Advances of Algal Methane Production in Oxic Aquatic Environment

  • Xiaohan YU ,
  • Zhe LI ,
  • Yan XIAO ,
  • Hanqing YUAN ,
  • Qing LI
Expand
  • 1.Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
    2.Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
    3.The College of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
YU Xiaohan, Master student, research area includes algal physiology and ecology. E-mail: yuxiaohan@cigit.ac.cn
XIAO Yan, Professor, research area includes environmental microbiology. E-mail: yxiao@cigit.ac.cn

Received date: 2023-10-23

  Revised date: 2024-01-22

  Online published: 2024-03-05

Supported by

the National Natural Science Foundation of China(51979262);Chongqing Natural Science Foundation(cstc2020jcyj-jqX0010)

Abstract

Aquatic ecosystems are a significant source of methane emissions. Although methane production has previously been recognized to only occur in oxygen-deprived environments, recent research has shown that aerobic water environments also experience high methane levels, known as the “methane paradox”. This phenomenon is linked to the presence of algae that can directly produce methane through photosynthesis or the use of specific compounds. Moreover, algae create conditions conducive to methane production by other microorganisms. However, the specific ecological mechanism of aerobic methane production by algae remains not yet fully understood, making accurate global methane level accounting difficult. Future studies should focus on uncovering the molecular regulation of aerobic methane production by algae and how they adapt to external conditions.

Cite this article

Xiaohan YU , Zhe LI , Yan XIAO , Hanqing YUAN , Qing LI . Advances of Algal Methane Production in Oxic Aquatic Environment[J]. Advances in Earth Science, 2024 , 39(2) : 157 -168 . DOI: 10.11867/j.issn.1001-8166.2024.010

