Analysis of Temporal and Spatial Trends and Influencing Factors of Spectral Surface Albedo in Guizhou Province

  • Na YUAN ,
  • Lingling Deng ,
  • Xia YIN ,
  • Shanhai SONG ,
  • Suihua LIU
Expand
  • 1.School of Geography and Environmental Science, Guizhou Normal University, Guiyang 550025, China
    2.Key Laboratory of Remote Sensing Applications for Mountain Resources and Environment, Guizhou Province, Guizhou Normal University, Guiyang 550025, China
    3.Guizhou Ecological Meteorology and Satellite Remote Sensing Center, Guiyang 550002, China
YUAN Na, Master student, research area includes geographic information and remote sensing. E-mail: y2043193797@163.com
LIU Suihua, Associate professor, research areas include geographic information system and remote sensing. E-mail: Lsh23@163.com

Received date: 2023-07-25

  Revised date: 2023-08-29

  Online published: 2023-11-08

Supported by

the National Natural Science Foundation of China(42161029);The Guizhou Provincial Science and Technology Project (Grant No. Qiankeheji-ZK[2022] General 278)

Abstract

Guizhou Province, characterized by unique topography and complex climatic conditions, offers an excellent opportunity to study spectral surface albedo (short-wave, near-infrared, and visible light). Analyzing this refines surface parameters and understands the characteristics of solar spectral radiation but also provides scientific references to explore the physical processes of the relevant spectral radiation, variables in the process of energy conversion of the earth-air system in mountainous areas at low latitudes. Therefore, based on MCD43A3 albedo data, MCD15A2H Leaf Area Index (LAI), temperature, precipitation, land use, and soil moisture data, using anomalous variance analysis, Theil-Sen (T-S) and Mann-Kendall (M-K) trend analyses, and geophones, we analyzed the spatial and temporal trends and driving factors of spectral surface albedo in Guizhou Province. The results show that interannual changes in spectral surface albedo were in the order of size: near-infrared>short-wave>visible. In addition to visible surface albedo being on the rise (the three bands of surface albedo high-value area were basically the same), there was a line from the northeast to the southwest, and the western distribution of the characteristics of the County of Weining; considering seasonal changes, the size order of short-wave and near-infrared surface albedo was the same, as follows: summer>autumn>spring>winter and that of visible surface albedo was spring>winter. The sizes of short-wave and short-wave albedo were the same, as follows: summer> autumn>spring>winter, and that of visible surface albedo was: spring>winter>autumn>summer; the driving factors of spectral surface albedo were LAI, followed by land use. The results of this study reveal spatial and temporal variations and driving mechanisms of the spectral surface albedo in Guizhou, which can provide a reference for the ecological protection of mountainous areas in Guizhou.

Cite this article

Na YUAN , Lingling Deng , Xia YIN , Shanhai SONG , Suihua LIU . Analysis of Temporal and Spatial Trends and Influencing Factors of Spectral Surface Albedo in Guizhou Province[J]. Advances in Earth Science, 2023 , 38(11) : 1145 -1157 . DOI: 10.11867/j.issn.1001-8166.2023.062

