Structural Deformation Characteristics and Mechanisms of the Taihua Complex along the Southern Margin of the North China Craton: Key Constraints on the Tectonic Evolution of the Trans-North China Orogen

  • Yunjian LI ,
  • Guang ZHU ,
  • Chengchuan GU ,
  • Menglong DONG ,
  • Hao YIN ,
  • Xiaodong WU
Expand
  • 1.School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China
    2.School of Resource and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
    3.School of Earth and Environment, Anhui University of Science and Technology, Huainan Anhui 232001, China
    4.College of Civil Engineering and Architecture, Quzhou University, Quzhou Zhejiang 324000, China
    5.School of Earth Sciences and Spatial Information Engineering, Hunan University of Science and Technology, Xiangtan Hunan 411201, China
LI Yunjian, Lecturer, research areas include orogenic dynamics and fault structures. E-mail: yunjian@hhu.edu.cn

Received date: 2023-11-17

  Revised date: 2024-02-14

  Online published: 2024-03-22

Supported by

the National Natural Science Foundation of China(42102265)

Abstract

The Trans-North China Orogen (TNCO) serves as a crucial window for understanding the Paleoproterozoic tectonic evolution of the North China Craton. However, the lack of research on collision-related structures, particularly in the southern segment, significantly impedes a thorough understanding of the tectonic evolution of the TNCO. A systematic study of the structure and geochronology was conducted on the Taihua Complex in the southern part of the TNCO. The results indicate that the Taihua Complex underwent intense ductile deformation with widespread preservation of ductile shear zones and syn-shearing folds, notably sheath folds. The kinematics of ductile shear zones and syn-shearing folds exhibit consistent top-to-the-WNW sense of shear, with deformation temperatures ranging from 600 to 650°C. The evolution of syn-shearing folds and the rotation of syn-tectonic leucocratic veins within shear zones record the progressive deformation process. The zircon U-Pb ages of syntectonic migmatites within the shear zones constrain the timing of ductile deformation to between 1 890 and 1 843 Ma. A comprehensive analysis of the geometry, kinematics, geochronology, and deformation temperatures suggests that ductile shear zones and regionally scaled sheath folds represent the exhumation structures of the orogenic belt, supporting the orogenic model of SE-directed subduction polarity. Based on the new structural and chronological data, in conjunction with previous research, it is proposed that the TNCO experienced a protracted orogenic evolution process, with the interval from 1.97 to 1.89 Ga signifying the continental subduction stage, 1.89 to 1.84 Ga corresponding to the subsequent exhumation stage, and 1.84 to 1.78 Ga corresponding to the post-orogenic extension phase. This protracted collisional orogeny process in the TNCO provides robust evidence for the sustained occurrence of a large-scale collisional orogeny for over 100 Mya.

Cite this article

Yunjian LI , Guang ZHU , Chengchuan GU , Menglong DONG , Hao YIN , Xiaodong WU . Structural Deformation Characteristics and Mechanisms of the Taihua Complex along the Southern Margin of the North China Craton: Key Constraints on the Tectonic Evolution of the Trans-North China Orogen[J]. Advances in Earth Science, 2024 , 39(3) : 247 -268 . DOI: 10.11867/j.issn.1001-8166.2024.021

References

1 PANKHURST R J, RAPELA C W, FANNING C M, et al. Gondwanide continental collision and the origin of Patagonia[J]. Earth-Science Reviews, 2006, 76(3/4): 235-257.
2 XU Zhiqin, ZHENG Bihai, WANG Qin. From accretion to collision: situation and outlook[J]. Acta Geologica Sinica, 2021, 95(1): 75-97.
2 许志琴, 郑碧海, 王勤. 从洋—陆俯冲到陆—陆碰撞: 回眸与展望[J]. 地质学报, 2021, 95(1): 75-97.
3 ZHENG Yongfei. Plate tectonics in the twenty-first century[J]. Science China Earth Science, 2023, 66(1): 1-40.
3 郑永飞. 21世纪板块构造[J]. 中国科学: 地球科学, 2023, 66(1): 1-40.
4 GHOSH S K, SENGUPTA S. Progressive development of structures in a ductile shear zone[J]. Journal of Structural Geology, 1987, 9(3): 277-287.
5 HOLDSWORTH R E. Progressive deformation structures associated with ductile thrusts in the Moine Nappe, Sutherland, N. Scotland[J]. Journal of Structural Geology, 1990, 12(4): 443-452.
6 BONAMICI C E, TIKOFF B, GOODWIN L B. Anatomy of a 10 km scale sheath fold, Mount Hay ridge, Arunta region, central Australia: the structural record of deep crustal flow[J]. Tectonics, 2011, 30(6). DOI:10.1029/2011TC002873 .