References

1 ROSENTRETER J A, BORGES A V, DEEMER B R, et al. Half of global methane emissions come from highly variable aquatic ecosystem sources [J]. Nature Geoscience, 2021, 14(4): 225-230.
2 Change Intergovernmental Panel on Climate. Climate change 2014: mitigation of climate change[M]. Cambridge, UK: Cambridge University Press, 2015.
3 KIRSCHKE S, BOUSQUET P, CIAIS P, et al. Three decades of global methane sources and sinks [J]. Nature Geoscience, 2013, 6(10): 813-823.
4 GüNTHEL M, DONIS D, KIRILLIN G, et al. Contribution of oxic methane production to surface methane emission in lakes and its global importance [J]. Nature Communications, 2019, 10. DOI:10.1038/s41467-019-13320-0 .
5 PEETERS F, HOFMANN H. Oxic methanogenesis is only a minor source of lake-wide diffusive CH4 emissions from lakes [J]. Nature Communications, 2021, 12(1). DOI:10.1038/s41467-021-21215-2 .
6 WANG Q, DORE J E, MCDERMOTT T R. Methylphosphonate metabolism by Pseudomonas sp. populations contributes to the methane oversaturation paradox in an oxic freshwater lake [J]. Environmental Microbiology, 2017, 19(6): 2 366-2 378.
7 DAMM E, HELMKE E, THOMS S, et al. Methane production in aerobic oligotrophic surface water in the central Arctic Ocean [J]. Biogeosciences, 2010, 7(3): 1 099-1 108.
8 LIU L Y, XIE G J, DING J, et al. Microbial methane emissions from the non-methanogenesis processes: a critical review [J]. Science of the Total Environment, 2022, 806. DOI:10.1016/j.scitotenv.2021.151362 .
9 KHATUN S, IWATA T, KOJIMA H, et al. Aerobic methane production by planktonic microbes in lakes [J]. Science of the Total Environment, 2019, 696. DOI:10.1016/j.scitotenv.2019.133916 .
10 BARTOSIEWICZ M, MARANGER R, PRZYTULSKA A, et al. Effects of phytoplankton blooms on fluxes and emissions of greenhouse gases in a eutrophic lake [J]. Water Research, 2021, 196. DOI:10.1016/j.watres.2021.116985 .
11 FLOREZ-LEIVA L, DAMM E, FARíAS L. Methane production induced by dimethylsulfide in surface water of an upwelling ecosystem [J]. Progress in Oceanography, 2013, 112/113: 38-48.
12 YAN X C, XU X G, WANG M Y, et al. Climate warming and cyanobacteria blooms: looks at their relationships from a new perspective [J]. Water Research, 2017, 125: 449-457.
13 ZHANG Nan, HE Kai, ZHONG Jicheng, et al. Enhancement and mechanism of algal-derived organic matter deposition on lake sediment methane release[J]. China Environmental Science, 2023, 43(12): 6 641-6 650.
13 张楠, 何凯, 钟继承, 等. 藻源性有机质沉降对沉积物甲烷释放促进作用[J]. 中国环境科学, 2023, 43(12): 6 641-6 650.
14 MA J, XU X G, YU C C, et al. Molecular biomarkers reveal co-metabolism effect of organic detritus in eutrophic lacustrine sediments [J]. Science of the Total Environment, 2020, 698. DOI:10.1016/j.scitotenv.2019.134328 .
15 HARTMANN J F, GüNTHEL M, KLINTZSCH T, et al. High spatiotemporal dynamics of methane production and emission in oxic surface water [J]. Environmental Science & Technology, 2020, 54(3): 1 451-1 463.
16 GROSSART H P, FRINDTE K, DZIALLAS C, et al. Microbial methane production in oxygenated water column of an oligotrophic lake [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(49): 19 657-19 661.
17 LU Yi, ZHANG Wen, LI Tingting, et al. Progress in the simulation of the impacts of sources and sinks on the tempo-spatial variations of the atmospheric methane [J]. Advances in Earth Science, 2015, 30(7): 763-772.
17 鲁易, 张稳, 李婷婷, 等. 大气甲烷浓度变化的源汇因素模拟研究进展[J]. 地球科学进展, 2015, 30(7): 763-772.
18 DAMM E, KIENE R P, SCHWARZ J, et al. Methane cycling in Arctic shelf water and its relationship with phytoplankton biomass and DMSP [J]. Marine Chemistry, 2008, 109(1/2): 45-59.
