. |
12 | 崔静怡, 郭利成, 陈雨露, 等. 松嫩平原全新世黑土14C年龄—深度关系空间格局[J]. 第四纪研究, 2021, 41(5): 1 332-1 341. |
13 | ZHANG G L, LONG H, YANG F. Understanding the formation time of black soils[J]. The Innovation Geoscience, 2023, 1(1). DOI: 10.59717/j.xinn-geo.2023.100010 . |
14 | COOK G T, van der PLICHT J. RADIOCARBON DATING | conventional method[M]// Encyclopedia of Quaternary science. Amsterdam: Elsevier, 2007: 2 899-2 911. |
15 | GRALY J A, REUSSER L J, BIERMAN P R. Short and long-term delivery rates of meteoric 10Be to terrestrial soils[J]. Earth and Planetary Science Letters, 2011, 302(3/4): 329-336. |
16 | HEIMSATH A M, DIETRICH W E, NISHIIZUMI K, et al. The soil production function and landscape equilibrium[J]. Nature, 1997, 388: 358-361. |
17 | PAVICH M J, BROWN L, VALETTE-SILVER J N, et al. 10Be analysis of a Quaternary weathering profile in the Virginia Piedmont[J]. Geology, 1985, 13(1): 39-41. |
18 | LIU Jintao, ZHAO Wei, LIU Yu. Modelling soil thickness evolution: advancements and challenges[J]. Acta Pedologica Sinica, 2024, 61(2): 319-330. |
18 | 刘金涛, 赵薇, 刘彧. 土壤厚度演化模型理论方法研究进展[J]. 土壤学报, 2024, 61(2): 319-330. |
19 | REUSSER L, GRALY J, BIERMAN P, et al. Calibrating a long-term meteoric 10Be accumulation rate in soil[J]. Geophysical Research Letters, 2010, 37(19). DOI:10.1029/2010GL044751 . |
20 | BARG E, LAL D, PAVICH M J, et al. Beryllium geochemistry in soils: evaluation of 10Be/9Be ratios in authigenic minerals as a basis for age models[J]. Chemical Geology, 1997, 140(3/4): 237-258. |
21 | EGLI M, FITZE P. Formulation of pedologic mass balance based on immobile elements: a revision[J]. Soil Science, 2000, 165(5): 437-443. |
22 | BACON A R, RICHTER D D, BIERMAN P R, et al. Coupling meteoric 10Be with pedogenic losses of 9Be to improve soil residence time estimates on an ancient North American interfluve[J]. Geology, 2012, 40(9): 847-850. |
23 | MAHER K, von BLANCKENBURG F. Surface ages and weathering rates from 10Be (meteoric) and 10Be/9Be: insights from differential mass balance and reactive transport modeling[J]. Chemical Geology, 2016, 446: 70-86. |
24 | SCHOONEJANS J, VANACKER V, OPFERGELT S, et al. Long-term soil erosion derived from insitu 10Be and inventories of meteoric 10Be in deeply weathered soils in southern Brazil[J]. Chemical Geology, 2017, 466: 380-388. |
25 | WYSHNYTZKY C E, OUIMET W B, MCCARTHY J, et al. Meteoric 10Be, clay, and extractable iron depth profiles in the Colorado Front Range: implications for understanding soil mixing and erosion[J]. CATENA, 2015, 127: 32-45. |
26 | HARDEN J W, FRIES T L, PAVICH M J. Cycling of beryllium and carbon through hillslope soils in Iowa[J]. Biogeochemistry, 2002, 60(3): 317-336. |
27 | JUNGERS M C, BIERMAN P R, MATMON A, et al. Tracing hillslope sediment production and transport with in situ and meteoric 10Be[J]. Journal of Geophysical Research: Earth Surface, 2009, 114(F4). DOI:10.1029/2008JF001086 . |