7 FOSSEN H, CAVALCANTE G C G. Shear zones—a review[J]. Earth-Science Reviews, 2017, 171: 434-455.
8 DERIKVAND S, ALMASI A. Kinematic vorticity, finite strain, and deformation thermometry analyses of the exhumed mylonites in the Samen ductile shear zone (Sanandaj-Sirjan Metamorphic Belt, Iran)[J]. Journal of Structural Geology, 2022, 154. DOI:10.1016/j.jsg.2021.104500 .
9 GOSCOMBE B. Intense non-coaxial shear and the development of mega-scale sheath folds in the Arunta Block, Central Australia[J]. Journal of Structural Geology, 1991, 13(3): 299-318.
10 JOLIVET L, BEYSSAC O, GOFFé B, et al. Oligo-Miocene midcrustal subhorizontal shear zone in Indochina[J]. Tectonics, 2001, 20(1): 46-57.
11 CARRERAS J, DRUGUET E, GRIERA A. Shear zone-related folds[J]. Journal of Structural Geology, 2005, 27(7): 1 229-1 251.
12 CARRERAS J, DRUGUET E. Complex fold patterns developed by progressive deformation[J]. Journal of Structural Geology, 2019, 125: 195-201.
13 RAHL J M, SKEMER P. Microstructural evolution and rheology of quartz in a mid-crustal shear zone[J]. Tectonophysics, 2016, 680: 129-139.
14 GRO? P, PLEUGER J, HANDY M R, et al. Evolving temperature field in a fossil subduction channel during the transition from subduction to collision (Tauern Window, Eastern Alps)[J]. Journal of Metamorphic Geology, 2021, 39(2): 247-269.
15 DONG Yunpeng, ZHANG Guowei. Some ideas and advances in studies of tectonics and dynamics of orogenic belt and foreland basin[J]. Advances in Earth Science, 1997, 12(1): 1-6.
15 董云鹏, 张国伟. 造山带与前陆盆地结构构造及动力学研究思路和进展[J]. 地球科学进展, 1997, 12(1): 1-6.
16 LI Jianghai, HOU Guiting, LIU Shouji. The early Precambrian collisional orogenic process and plate tectonics: chance and challenge of Precambrian geology[J]. Advances in Earth Science, 2006, 21(8): 843-848.
16 李江海, 侯贵廷, 刘守偈. 早期碰撞造山过程与板块构造: 前寒武纪地质研究的机遇和挑战[J]. 地球科学进展, 2006, 21(8): 843-848.
17 ZHAO G C, CAWOOD P A, WILDE S A, et al. Review of global 2.1~1.8 Ga orogens: implications for a pre-Rodinia supercontinent[J]. Earth-Science Reviews, 2002, 59(1/2/3/4): 125-162.
18 ZHAO G C, SUN M, WILDE S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited[J]. Precambrian Research, 2005, 136(2): 177-202.
19 LIU S W, ZHAO G C, WILDE S A, et al. Th-U-Pb monazite geochronology of the Lüliang and Wutai Complexes: constraints on the tectonothermal evolution of the Trans-North China Orogen[J]. Precambrian Research, 2006, 148(3/4): 205-224.
20 KUSKY T M, SANTOSH M. The Columbia connection in North China[J]. Geological Society, London, Special Publications, 2009, 323(1): 49-71.
21 ZHAI M G, SANTOSH M. The early Precambrian odyssey of the North China Craton: a synoptic overview[J]. Gondwana Research, 2011, 20(1): 6-25.
22 ZHAO G C, ZHAI M G. Lithotectonic elements of Precambrian basement in the North China Craton: review and tectonic implications[J]. Gondwana Research, 2013, 23(4): 1 207-1 240.
23 WILDE S A, ZHAO G C, SUN M. Development of the North China Craton during the late archaean and its final amalgamation at 1.8 Ga: some speculations on its position within a global palaeoproterozoic supercontinent[J]. Gondwana Research, 2002, 5(1): 85-94.
24 FAURE M, TRAP P, LIN W, et al. Polyorogenic evolution of the Paleoproterozoic Trans-North China Belt—new insights from the Lüliangshan-Hengshan-Wutaishan and Fuping massifs[J]. Episodes, 2007, 30(2): 96-107.
25 ZHAO G C, CAWOOD P A, LI S Z, et al. Amalgamation of the North China Craton: key issues and discussion[J]. Precambrian Research, 2012, 222/223: 55-76.
26 LI S Z, ZHAO G C, WILDE S A, et al. Deformation history of the Hengshan-Wutai-Fuping Complexes: implications for the evolution of the Trans-North China Orogen[J]. Gondwana Research, 2010, 18(4): 611-631.
27 SANTOSH M. Assembling North China Craton within the Columbia supercontinent: the role of double-sided subduction[J]. Precambrian Research, 2010, 178(1/2/3/4): 149-167.