19 YE W W, ZHANG G L, ZHENG W J, et al. Methane distributions and sea-to-air fluxes in the Pearl River Estuary and the northern South China Sea [J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2019, 167: 34-45.
20 YE W W, WANG X L, ZHANG X H, et al. Methane production in oxic seawater of the western North Pacific and its marginal seas [J]. Limnology and Oceanography, 2020, 65(10): 2 352-2 365.
21 KOLOMIJECA A, MARX L, REYNOLDS S, et al. An update on dissolved methane distribution in the subtropical North Atlantic Ocean [J]. Ocean Science, 2022, 18(5): 1 377-1 388.
22 BOGARD M J, del GIORGIO P A, BOUTET L, et al. Oxic water column methanogenesis as a major component of aquatic CH4 fluxes [J]. Nature Communications, 2014, 5. DOI:10.1038/ncomms6350 .
23 TANG K W, MCGINNIS D F, FRINDTE K, et al. Paradox reconsidered: methane oversaturation in well-oxygenated lake waters [J]. Limnology and Oceanography, 2014, 59(1): 275-284.
24 DONIS D, FLURY S, ST?CKLI A, et al. Full-scale evaluation of methane production under oxic conditions in a mesotrophic lake [J]. Nature Communications, 2017, 8. DOI:10.1038/s41467-017-01648-4 .
25 WANG Q, ALOWAIFEER A, KERNER P, et al. Aerobic bacterial methane synthesis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(27). DOI:10.1073/pnas.2019229118 .
26 THOTTATHIL S D, REIS P C J, PRAIRIE Y T. Magnitude and drivers of oxic methane production in small temperate lakes [J]. Environmental Science & Technology, 2022, 56(15): 11 041-11 050.
27 SCHROLL M, LIU L, EINZMANN T, et al. Methane accumulation and its potential precursor compounds in the oxic surface water layer of two contrasting stratified lakes [J]. Science of the Total Environment, 2023, 903. DOI:10.1016/j.scitotenv.2023.166205 .
28 BI?I? M. Phytoplankton photosynthesis: an unexplored source of biogenic methane emission from oxic environments [J]. Journal of Plankton Research, 2021, 43(6): 822-830.
29 ZHAO L, LIN L Z, CHEN M Y, et al. The widespread capability of methylphosphonate utilization in filamentous cyanobacteria and its ecological significance [J]. Water Research, 2022, 217. DOI:10.1016/j.watres.2022.118385 .
30 TEIKARI J E, FEWER D P, SHRESTHA R, et al. Strains of the toxic and bloom-forming Nodularia spumigena (cyanobacteria) can degrade methylphosphonate and release methane [J]. The ISME Journal, 2018, 12(6): 1 619-1 630.
31 BEAULIEU J J, DELSONTRO T, DOWNING J A. Eutrophication will increase methane emissions from lakes and impoundments during the 21st century [J]. Nature Communications, 2019, 10. DOI:10.1038/s41467-019-09100-5 .
32 BI?I? M, KLINTZSCH T, IONESCU D, et al. Aquatic and terrestrial cyanobacteria produce methane [J]. Science Advances, 2020, 6(3). DOI:10.1126/sciadv.aax5343 .
33 KAMAT S S, RAUSHEL F M. The enzymatic conversion of phosphonates to phosphate by bacteria [J]. Current Opinion in Chemical Biology, 2013, 17(4): 589-596.
34 KARL D M, BEVERSDORF L, BJORKMAN K M, et al. Aerobic production of methane in the sea [J]. Nature Geoscience, 2008, 1(7): 473-478.
35 YAO M Y, HENNY C, MARESCA J A. Freshwater bacteria release methane as a by-product of phosphorus acquisition [J]. Applied and Environmental Microbiology, 2016, 82(23): 6 994-7 003. DOI:10.1128/aem.02399-16 .
36 YU X M, DOROGHAZI J R, JANGA S C, et al. Diversity and abundance of phosphonate biosynthetic genes in nature [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(51): 20 759-20 764.
37 REPETA D J, FERRóN S, SOSA O A, et al. Marine methane paradox explained by bacterial degradation of dissolved organic matter [J]. Nature Geoscience, 2016, 9(12): 884-887.
38 BEVERSDORF L J, WHITE A E, BJ?ERKMAN K M, et al. Phosphonate metabolism by Trichodesmium IMS101 and the production of greenhouse gases [J]. Limnology and Oceanography, 2010, 55(4): 1 768-1 778.