28 | CAMPFORTS B, VANACKER V, VANDERBORGHT J, et al. Simulating the mobility of meteoric 10Be in the landscape through a coupled soil-hillslope model (Be2D)[J]. Earth and Planetary Science Letters, 2016, 439: 143-157. |
29 | SHEN Chengde, LIU Tungsheng, BEER J, et al. 10Be and the accumulation and evolution of loess[J]. Science in China Series B: Chimica, 1989, 19(7): 744-751. |
29 | 沈承德, 刘东生, BEER J, 等. 10Be与黄土的堆积演化[J]. 中国科学B辑: 化学, 1989, 19(7): 744-751. |
30 | SHEN C D, BEER J, TUNGSHENG L, et al. 10Be in Chinese loess[J]. Earth and Planetary Science Letters, 1992, 109(1/2): 169-177. |
31 | SHEN Chengde, YI Weixi, LIU Tungsheng. Advance in 10Be study in Chinese loess [J]. Advance in Earth Sciences, 1995, 10(6): 590-596. |
31 | 沈承德, 易惟熙, 刘东生.中国黄土10Be研究进展 [J]. 地球科学进展, 1995, 10(6): 590-596. |
32 | GU Z Y, LAL D, LIU T S, et al. Five million year 10Be record in Chinese loess and red-clay: climate and weathering relationships[J]. Earth and Planetary Science Letters, 1996, 144(1/2): 273-287. |
33 | ZHOU W J, PRILLER A, BECK J W, et al. Disentangling geomagnetic and precipitation signals in an 80-kyr Chinese loess record of 10Be[J]. Radiocarbon, 2007, 49(1): 137-158. |
34 | ZHOU W J, WARREN BECK J, KONG X H, et al. Timing of the Brunhes-Matuyama magnetic polarity reversal in Chinese loess using 10Be[J]. Geology, 2014, 42(6): 467-470. |
35 | ZHOU W J, KONG X H, DU Y J, et al. 10Be indicator for the matuyama-gauss magnetic polarity reversal from Chinese loess[J]. Geophysical Research Letters, 2023, 50(8). DOI:10.1029/2022GL102486 . |
36 | SHEN Chengde, SUN Yanmin, YI Weixi, et al. Distribution characteristics and soil production rate of 10Be in hilly and grassy slope soil [J]. Science in China Series D: Earth Sciences, 2004, 34(2): 139-144. |
36 | 沈承德, 孙彦敏, 易惟熙, 等. 丘陵草坡土壤10Be分布特征及土壤生成速率[J]. 中国科学D辑: 地球科学, 2004, 34(2): 139-144. |
37 | ZHOU Houyun, ZHU Zhaoyu. Researches on cosmogenic nuclides in soil and weathering profile [J]. Tropical Geography, 1999, 19(4): 365-370. |
37 | 周厚云, 朱照宇. 土壤和风化壳的宇成核素研究[J].热带地理, 1999, 19(4): 365-370. |
38 | MASARIK J, BEER J. An updated simulation of particle fluxes and cosmogenic nuclide production in the Earth’s atmosphere[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D11). DOI:10.1029/2008JD010557 . |
39 | GOSSE J C, PHILLIPS F M. Terrestrial in situ cosmogenic nuclides: theory and application[J]. Quaternary Science Reviews, 2001, 20(14): 1 475-1 560. |
40 | LIFTON N, SATO T, DUNAI T J. Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes[J]. Earth and Planetary Science Letters, 2014, 386: 149-160. |
41 | LIFTON N A, BIEBER J W, CLEM J M, et al. Addressing solar modulation and long-term uncertainties in scaling secondary cosmic rays for in situ cosmogenic nuclide applications[J]. Earth and Planetary Science Letters, 2005, 239(1/2): 140-161. |
42 | LAL D. Cosmogenic isotopes[M]// Encyclopedia of ocean sciences. Amsterdam: Elsevier, 2019: 253-262. |
43 | FIELD C V, SCHMIDT G A, KOCH D, et al. Modeling production and climate-related impacts on 10Be concentration in ice cores[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D15). DOI:10.1029/2005JD006410 . |