28 TRAP P, FAURE M, LIN W, et al. Paleoproterozoic tectonic evolution of the Trans-North China Orogen: toward a comprehensive model[J]. Precambrian Research, 2012, 222/223: 191-211.
29 ZHANG J, ZHAO G C, LI S Z, et al. Structural pattern of the Wutai Complex and its constraints on the tectonic framework of the Trans-North China Orogen[J]. Precambrian Research, 2012, 222/223: 212-229.
30 KUSKY T M, POLAT A, WINDLEY B F, et al. Insights into the tectonic evolution of the North China Craton through comparative tectonic analysis: a record of outward growth of Precambrian continents[J]. Earth-Science Reviews, 2016, 162: 387-432.
31 ZHAO G C, WILDE S A, GUO J H, et al. Single zircon grains record two Paleoproterozoic collisional events in the North China Craton[J]. Precambrian Research, 2010, 177(3/4): 266-276.
32 KR?NER A, WILDE S A, ZHAO G C, et al. Zircon geochronology and metamorphic evolution of mafic dykes in the Hengshan Complex of Northern China: evidence for late Palaeoproterozoic extension and subsequent high-pressure metamorphism in the North China Craton[J]. Precambrian Research, 2006, 146(1/2): 45-67.
33 XU N Q, ZHAO G C, ZHANG H C G, et al. Phase equilibria modelling and zircon U-Pb ages of the Paleoproterozoic high-pressure mafic granulites in the Jianping Complex and tectonic implications[J]. Precambrian Research, 2021, 367. DOI:10.1016/j.precamres.2021.106460 .
34 WANG J P, KUSKY T, WANG L, et al. Structural relationships along a Neoarchean arc-continent collision zone, North China Craton[J]. Geological Society of America Bulletin, 2017, 129(1/2): 59-75.
35 ZHONG Y T, KUSKY T M, WANG L. Giant sheath-folded nappe stack demonstrates extreme subhorizontal shear strain in an Archean Orogen[J]. Geology, 2022, 50(5): 577-582.
36 TRAP P, FAURE M, LIN W, et al. The Zanhuang Massif, the second and eastern suture zone of the Paleoproterozoic Trans-North China Orogen[J]. Precambrian Research, 2009, 172(1/2): 80-98.
37 WANG Y. Structural evolution and 40Ar/39Ar dating of the Zanhuang metamorphic domain in the North China Craton: constraints on Paleoproterozoic tectonothermal overprinting[J]. Precambrian Research, 2003, 122(1/2/3/4): 159-182.
38 ZHANG J, ZHAO G C, LI S Z, et al. Deformation history of the Hengshan Complex: implications for the tectonic evolution of the Trans-North China Orogen[J]. Journal of Structural Geology, 2007, 29(6): 933-949.
39 ZHANG J, ZHAO G C, LI S Z, et al. Polyphase deformation of the Fuping Complex, Trans-North China Orogen: structures, SHRIMP U-Pb zircon ages and tectonic implications[J]. Journal of Structural Geology, 2009, 31(2): 177-193.
40 TRAP P, FAURE M, LIN W, et al. Late Paleoproterozoic (1900-1800 Ma) nappe stacking and polyphase deformation in the Hengshan-Wutaishan area: implications for the understanding of the Trans-North-China Belt, North China Craton[J]. Precambrian Research, 2007, 156(1/2): 85-106.
41 TRAP P, FAURE M, LIN W, et al. Syn-collisional channel flow and exhumation of Paleoproterozoic high pressure rocks in the Trans-North China Orogen: the critical role of partial-melting and orogenic bending[J]. Gondwana Research, 2011, 20(2/3): 498-515.
42 HE L C, ZHANG J, ZHAO G C, et al. Macro- and microstructural analysis of the Zhujiafang ductile shear zone, Hengshan Complex: tectonic nature and geodynamic implications of the evolution of Trans-North China Orogen[J]. GSA Bulletin, 2021, 133(5/6): 1 237-1 255.
43 LIU J H, LI Z M G, ZHANG Q W L, et al. New 40Ar/39Ar geochronology data of the Fuping and Wutai Complexes: further constraints on the thermal evolution of the Trans-North China Orogen[J]. Precambrian Research, 2021, 354. DOI:10.1016/j.precamres.2020.106046 .
44 GONG W B, HU J M, WU S J, et al. Possible southwestward extrusion of the Ordos Block in the Late Paleoproterozoic: constraints from kinematic and geochronologic analysis of peripheral ductile shear zones[J]. Precambrian Research, 2014, 255: 716-733.
45 ZHAO Y F, HU J M, GONG W B, et al. Indentation tectonics of the Fanshi Block in the Trans-North China Orogen[J]. Precambrian Research, 2019, 331. DOI:10.1016/j.precamres.2019.105356 .