39 MORANA C, BOUILLON S, NOLLA-ARDèVOL V, et al. Methane paradox in tropical lakes? Sedimentary fluxes rather than pelagic production in oxic conditions sustain methanotrophy and emissions to the atmosphere [J]. Biogeosciences, 2020, 17(20): 5 209-5 221.
40 LENHART K, KLINTZSCH T, LANGER G, et al. Evidence for methane production by the marine algae Emiliania huxleyi [J]. Biogeosciences, 2016, 13(10): 3 163-3 174.
41 KLINTZSCH T, LANGER G, NEHRKE G, et al. Methane production by three widespread marine phytoplankton species: release rates, precursor compounds, and potential relevance for the environment [J]. Biogeosciences, 2019, 16(20): 4 129-4 144.
42 SUNDA W, KIEBER D J, KIENE R P, et al. An antioxidant function for DMSP and DMS in marine algae [J]. Nature, 2002, 418(6 895): 317-320.
43 HERSCU-KLUSKA R, MASARWA A, SAPHIER M, et al. Mechanism of the reaction of radicals with peroxides and dimethyl sulfoxide in aqueous solution [J]. Chemistry, 2008, 14(19): 5 880-5 889.
44 BENZING K, COMBA P, MARTIN B, et al. Nonheme iron-oxo-catalyzed methane formation from methyl thioethers: scope, mechanism, and relevance for natural systems [J]. Chemistry, 2017, 23(43): 10 465-10 472.
45 ALTHOFF F, BENZING K, COMBA P, et al. Abiotic methanogenesis from organosulphur compounds under ambient conditions [J]. Nature Communications, 2014, 5. DOI:10.1038/ncomms5205 .
46 HOHENBERGER J, RAY K, MEYER K. The biology and chemistry of high-valent iron-oxo and iron-nitrido complexes [J]. Nature Communications, 2012, 3. DOI:10.1038/ncomms1718 .
47 BI?I?-IONESCU M, IONESCU D, GüNTHEL M, et al. Oxic methane cycling: new evidence for methane formation in oxic lake water [M]//STAMS A J M, SOUSA D. Biogenesis of Hydrocarbons. Cham: Springer International Publishing, 2018: 1-22.
48 KLINTZSCH T, LANGER G, WIELAND A, et al. Effects of temperature and light on methane production of widespread marine phytoplankton [J]. Journal of Geophysical Research-Biogeosciences, 2020, 125(9). DOI:10.1029/2020jg005793 .
49 PEREZ-CORONEL E, BEMAN J M. Multiple sources of aerobic methane production in aquatic ecosystems include bacterial photosynthesis [J]. Nature Communications, 2022, 13(1). DOI:10.1038/s41467-022-34105-y .
50 GüNTHEL M, KLAWONN I, WOODHOUSE J, et al. Photosynthesis-driven methane production in oxic lake water as an important contributor to methane emission [J]. Limnology and Oceanography, 2020, 65(12): 2 853-2 865.
51 ERNST L, STEINFELD B, BARAYEU U, et al. Methane formation driven by reactive oxygen species across all living organisms [J]. Nature, 2022, 603(7 901): 482-487.
52 HILT S, GROSSART H P, MCGINNIS D F, et al. Potential role of submerged macrophytes for oxic methane production in aquatic ecosystems [J]. Limnology and Oceanography, 2022, 67: S76-S88.
53 ENAMI S, SAKAMOTO Y, COLUSSI A J. Fenton chemistry at aqueous interfaces [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(2): 623-628.
54 KEPPLER F, ERNST L, POLAG D, et al. ROS-driven cellular methane formation: potential implications for health sciences [J]. Clinical and Translational Medicine, 2022, 12(7). DOI:10.1002/ctm2.905 .
55 DUNBAR K L, SCHARF D H, LITOMSKA A, et al. Enzymatic carbon-sulfur bond formation in natural product biosynthesis [J]. Chemical Reviews, 2017, 117(8): 5 521-5 577.
56 ZHOU C Q, PENG Y, YU M T, et al. Severe cyanobacteria accumulation potentially induces methylotrophic methane producing pathway in eutrophic lakes [J]. Environmental Pollution, 2022, 292. DOI:10.1016/j.envpol.2021.118443 .