44 | VONMOOS M, BEER J, MUSCHELER R. Large variations in Holocene solar activity: constraints from 10Be in the Greenland Ice Core Project ice core[J]. Journal of Geophysical Research: Space Physics, 2006, 111(A10). DOI:10.1029/2005JA011500 . |
45 | JORDAN C E, DIBB J E, FINKEL R C. 10Be/7Be tracer of atmospheric transport and stratosphere-troposphere exchange[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D8). DOI:10.1029/2005JD006410 . |
46 | MONAGHAN M C, KRISHNASWAMI S, TUREKIAN K K. The global-average production rate of 10Be[J]. Earth and Planetary Science Letters, 1986, 76(3/4): 279-287. |
47 | MCCRACKEN K G. Geomagnetic and atmospheric effects upon the cosmogenic 10Be observed in polar ice[J]. Journal of Geophysical Research: Space Physics, 2004, 109(A4). DOI:10.1029/2003JA010060 . |
48 | LIU Xuke, FU Yunchong, ZHOU Weijian, et al. Cosmogenic nuclide 7Be and 10 trace atmospheric vertical transmission: a review[J]. Advances in Earth Science, 2020, 35(10): 1 016-1 028. |
48 | 刘许柯, 付云翀, 周卫健, 等. 宇宙成因核素7Be和10Be示踪大气垂直传输交换研究进展[J]. 地球科学进展, 2020, 35(10): 1 016-1 028. |
49 | BROWN L, STENSLAND G J, KLEIN J, et al. Atmospheric deposition of 7Be and 10Be[J]. Geochimica et Cosmochimica Acta, 1989, 53(1): 135-142. |
50 | DENG K, WITTMANN H, von BLANCKENBURG F. The depositional flux of meteoric cosmogenic 10Be from modeling and observation[J]. Earth and Planetary Science Letters, 2020, 550. DOI:/10.1016/j.epsl.2020.116530 . |
51 | HUH C A. Dependence of the decay rate of 7Be on chemical forms[J]. Earth and Planetary Science Letters, 1999, 171(3): 325-328. |
52 | LIU X K, FU Y C, BI Y T, et al. Monitoring surface 10Be/7Be directly reveals stratospheric air intrusion in Sichuan Basin, China [J]. Journal of Geophysical Research: Atmospheres, 2022, 127. DOI:10.1029/2022JD036543 . |
53 | YAMAGATA T, SUGIHARA S, MORINAGA I, et al. Short term variations of 7Be, 10Be concentrations in atmospheric boundary layer[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(7/8): 1 135-1 138. |
54 | BACON A R, RICHTER D D, BIERMAN P R, et al. Coupling meteoric 10Be with pedogenic losses of 9Be to improve soil residence time estimates on an ancient North American interfluve[J]. Geology, 2012, 40(9): 847-850. |
55 | HEIKKIL? U, BEER J, ALFIMOV V. Beryllium-10 and beryllium-7 in precipitation in Dübendorf (440 m) and at Jungfraujoch (3 580 m), Switzerland (1998-2005)[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D11). DOI:10.1029/2007JD009160 . |
56 | WITTMANN H, von BLANCKENBURG F, DANNHAUS N, et al. A test of the cosmogenic10Be(meteoric)/9Be proxy for simultaneously determining basin-wide erosion rates, denudation rates, and the degree of weathering in the Amazon Basin[J]. Journal of Geophysical Research: Earth Surface, 2015, 120(12): 2 498-2 528. |
57 | REUSSER L, GRALY J, BIERMAN P, et al. Calibrating a long-term meteoric 10Be accumulation rate in soil[J]. Geophysical Research Letters, 2010, 37(19). DOI:10.1029/2010GL044751 . |