46 LI Y J, ZHU G, GU C C, et al. Structural evolution of the Paleoproterozoic Trans-North China Orogen: evidence from the Xiaoqinling region, central China[J]. Precambrian Research, 2018, 316: 244-274.
47 DENG X Q, PENG T P, ZHAO T P. Geochronology and geochemistry of the late Paleoproterozoic aluminous A-type granite in the Xiaoqinling area along the southern margin of the North China Craton: petrogenesis and tectonic implications[J]. Precambrian Research, 2016, 285: 127-146.
48 DENG Xiaoqin, PENG Touping, ZHAO Taiping, et al. Petrogenesis of the Late Paleoproterozoic (~1.84 Ga) Yuantou A-type granite in the southern margin of the North China Craton and its tectonic implications[J]. Acta Petrologica Sinica, 2019, 35(8): 2 455-2 469.
48 邓小芹, 彭头平, 赵太平, 等. 华北克拉通南缘古元古代末(~1.84 Ga)垣头A-型花岗岩成因及其构造意义[J]. 岩石学报, 2019, 35(8): 2 455-2 469.
49 YU X Q, LIU J L, LI C L, et al. Zircon U-Pb dating and Hf isotope analysis on the Taihua Complex: constraints on the formation and evolution of the Trans-North China Orogen[J]. Precambrian Research, 2013, 230: 31-44.
50 WANG G D, WANG H, CHEN H X, et al. Metamorphic evolution and zircon U-Pb geochronology of the Mts. Huashan amphibolites: insights into the Palaeoproterozoic amalgamation of the North China Craton[J]. Precambrian Research, 2014, 245: 100-114.
51 WANG G D, WANG H Y C, CHEN H X, et al. Metamorphic P-T-t paths of pelitic granulites of the Taihua metamorphic complex in the Mts. Huashan area and tectonothermal implications for the Palaeoproterozoic Trans-North China Orogen[J]. Precambrian Research, 2017, 290: 147-162.
52 SHI Yu, YU Jinhai, XU Xisheng, et al. U-Pb ages and Hf isotope compositions of zircons of Taihua Group in Xiaoqinling area, Shaanxi Province[J]. Acta Petrologica Sinica, 2011, 27(10): 3 095-3 108.
52 时毓, 于津海, 徐夕生, 等. 陕西小秦岭地区太华群的锆石U-Pb年龄和Hf同位素组成[J]. 岩石学报, 2011, 27(10): 3 095-3 108.
53 WANG G D, WANG H Y C, CHEN H X, et al. Geochronology and geochemistry of the TTG and potassic granite of the Taihua complex, Mts. Huashan: implications for crustal evolution of the southern North China Craton[J]. Precambrian Research, 2017, 288: 72-90.
54 DIWU C R, SUN Y, ZHAO Y, et al. Early Paleoproterozoic (2.45~2.20 Ga) magmatic activity during the period of global magmatic shutdown: implications for the crustal evolution of the southern North China Craton[J]. Precambrian Research, 2014, 255: 627-640.
55 YIN C Q, ZHAO G C, WEI C J, et al. Metamorphism and partial melting of high-pressure pelitic granulites from the Qianlishan Complex: constraints on the tectonic evolution of the Khondalite Belt in the North China Craton[J]. Precambrian Research, 2014, 242: 172-186.
56 WANG X, ZHANG J, YIN C Q, et al. A syn- to post-collisional tectonic transition in the Khondalite Belt, North China Craton: constraints from 1.95-1.93Ga adakitic granitoids in the Daqingshan Complex[J]. Precambrian Research, 2022, 374. DOI:10.1016/j.precamres.2022.106648 .
57 FAURE M, LIN W, MONIé P, et al. Palaeoproterozoic arc magmatism and collision in Liaodong Peninsula (north-east China)[J]. Terra Nova, 2004, 16(2): 75-80.
58 LIU F L, ZHANG J, LIU C H. Archean to Paleoproterozoic evolution of the North China Craton: preface[J]. Precambrian Research, 2017, 303: 1-9.
59 ZHAO G C, WILDE S A, CAWOOD P A, et al. Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution[J]. Precambrian Research, 2001, 107(1/2): 45-73.
60 QIAN J H, WEI C J. P-T-t evolution of garnet amphibolites in the Wutai-Hengshan area, North China Craton: insights from phase equilibria and geochronology[J]. Journal of Metamorphic Geology, 2016, 34(5): 423-446.
61 LU C S, QIAN J H, YIN C Q, et al. Ultrahigh temperature metamorphism recorded in the Lüliang Complex, Trans-North China Orogen: P-T-t evolution and heating mechanism[J]. Precambrian Research, 2022. DOI:10.1016/j.precamres.2022.106900 .
