Research on Cities’ Carbon Emissions and Their Spatiotemporal Evolution Coupled with Nighttime Light Image and Land Use Data in the Pearl River Basin

  • Bin ZHANG ,
  • Danqi WEI ,
  • Yi DING ,
  • Hongtao JIANG ,
  • Jian YIN
Expand
  • 1.West China Modernization Research Center, Guizhou University of Finance and Economics, Guiyang 550025, China
    2.College of Big Data Application and Economics, Guizhou University of Finance and Economics, Guiyang 550025, China
    3.Northeast Asian Studies College, Jilin University, Changchun 130012, China
ZHANG Bin, Ph. D student, research areas include regional resources and environment. E-mail: jlcjzb@163.com
YIN Jian, Professor, research areas include quantitative remote sensing and spatial big data. E-mail: yinjianbnu@163.com

Received date: 2023-10-04

  Revised date: 2024-02-02

  Online published: 2024-04-01

Supported by

the Humanities and Social Science Research of Universities in Guizhou Province(2023GZGXRW164)

Abstract

To investigate the spatiotemporal patterns and agglomeration characteristics of carbon emissions in the Pearl River Basin, we constructed a carbon emission estimation model by coupling multi-source data. The spatiotemporal dynamics and spatial correlation characteristics of urban carbon emissions were explored using exploratory spatiotemporal data analysis and modified gravity modeling. The findings indicate that the total carbon emissions in the Pearl River Basin increased from 312.67 million tons to 336.54 million tons. Dongguan, Shenzhen, and Guangzhou consistently stood out as cities with the highest carbon emissions. On the grid scale, the high-value carbon emission agglomeration expands towards the periphery, with the Pearl River Delta region serving as the core, whereas the high-value carbon emission area in the middle and upper reaches is characterized by a point-like distribution. Carbon emissions in the Pearl River Basin show a positive spatial correlation, although there is a decreasing trend in the spatial interaction effect. Furthermore, there is a positive synergistic trend among neighboring cities in terms of carbon emissions. The average linkage intensity of urban carbon emissions increases from 5.93 to 18.97, indicating strengthened connectivity among cities. The carbon emissions network structure shows a trend towards centralization. This method incorporates carbon sources and sinks into the calculation process, has potential practical value, and can support the development of a carbon reduction strategy.

Cite this article

Bin ZHANG , Danqi WEI , Yi DING , Hongtao JIANG , Jian YIN . Research on Cities’ Carbon Emissions and Their Spatiotemporal Evolution Coupled with Nighttime Light Image and Land Use Data in the Pearl River Basin[J]. Advances in Earth Science, 2024 , 39(3) : 317 -328 . DOI: 10.11867/j.issn.1001-8166.2024.022