58 | FINKEL R C, NISHIIZUMI K. Beryllium 10 concentrations in the Greenland Ice Sheet Project 2 ice core from 3~40 ka[J]. Journal of Geophysical Research: Oceans, 1997, 102(C12): 26 699-26 706. |
59 | BARG E, LAL D, PAVICH M J, et al. Beryllium geochemistry in soils: evaluation of 10Be/9Be ratios in authigenic minerals as a basis for age models[J]. Chemical Geology, 1997, 140(3/4): 237-258. |
60 | BERGGREN D, MULDER J. The role of organic matter in controlling aluminum solubility in acidic mineral soil horizons[J]. Geochimica et Cosmochimica Acta, 1995, 59(20): 4 167-4 180. |
61 | WILLENBRING J K, von BLANCKENBURG F. Meteoric cosmogenic Beryllium-10 adsorbed to river sediment and soil: applications for Earth-surface dynamics[J]. Earth-Science Reviews, 2010, 98(1/2): 105-122. |
62 | THOMPSON A, CHADWICK O A, BOMAN S, et al. Colloid mobilization during soil iron redox oscillations[J]. Environmental Science & Technology, 2006, 40(18): 5 743-5 749. |
63 | CHEN P, YI P, CZYMZIK M, et al. Relationship between precipitation and 10Be and impacts on soil dynamics[J]. CATENA, 2020, 195. DOI:10.1016/j.catena.2020.104748 . |
64 | PAVICH M J, BROWN L, HARDEN J, et al. 10Be distribution in soils from Merced River Terraces, California[J]. Geochimica et Cosmochimica Acta, 1986, 50(8): 1 727-1 735. |
65 | GRALY J A, BIERMAN P R, REUSSER L J, et al. Meteoric 10Be in soil profiles-a global meta-analysis[J]. Geochimica et Cosmochimica Acta, 2010, 74(23): 6 814-6 829. |
66 | BROWN E T, EDMOND J M, RAISBECK G M, et al. Beryllium isotope geochemistry in tropical river basins[J]. Geochimica et Cosmochimica Acta, 1992, 56(4): 1 607-1 624. |
67 | von BLANCKENBURG F, BOUCHEZ J, WITTMANN H. Earth surface erosion and weathering from the 10Be (meteoric)/9Be ratio[J]. Earth and Planetary Science Letters, 2012, 351/352: 295-305. |
68 | MACKEY B H, ROERING J J, MCKEAN J A. Long-term kinematics and sediment flux of an active earthflow, Eel River, California[J]. Geology, 2009, 37(9): 803-806. |
69 | STOCKMANN U, MINASNY B, McBRATNEY A B. How fast does soil grow?[J]. Geoderma, 2014, 216: 48-61. |
70 | HEIMSATH A M, FINK D, HANCOCK G R. The ‘humped’ soil production function: eroding Arnhem Land, Australia[J]. Earth Surface Processes and Landforms, 2009, 34(12): 1 674-1 684. |
71 | OWEN J J, AMUNDSON R, DIETRICH W E, et al. The sensitivity of hillslope bedrock erosion to precipitation[J]. Earth Surface Processes and Landforms, 2011, 36(1): 117-135. |
72 | LIU Yu, WANG Shijie, LIU Xiuming. New advance of cosmogenic nuclides dating in geochronology research[J]. Advances in Earth Science, 2012, 27(4): 386-397. |
72 | 刘彧, 王世杰, 刘秀明. 宇宙成因核素在地质年代学研究中的新进展[J]. 地球科学进展, 2012, 27(4): 386-397. |
73 | RIEBE C S, HAHM W J, BRANTLEY S L. Controls on deep critical zone architecture: a historical review and four testable hypotheses[J]. Earth Surface Processes and Landforms, 2017, 42(1): 128-156. |
/
〈 |
|
〉 |