62 ZHAO G C, HE Y H, SUN M. The Xiong’er volcanic belt at the southern margin of the North China Craton: petrographic and geochemical evidence for its outboard position in the Paleo-Mesoproterozoic Columbia Supercontinent[J]. Gondwana Research, 2009, 16(2): 170-181.
63 ZHAO J, ZHANG C L, GUO X J, et al. The late-Paleoproterozoic I- and A-type granites in Lüliang Complex, North China Craton: new evidence on post-collisional extension of Trans-North China Orogen[J]. Precambrian Research, 2018, 318: 70-88.
64 PENG P, WANG X P, LAI Y, et al. Large-scale liquid immiscibility and fractional crystallization in the 1780 Ma Taihang dyke swarm: implications for genesis of the bimodal Xiong’er volcanic province[J]. Lithos, 2015, 236/237: 106-122.
65 WANG Y J, ZHAO G C, CAWOOD P A, et al. Geochemistry of Paleoproterozoic (~1 770 Ma) mafic dikes from the Trans-North China Orogen and tectonic implications[J]. Journal of Asian Earth Sciences, 2008, 33(1/2): 61-77.
66 DIWU Chunrong, LIU Xiang, SUN Yong. The composition and evolution of the Taihua Complex in the southern North China Craton[J]. Acta Petrologica Sinica, 2018, 34(4): 999-1 018.
66 第五春荣, 刘祥, 孙勇. 华北克拉通南缘太华杂岩组成及演化[J]. 岩石学报, 2018, 34(4): 999-1 018.
67 JIA X L, ZHAI M G, XIAO W J, et al. Late Neoarchean to early Paleoproterozoic tectonic evolution of the southern North China Craton: evidence from geochemistry, zircon geochronology and Hf isotopes of felsic gneisses from the Taihua Complex[J]. Precambrian Research, 2019, 326: 222-239.
68 ZHAO T P, ZHAI M G, XIA B, et al. Zircon U-Pb SHRIMP dating for the volcanic rocks of the Xiong’er Group: constraints on the initial formation age of the cover of the North China Craton[J]. Chinese Science Bulletin, 2004, 49(23): 2 495-2 502.
69 LI Y J, ZHU G, GU C C, et al. Post-collisional orogen-parallel extension in the Trans-North China Orogen: evidence from syn-kinematic pegmatite dikes[J]. Precambrian Research, 2022, 368. DOI:10.1016/j.precamres.2021.106503 .
70 XUE S, XU Y, LING M X, et al. Geochemical constraints on genesis of Paleoproterozoic A-type granite in the south margin of North China Craton[J]. Lithos, 2018, 304/305/306/307: 489-500.
71 ZHANG G W, BAI Y B, SUN Y, et al. Composition and evolution of the archaean crust in central Henan, China[J]. Precambrian Research, 1985, 27(1/2/3): 7-35.
72 DONG Y P, SANTOSH M. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China[J]. Gondwana Research, 2016, 29(1): 1-40.
73 DONG Y P, SUN S S, SANTOSH M, et al. Cross Orogenic Belts in Central China: implications for the tectonic and paleogeographic evolution of the East Asian continental collage[J]. Gondwana Research, 2022, 109: 18-88.
74 ZHANG J J, ZHENG Y D. Multistage extension and age dating of the Xiaoqinling metamorphic core complex, central China[J]. Acta Geologica Sinica (English Edition), 1999, 73(2): 139-147.
75 LI Y J, ZHU G, SU N, et al. The Xiaoqinling metamorphic core complex: a record of Early Cretaceous backarc extension along the southern part of the North China Craton[J]. GSA Bulletin, 2020, 132(3/4): 617-637.
76 DING Lixue, MA Changqian, LI Jianwei, et al. LA-ICPMS zircon U-Pb ages of the Lantian and Muhuguan granitoid plutons, southern margin of the North China Craton: implications for tectonic setting[J]. Geochimica, 2010, 39(5): 401-413.
76 丁丽雪, 马昌前, 李建威, 等. 华北克拉通南缘蓝田和牧护关花岗岩体: LA-ICPMS锆石U-Pb年龄及其构造意义[J]. 地球化学, 2010, 39(5): 401-413.
77 MAO J W, XIE G Q, PIRAJNO F, et al. Late Jurassic-Early Cretaceous granitoid magmatism in Eastern Qinling, central-eastern China: shrimp zircon U-Pb ages and tectonic implications[J]. Australian Journal of Earth Sciences, 2010, 57(1): 51-78.
78 HU J, JIANG S Y, ZHAO H X, et al. Geochemistry and petrogenesis of the Huashan granites and their implications for the Mesozoic tectonic settings in the Xiaoqinling gold mineralization belt, NW China[J]. Journal of Asian Earth Sciences, 2012, 56: 276-289.