References

1 DING Yi, YIN Jian, JIANG Hongtao, et al. System dynamics prediction of carbon peaking in Pearl River Delta[J]. Environmental Engineering, 2023, 41(7): 22-29.
1 丁乙, 尹剑, 姜洪涛, 等. 珠三角碳达峰系统动力学预测[J]. 环境工程, 2023, 41(7): 22-29.
2 新华网. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[EB/OL]. (2021-03-13) [2023-10-05]. .
3 ZHAO Dong, LIU Xiaojie, JIN Xiaobin. Spatiotemporal dynamics of county-level carbon budgets and carbon-balanced zoning in the Yangtze River Delta[J]. Modern Urban Research, 2023, 38(6): 23-30.
3 赵栋, 刘笑杰, 金晓斌. 长三角地区县域碳收支时空动态及碳平衡分区[J]. 现代城市研究, 2023, 38(6): 23-30.
4 LAI L, HUANG X J, YANG H, et al. Carbon emissions from land-use change and management in China between 1990 and 2010[J]. Science Advances, 2016, 2(11). DOI:10.1126/sciadv.1601063 .
5 DAI Linlin, FENG Changwei, ZHOU Zijie, et al. Temporal and spatial evolution of carbon budget at county scale in China[J]. Ecological Economy, 2023, 39(11): 31-39, 59.
5 戴林琳, 封昌炜, 周子杰, 等. 中国县域尺度碳收支的时空演变研究[J]. 生态经济, 2023, 39(11): 31-39, 59.
6 LIU Xianzhao, YANG Xu. The accuracy of nighttime light data to estimate China's provincial carbon emissions: a comparison with carbon emissions allocated by international carbon database[J]. Remote Sensing Technology and Application, 2022, 37(2): 319-332.
6 刘贤赵, 杨旭. 夜间灯光数据估算中国省域碳排放与国际碳数据库分配的碳排放比较[J]. 遥感技术与应用, 2022, 37(2): 319-332.
7 LIU Chang, SU Yun, LI Lingling. The estimation and spatial distribution of the carbon emissions of county units in China[J]. Environmental Pollution & Control, 2020, 42(1): 113-119.
7 刘畅, 苏筠, 黎玲玲. 中国县域能源消费碳排放估算及其空间分布[J]. 环境污染与防治, 2020, 42(1): 113-119.
8 WANG Jianshi, WANG Chengxin, REN Wanxia, et al. “Carbon peaking and carbon neutrality” studies in geosciences: theme, effects, and prospects[J]. Advances in Earth Science, 2023, 38(7): 757-768.
8 王建事, 王成新, 任婉侠, 等. 地理学视角下“双碳”研究:主题、成效及展望[J]. 地球科学进展, 2023, 38(7): 757-768.
9 HUANG Hanzhi, JIA Junsong, ZHANG Zhenxu. Spatiotemporal pattern evolution and influencing factors of land-use carbon emissions in counties, Jiangxi Province[J]. Acta Ecologica Sinica, 2023, 43(20): 8 390-8 403.
9 黄汉志, 贾俊松, 张振旭. 江西县域土地利用变化碳排放时空演变及其影响因素[J]. 生态学报, 2023, 43(20): 8 390-8 403.
10 WANG Rui, ZHANG He, QIANG Wenli, et al. Spatial characteristics and influencing factors of carbon emissions in county-level cities of China based on urbanization[J]. Progress in Geography, 2021, 40(12): 1 999-2 010.
10 王睿, 张赫, 强文丽, 等. 基于城镇化的中国县级城市碳排放空间分布特征及影响因素[J]. 地理科学进展, 2021, 40(12): 1 999-2 010.
11 Qian LYU, LIU Haibin. Multiscale spatio-temporal characteristics of carbon emission of energy consumption in Yellow River Basin based on the nighttime light datasets[J]. Economic Geography, 2020, 40(12): 12-21.
11 吕倩, 刘海滨. 基于夜间灯光数据的黄河流域能源消费碳排放时空演变多尺度分析[J]. 经济地理, 2020, 40(12): 12-21.
12 CHEN Shaopeng, DUAN Yuefang. Research on status, focus, and developing trend of agricultural carbon effect in China[J]. Advances in Earth Science, 2023, 38(1): 86-98.
12 陈少鹏, 段跃芳. 中国农业碳效应研究的现状、热点与趋势[J]. 地球科学进展, 2023, 38(1): 86-98.
13 LI Yaohui, YU Jinglei, GU Juan, et al. Review of research on CO2 emissions from civil aviation flights and its impact on climate change[J]. Advances in Earth Science, 2023, 38(1): 9-16.
13 李耀辉, 于敬磊, 谷娟, 等. 民航飞行CO2排放及其对气候变化影响研究综述[J]. 地球科学进展, 2023, 38(1): 9-16.
14 FAN Jianshuang, ZHOU Lin. Spatiotemporal distribution and provincial contribution decomposition of carbon emissions for the construction industry in China[J]. Resources Science, 2019, 41(5): 897-907.
14 范建双, 周琳. 中国建筑业碳排放时空特征及分省贡献 [J]. 资源科学, 2019, 41(5): 897-907.
15 ZHANG Jiekuan. Tourism and carbon emissions: global perspectives and regional comparisons[J]. Geographical Research, 2022, 41(11): 3 088-3 104.
15 章杰宽. 旅游与碳排放:全球视角与区域比较[J]. 地理研究, 2022, 41(11): 3 088-3 104.
16 CHENG Yu, ZHANG Yue, WANG Jingjing. Spatial-temporal evolution of provincial carbon emission performance and driving force of technological innovation in China[J]. Scientia Geographica Sinica, 2023, 43(2): 313-323.
16 程钰, 张悦, 王晶晶. 中国省域碳排放绩效时空演变与技术创新驱动研究[J]. 地理科学, 2023, 43(2): 313-323.
17 WANG Xingmin, WU Jing, BAI Bing, et al. Spatial differentiation and driving factors of CO2 emissions: analysis based on 198 cities at prefecture level and above in China[J]. Economic Geography, 2020, 40(11): 29-38.
17 王兴民, 吴静, 白冰, 等. 中国CO2排放的空间分异与驱动因素——基于198个地级及以上城市数据的分析[J]. 经济地理, 2020, 40(11): 29-38.
18 WU Zhiyong, BAI Boyu, HE Hai, et al. Temporal and spatial characteristics of hydrological drought in the Pearl River Basin from 1981 to 2020[J]. Journal of Hohai University (Natural Sciences), 2023, 51(1): 1-9.