57 ZINDLER C, BRACHER A, MARANDINO C A, et al. Sulphur compounds, methane, and phytoplankton: interactions along a north-south transit in the western Pacific Ocean [J]. Biogeosciences, 2013, 10(5): 3 297-3 311.
58 MITTLER R. ROS are good [J]. Trends in Plant Science, 2017, 22(1): 11-19.
59 KEPPLER F, HAMILTON J T G, MCROBERTS W C, et al. Methoxyl groups of plant pectin as a precursor of atmospheric methane: evidence from deuterium labelling studies [J]. The New Phytologist, 2008, 178(4): 808-814.
60 MESSENGER D J, MCLEOD A R, FRY S C. The role of ultraviolet radiation, photosensitizers, reactive oxygen species and ester groups in mechanisms of methane formation from pectin [J]. Plant Cell and Environment, 2009, 32(1): 1-9.
61 ZHENG Y N, HARRIS D F, YU Z, et al. A pathway for biological methane production using bacterial iron-only nitrogenase [J]. Nature Microbiology, 2018, 3(3): 281-286.
62 BOTHE H, SCHMITZ O, YATES M G, et al. Nitrogen fixation and hydrogen metabolism in cyanobacteria [J]. Microbiology and Molecular Biology Reviews, 2010, 74(4): 529-551.
63 KENTEMICH T, HAVERKAMP G, BOTHE H. The expression of a third nitrogenase in the Cyanobacterium Anabaena variabilis [J]. Zeitschrift Für Naturforschung C, 1991, 46(3/4): 217-222.
64 NORTH J A, NARROWE A B, XIONG W L, et al. A nitrogenase-like enzyme system catalyzes methionine, ethylene, and methane biogenesis [J]. Science, 2020, 369(6 507): 1 094-1 098.
65 BR?CKER M J, VIRUS S, GANSKOW S, et al. ATP-driven reduction by dark-operative protochlorophyllide oxidoreductase from Chlorobium tepidum mechanistically resembles nitrogenase catalysis [J]. Journal of Biological Chemistry, 2008, 283(16): 10 559-10 567.
66 NOMATA J, MIZOGUCHI T, TAMIAKI H, et al. A second nitrogenase-like enzyme for bacteriochlorophyll biosynthesis—reconstitution of chlorophyllide a reductase with purified X-protein (BchX) and YZ-protein (BchY-BchZ) from Rhodobacter capsulatus [J]. Journal of Biological Chemistry, 2006, 281(21): 15 021-15 028.
67 VEDALANKAR P, TRIPATHY B C. Evolution of light-independent protochlorophyllide oxidoreductase [J]. Protoplasma, 2019, 256(2): 293-312.
68 LUXEM K E, LEAVITT W D, ZHANG X N. Large hydrogen isotope fractionation distinguishes nitrogenase-derived methane from other methane sources [J]. Applied and Environmental Microbiology, 2020, 86(19). DOI:10.1128/aem.00849-20 .
69 LUPTON F S, MARSHALL K C. Specific adhesion of bacteria to heterocysts of Anabaena spp. and its ecological significance [J]. Applied and Environmental Microbiology, 1981, 42(6): 1 085-1 092.
70 SPIELMEYER A, POHNERT G. Influence of temperature and elevated carbon dioxide on the production of dimethylsulfoniopropionate and glycine betaine by marine phytoplankton [J]. Marine Environmental Research, 2012, 73: 62-69.
71 BERG A, LINDBLAD P, SVENSSON B H. Cyanobacteria as a source of hydrogen for methane formation [J]. World Journal of Microbiology & Biotechnology, 2014, 30(2): 539-545.
72 WOOLWAY R I, MERCHANT C J. Worldwide alteration of lake mixing regimes in response to climate change [J]. Nature Geoscience, 2019, 12(4): 271-276.
73 HUISMAN J, CODD G A, PAERL H W, et al. Cyanobacterial blooms [J]. Nature Reviews Microbiology, 2018, 16(8): 471-483.
74 MA J J, WANG P F. Effects of rising atmospheric CO2 levels on physiological response of cyanobacteria and cyanobacterial bloom development: a review [J]. Science of the Total Environment, 2021, 754. DOI:10.1016/j.scitotenv.2020.141889 .
75 YAN K, YUAN Z W, GOLDBERG S, et al. Phosphorus mitigation remains critical in water protection: a review and meta-analysis from one of China’s most eutrophicated lakes [J]. Science of the Total Environment, 2019, 689: 1 336-1 347.
Outlines

/