79 LI J W, BI S J, SELBY D, et al. Giant Mesozoic gold provinces related to the destruction of the North China Craton[J]. Earth and Planetary Science Letters, 2012, 349/350: 26-37.
80 STIPP M, STüNITZ H, HEILBRONNER R, et al. The eastern Tonale fault zone: a ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700 ℃[J]. Journal of Structural Geology, 2002, 24(12): 1 861-1 884.
81 MANCKTELOW N S, PENNACCHIONI G. The influence of grain boundary fluids on the microstructure of quartz-feldspar mylonites[J]. Journal of Structural Geology, 2004, 26(1): 47-69.
82 PASSCHIER C W, TROUW R A J. Microtectonics[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998.
83 FALEIROS F M, Da CRUZ CAMPANHA G A, Da SILVEIRA BELLO R M, et al. Quartz recrystallization regimes, c-axis texture transitions and fluid inclusion reequilibration in a prograde greenschist to amphibolite facies mylonite zone (Ribeira Shear Zone, SE Brazil)[J]. Tectonophysics, 2010, 485(1/2/3/4): 193-214.
84 ALSOP G I, HOLDSWORTH R E. Sheath folds as discriminators of bulk strain type[J]. Journal of Structural Geology, 2006, 28(9): 1 588-1 606.
85 ALSOP G I, HOLDSWORTH R E. Shear zone folds: records of flow perturbation or structural inheritance?[J]. Geological Society, London, Special Publications, 2004, 224(1): 177-199.
86 MUDRUK S V, BALAGANSKY V V, RAEVSKY A B, et al. Complex shape of the Palaeoproterozoic Serpovidny refolded mega-sheath fold in northern Fennoscandia revealed by magnetic and structural data[J]. Journal of Structural Geology, 2022, 154. DOI:10.1016/j.jsg.2021.104492 .
87 HIBBARD J, KARIG D E. Sheath-like folds and progressive fold deformation in tertiary sedimentary rocks of the Shimanto accretionary complex, Japan[J]. Journal of Structural Geology, 1987, 9(7): 845-857.
88 Dell’ERTOLE D, SCHELLART W P. The development of sheath folds in viscously stratified materials in simple shear conditions: an analogue approach[J]. Journal of Structural Geology, 2013, 56: 129-141.
89 BERTHé D, BRUN J P. Evolution of folds during progressive shear in the South Armorican shear zone, France[J]. Journal of Structural Geology, 1980, 2(1/2): 127-133.
90 ALSOP G I, CHEER D A, STRACHAN R A, et al. Progressive fold and fabric evolution associated with regional strain gradients: a case study from across a Scandian ductile thrust nappe, Scottish Caledonides[J]. Geological Society, London, Special Publications, 2010, 335(1): 255-274.
91 FAZIO E, ORTOLANO G, VISALLI R, et al. Strain localization and sheath fold development during progressive deformation in a ductile shear zone: a case study of macro-to micro-scale structures from the Aspromonte Massif, Calabria[J]. Italian Journal of Geosciences, 2018, 137(2): 208-218.
92 ZHANG Guowei, MENG Qingren, LAI Shaocong. Tectonics and structure of Qinling orogenic belt[J]. Science in China (Series B), 1995, 38(11): 1 379-1 394.
93 ZHANG Ruiying, SUN Yong. Formation and evolution of Early Precambrian basement in the southern North China Craton[J]. Acta Petrologica Sinica, 2017, 33(10): 3 027-3 041.
93 张瑞英, 孙勇. 华北克拉通南部早前寒武纪基底形成与演化[J]. 岩石学报, 2017, 33(10): 3 027-3 041.
94 KUSKY T M, LI J H. Paleoproterozoic tectonic evolution of the North China Craton[J]. Journal of Asian Earth Sciences, 2003, 22(4): 383-397.
95 QIAN J H, WEI C J, YIN C Q. Paleoproterozoic P-T-t evolution in the Hengshan-Wutai-Fuping area, North China Craton: evidence from petrological and geochronological data[J]. Precambrian Research, 2017, 303: 91-104.
96 CHEN H X, LIU J H, ZHANG Q W L, et al. A long-lived tectono-metamorphic event in the late Paleoproterozoic: evidence from SIMS U-Th-Pb dating of monazite from metapelite in central-south Trans-North China Orogen[J]. Precambrian Research, 2020, 336. DOI:10.1016/j.precamres.2019.105497 .
97 LIU C H, ZHAO G C, LIU F L, et al. The timing of crustal thickening constrained by metamorphic zircon U-Pb-Hf and trace element signatures in the Lüliang Complex, Trans-North China Orogen[J]. Precambrian Research, 2021, 367. DOI:10.1016/j.precamres.2021.106440 .