18 吴志勇, 白博宇, 何海, 等. 珠江流域1981—2020年水文干旱时空特征分析[J]. 河海大学学报(自然科学版), 2023, 51(1): 1-9.
19 LIANG Juping, LI Guancheng, MU Guizhen, et al. Consideration of the 14th five-year plan for water ecological environment protection in the Pearl River valley[J]. Environmental Protection, 2021, 49(19): 14-17.
19 梁菊平, 李冠城, 穆桂珍, 等. 珠江流域水生态环境保护“十四五”规划思考[J]. 环境保护, 2021, 49(19): 14-17.
20 WANG Chenxi, ZHANG Qiongrui, ZHANG Ruoqi, et al. Effects of landscape pattern on water quality purification service in the Pearl River Basin in Guangdong Province[J]. Ecology and Environmental Sciences, 2022, 31(7): 1 425-1 433.
20 王晨茜, 张琼锐, 张若琪, 等. 广东省珠江流域景观格局对水质净化服务的影响[J]. 生态环境学报, 2022, 31(7): 1 425-1 433.
21 YANG Yang, ZHAO Liangjie, XIA Riyuan, et al. Distribution and influencing factors of karst underground rivers in the Pearl River Basin[J]. Carsologica Sinica, 2022, 41(4): 562-576.
21 杨杨, 赵良杰, 夏日元, 等. 珠江流域岩溶地下河分布特征与影响因素研究[J]. 中国岩溶, 2022, 41(4): 562-576.
22 JI Xueqiang, LIU Huimin, ZHANG Yuesong. Spatiotemporal evolution and driving factors of spatial correlation network structure of China’s land-use carbon emission[J]. Economic Geography, 2023, 43(2): 190-200.
22 吉雪强, 刘慧敏, 张跃松. 中国省际土地利用碳排放空间关联网络结构演化及驱动因素[J]. 经济地理, 2023, 43(2): 190-200.
23 KE N, LU X H, ZHANG X P, et al. Urban land use carbon emission intensity in China under the “double carbon” targets: spatiotemporal patterns and evolution trend[J]. Environmental Science and Pollution Research, 2023, 30(7): 18 213-18 226.
24 CHEN Z Q, YU B L, YANG C S, et al. An extended time series (2000-2018) of global NPP-VIIRS-like nighttime light data from a cross-sensor calibration[J]. Earth System Science Data, 2021, 13(3): 889-906.
25 DENG Lingying, LI Hongbo. Spatial and temporal evolution of land use carbon emissions and analysis of driving factors in Wuhan metropolitan area [J]. Research of Soil and Water Conservation, 2024, 31(1): 345-353.
25 邓灵颖,李红波. 武汉城市圈土地利用碳排放时空演变及驱动因素[J]. 水土保持研究, 2024, 31(1): 345-353.
26 SUN He, LIANG Hongmei, CHANG Xueli, et al. Land use patterns on carbon emission and spatial association in China[J]. Economic Geography, 2015, 35(3): 154-162.
26 孙赫, 梁红梅, 常学礼, 等. 中国土地利用碳排放及其空间关联[J]. 经济地理, 2015, 35(3): 154-162.
27 FANG G C, GAO Z Y, TIAN L X, et al. What drives urban carbon emission efficiency?—Spatial analysis based on nighttime light data[J]. Applied Energy, 2022, 312. DOI: 10.1016/j.apenergy.2022.118772 .
28 KASMAN A, DUMAN Y S. CO2 emissions, economic growth, energy consumption, trade and urbanization in new EU member and candidate countries: a panel data analysis[J]. Economic Modelling, 2015, 44: 97-103.
29 YANG Jianxin, LIU Jing, GONG Jian, et al. Application and comparison of spatial clustering algorithms in prioritizing protected plots of basic farmland[J]. China Land Science, 2022, 36(1): 107-117.
29 杨建新, 刘静, 龚健, 等. 不同空间聚类算法在识别优质集聚基本农田图斑中的应用及对比研究[J]. 中国土地科学, 2022, 36(1): 107-117.
30 REY S J, MURRAY A T, ANSELIN L. Visualizing regional income distribution dynamics[J]. Letters in Spatial and Resource Sciences, 2011, 4(1): 81-90.
31 YE X Y, REY S. A framework for exploratory space-time analysis of economic data[J]. The Annals of Regional Science, 2013, 50(1): 315-339.
32 JIANG H T, YIN J, ZHANG B, et al. Industrial carbon emission distribution and regional joint emission reduction: a case study of cities in the Pearl River Basin, China[J]. Chinese Geographical Science, 2024, 34(2): 210-229.
33 YIN Jian, ZHANG Bin, DING Rui, et al. Urban agglomeration economic connection and evolution of spatial features in the new western land-sea corridor of China[J]. Scientia Geographica Sinica, 2023, 43(11): 1 983-1 993.
33 尹剑, 张斌, 丁锐, 等. 西部陆海新通道城市群经济联系空间特征演化过程研究[J]. 地理科学, 2023, 43(11): 1 983-1 993.
34 ZHANG R J, TAI H, CHENG K T, et al. Carbon emission efficiency network formation mechanism and spatial correlation complexity analysis: taking the Yangtze River Economic Belt as an example[J]. The Science of the Total Environment, 2022, 841. DOI: 10.1016/j.scitotenv.2022.156719 .
35 JING S Q, YAN Y G, NIU F Q, et al. Urban expansion in China: spatiotemporal dynamics and determinants[J]. Land, 2022, 11(3). DOI:10.3390/land11030356 .
36 ZHANG Bin, YIN Jian, QIU Yuanhong, et al. Study of spatial-temporal evolution of urban development in the new western land-sea corridor—Based on nighttime light data[J]. Resource Development & Market, 2022, 38(11): 1 364-1 373.
36 张斌, 尹剑, 邱远宏, 等. 西部陆海新通道城市发展时空格局演变研究——基于夜间灯光数据[J]. 资源开发与市场, 2022, 38(11): 1 364-1 373.
Outlines

/