98 ZHANG J H, WANG H C, GUO J H, et al. Geochemistry, geochronology and metamorphism of high-pressure mafic granulites in the Huai’an Complex, North China Craton: implications for the tectonic evolution of the Paleoproterozoic orogeny[J]. Precambrian Research, 2023, 387.DOI: 10.1016/j.precamres.2023.106973 .
99 WANG Guodong, WANG Hao, CHEN Hongxu, et al. U-Pb dating of zircons from metamorphic rocks of the Taihua metamorphic complex, Mt. Huashan, southern margin of the trans-north China Orogen[J]. Acta Geologica Sinica, 2012, 86(9): 1 541-1 551.
99 王国栋, 王浩, 陈泓旭, 等. 华北中部造山带南缘华山地区太华变质杂岩中锆石U-Pb定年[J]. 地质学报, 2012, 86(9): 1 541-1 551.
100 WANG Guodong, LU Junsheng, WANG Hao, et al. LA-ICP-MS U-Pb dating of zircons and 40Ar/39Ar dating of amphiboles of the Taihua Metamorphic Complex, Mt. Huashan, southern terminal of the Palaeoprotorozoic Trans-North China Orogen[J]. Acta Petrologica Sinica, 2013, 29(9): 3 099-3 114.
100 王国栋, 卢俊生, 王浩, 等. 华山太华变质杂岩中LA-ICP-MS锆石U-Pb定年及角闪石40Ar/39Ar定年[J]. 岩石学报, 2013, 29(9): 3 099-3 114.
101 HUANG X L, WILDE S A, ZHONG J W. Episodic crustal growth in the southern segment of the Trans-North China Orogen across the Archean-Proterozoic boundary[J]. Precambrian Research, 2013, 233: 337-357.
102 LU Junsheng, WANG Guodong, WANG Hao, et al. Metamorphic evolution of the Lushan terrane in the Precambrian Taihua Complex, Henan Province[J]. Acta Petrologica Sinica, 2014, 30(10): 3 062-3 074.
102 卢俊生, 王国栋, 王浩, 等. 河南鲁山太华变质杂岩前寒武纪变质作用[J]. 岩石学报, 2014, 30(10): 3 062-3 074.
103 CHEN Hongxu, WANG Hao, PENG Tao, et al. SIMS U-Pb ages of zircon and tectonic significance of Taihua metamorphic complex in the eastern Luoning, the southern terminal of Trans-North China Orogen[J]. Journal of Earth Sciences and Environment, 2016, 38(6): 822-834.
103 陈泓旭, 王浩, 彭涛, 等. 华北中部造山带南缘洛宁东部太华变质杂岩SIMS锆石U-Pb年龄及其地质意义[J]. 地球科学与环境学报, 2016, 38(6): 822-834.
104 JIANG Zongsheng, WANG Guodong, XIAO Lingling, et al. Paleoproterozoic metamorphic P-T-t path and tectonic significance of the Luoning metamorphic complex at the southern terminal of the Trans-North China Orogen, Henan Province[J]. Acta Petrologica Sinica, 2011, 27(12): 3 701-3 717.
104 蒋宗胜, 王国栋, 肖玲玲, 等. 河南洛宁太华变质杂岩区早元古代变质作用P-T-t轨迹及其大地构造意义[J]. 岩石学报, 2011, 27(12): 3 701-3 717.
105 CHEN H X, WANG J, WANG H, et al. Metamorphism and geochronology of the Luoning metamorphic terrane, southern terminal of the Palaeoproterozoic Trans-North China Orogen, North China Craton[J]. Precambrian Research, 2015, 264: 156-178.
106 LU J S, WANG G D, WANG H, et al. Metamorphic P-T-t paths retrieved from the amphibolites, Lushan terrane, Henan Province and reappraisal of the Paleoproterozoic tectonic evolution of the Trans-North China Orogen[J]. Precambrian Research, 2013, 238: 61-77.
107 LU J S, ZHAI M G, LU L S, et al. Metamorphic P-T-t path retrieved from metapelites in the southeastern Taihua metamorphic complex, and the Paleoproterozoic tectonic evolution of the southern North China Craton[J]. Journal of Asian Earth Sciences, 2017, 134: 352-364.
108 WAN Y S, WILDE S A, LIU D Y, et al. Further evidence for ~1.85 Ga metamorphism in the Central Zone of the North China Craton: shrimp U-Pb dating of zircon from metamorphic rocks in the Lushan area, Henan Province[J]. Gondwana Research, 2006, 9(1/2): 189-197.
109 SUN Q Y, ZHOU Y Y, WANG W, et al. Formation and evolution of the Paleoproterozoic meta-mafic and associated supracrustal rocks from the Lushan Taihua Complex, southern North China Craton: insights from zircon U-Pb geochronology and whole-rock geochemistry[J]. Precambrian Research, 2017, 303: 428-444.
110 ZHAO G, WILDE S A, SUN M, et al. SHRIMP U-Pb zircon geochronology of the Huai’an complex: constraints on Late Archean to Paleoproterozoic magmatic and metamorphic events in the Trans-North China Orogen[J]. American Journal of Science, 2008, 308(3): 270-303.
111 ZHAO G C, WILDE S A, SUN M, et al. SHRIMP U-Pb zircon ages of granitoid rocks in the Lüliang Complex: implications for the accretion and evolution of the Trans-North China Orogen[J]. Precambrian Research, 2008, 160(3/4): 213-226.
112 XIAO L L, LIU F L, CHEN Y. Metamorphic P-T-t paths of the Zanhuang metamorphic complex: implications for the Paleoproterozoic evolution of the Trans-North China Orogen[J]. Precambrian Research, 2014, 255: 216-235.
113 WANG J, WU Y B, GAO S, et al. Zircon U-Pb and trace element data from rocks of the Huai’an Complex: new insights into the late Paleoproterozoic collision between the Eastern and Western Blocks of the North China Craton[J]. Precambrian Research, 2010, 178(1/2/3/4): 59-71.
114 PENG P, ZHAI M G, ZHANG H F, et al. Geochronological constraints on the Paleoproterozoic evolution of the North China Craton: shrimp zircon ages of different types of mafic dikes[J]. International Geology Review, 2005, 47(5): 492-508.
115 MENG J, PENG T, LIU J H, et al. Metamorphic evolution and SIMS zircon U-Pb geochronology of mafic granulite and amphibolite enclaves of the Pingyang trondhjemitic pluton, Fuping terrane, North China[J]. Precambrian Research, 2017, 303: 75-90.
116 ZOU L, GUO J H, YANG C H, et al. The P-T-t path of pelitic gneisses in the Zanhuang Complex: further constraints on the Palaeoproterozoic tectonic evolution of the Trans-North China Orogen, North China Craton[J]. Journal of Asian Earth Sciences, 2021, 210. DOI:10.1016/j.jseaes.2021.104701 .
117 LIU J H, ZHANG Q W L, ZHANG H C G, et al. Metamorphic evolution and SHRIMP U-Pb geochronology of mafic granulites with double symplectites in the Fuping metamorphic complex, middle Palaeoproterozoic Trans-North China Orogen[J]. Precambrian Research, 2019, 326: 142-154.
118 GUO J H, SUN M, CHEN F K, et al. Sm-Nd and SHRIMP U-Pb zircon geochronology of high-pressure granulites in the Sanggan area, North China Craton: timing of Paleoproterozoic continental collision[J]. Journal of Asian Earth Sciences, 2005, 24(5): 629-642.
119 XIAO L L, CLARKE G, LIU F L, et al. Discovery of mafic granulite in the Guandishan area of the Lüliang Complex, North China Craton: age and metamorphic evolution[J]. Precambrian Research, 2017, 303: 604-625.
120 QIAN J H, WEI C J, ZHOU X W, et al. Metamorphic P-T paths and New Zircon U-Pb age data for garnet-mica schist from the Wutai Group, North China Craton[J]. Precambrian Research, 2013, 233: 282-296.
121 ZHANG H C G, ZHAO G C, WANG C, et al. Phase equilibria modelling and zircon U-Pb geochronology of Paleoproterozoic mafic granulites from the Chengde Complex, North China Craton[J]. Precambrian Research, 2022, 371. DOI:10.1016/j.precamres.2022.106576 .
122 WU D, WEI C J. Metamorphic evolution of two types of garnet amphibolite from the Qingyuan terrane, North China Craton: insights from phase equilibria modelling and zircon dating[J]. Precambrian Research, 2021. DOI:10.1016/j.precamres.2021.106091 .
123 LIU J H, ZHANG Q W L, WANG J, et al. Metamorphic evolution and SIMS U-Pb geochronology of orthopyroxene-bearing high-P semipelitic granulite in the Fuping area, middle Trans-North China Orogen[J]. Journal of Metamorphic Geology, 2021, 39(3): 297-320.
124 MACDONALD J, WHEELER J, GOODENOUGH K, et al. Combined SIMS U-Pb ages and Ti-in-zircon geothermometry fingerprints long deep crustal residence in the Archaean[J]. Mineralogical Magazine, 2011, 75. DOI:10.1243/0954405981516003 .
125 JAMIESON R A, BEAUMONT C. Coeval thrusting and extension during lower crustal ductile flow-implications for exhumation of high-grade metamorphic rocks[J]. Journal of Metamorphic Geology, 2011, 29(1): 33-51.
126 CLARK C, HEALY D, JOHNSON T, et al. Hot orogens and supercontinent amalgamation: a Gondwanan example from southern India[J]. Gondwana Research, 2015, 28(4): 1 310-1 328.
Outlines

/