References

1 MOODY E G, KING M D, SCHAAF C B, et al. Northern hemisphere five-year average (2000-2004) spectral albedos of surfaces in the presence of snow: statistics computed from Terra MODIS land products[J]. Remote Sensing of Environment, 2007, 111(2/3): 337-345.
2 LU Yunbo, WANG Lunche, NIU Zigeng, et al. Variations of land surface albedo and its influencing factors in China from 2000 to 2017[J]. Geographical Research, 2022, 41(2): 562-579.
2 陆云波, 王伦澈, 牛自耕, 等. 2000—2017年中国区域地表反照率变化及其影响因子[J]. 地理研究, 2022, 41(2): 562-579.
3 ZHENG L, ZHAO G S, DONG J W, et al. Spatial, temporal, and spectral variations in albedo due to vegetation changes in China’s grasslands[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 152: 1-12.
4 ZHENG Zhiyuan, WEI Zhigang, LI Zhenchao, et al. Characteristics of solar spectral radiation and albedo during early autumn in Dunhuang Gobi[J]. Acta Energiae Solaris Sinica, 2012, 33(11): 1 937-1 943.
4 郑志远, 韦志刚, 李振朝, 等. 敦煌戈壁秋初太阳分光辐射及其反照率特征[J]. 太阳能学报, 2012, 33(11): 1 937-1 943.
5 LI Z C, YANG J X, GAO X Q, et al. Impact of soil moisture and winter wheat height from the Loess Plateau in Northwest China on surface spectral albedo[J]. Theoretical and Applied Climatology, 2018, 131(3): 857-864.
6 ZHENG Z Y, DONG W J, LI Z C, et al. Observational study of surface spectral radiation and corresponding albedo over gobi, desert, and bare loess surfaces in northwestern China[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(3): 883-896.
7 LIU Qinqin, CUI Yaoping, LIU Sujie, et al. Study on surface albedo of spectral radiation of different land use types in China[J]. Remote Sensing Technology and Application, 2019, 34(1): 46-56.
7 刘亲亲, 崔耀平, 刘素洁, 等. 中国不同土地利用类型分光辐射地表反照率研究[J]. 遥感技术与应用, 2019, 34(1): 46-56.
8 HE Juan, ZHANG Hua, SU Hongjuan, et al. Study on long-term change of global spectral surface albedo[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(3): 279-293.
8 何娟, 张华, 苏红娟, 等. 全球分光地表反照率的长期变化[J]. 大气与环境光学学报, 2022, 17(3): 279-293.
9 LIU Wei, JIAO Shulin, AN Quan, et al. Impacts of climate change and human activities on NDVI in Guizhou Province from 1998 to 2018[J]. Resources and Environment in the Yangtze Basin, 2021, 30(12): 2 883-2 895.
9 刘炜, 焦树林, 安全, 等. 气候变化及人类活动对贵州省1998—2018年NDVI的影响[J]. 长江流域资源与环境, 2021, 30(12): 2 883-2 895.
10 RUAN Ying, WANG Chuankuan, LIU Fan, et al. Temporal variation and influencing factors of albedo in a deciduous broad-leaved forest[J]. Chinese Journal of Applied Ecology, 2022, 33(8): 2 068-2 076.
10 阮颖, 王传宽, 刘帆, 等. 落叶阔叶林反照率的时间变化与影响因素[J]. 应用生态学报, 2022, 33(8): 2 068-2 076.
11 ZHANG Xuezhen. The responses of surface albedo to climatic changes in Xilin Gol grassland[J]. Geographical Research, 2012, 31(2): 299-310.
11 张学珍. 锡林郭勒草原地表反照率对气候变化的响应[J]. 地理研究, 2012, 31(2): 299-310.
12 YANG J X, LI Z C, ZHAI P M, et al. The influence of soil moisture and solar altitude on surface spectral albedo in arid area[J]. Environmental Research Letters, 2020, 15(3). DOI:10.1088/1748-9326/ab6ae2 .
13 RODRíGUEZ-CABALLERO E, KNERR T, WEBER B. Importance of biocrusts in dryland monitoring using spectral indices[J]. Remote Sensing of Environment, 2015, 170: 32-39.
14 ALIBAKHSHI S, HOVI A, RAUTIAINEN M. Temporal dynamics of albedo and climate in the sparse forests of Zagros[J]. Science of the Total Environment, 2019, 663: 596-609.
15 ZHOU S, WILLIAMS A P, BERG A M, et al. Land-atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(38): 18 848-18 853.
16 FELDMAN A F, SHORT GIANOTTI D J, TRIGO I F, et al. Satellite-based assessment of land surface energy partitioning-soil moisture relationships and effects of confounding variables[J]. Water Resources Research, 2019, 55(12): 10 657-10 677.
17 LI S T, YAN Q L, LIU Z H, et al. Seasonality of albedo and fraction of absorbed photosynthetically active radiation in the temperate secondary forest ecosystem: a comprehensive observation using Qingyuan Ker towers[J]. Agricultural and Forest Meteorology, 2023, 333. DOI:10.1016/J.AGRFORMET.2023.109418 .
18 YANG Jiaxi, LI Zhenchao, WEI Zhigang, et al. Characteristics of solar spectral radiation and corresponding albedo in sparse vegetation region[J]. Acta Energiae Solaris Sinica, 2017, 38(3): 852-859.
18 杨佳希, 李振朝, 韦志刚, 等. 稀疏植被地表分光辐射及其反照率特征研究[J]. 太阳能学报, 2017, 38(3): 852-859.
19 YANG J, HUANG X. The 30?m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021, 13(8): 3 907-3 925.
20 MENG X J, MAO K B, MENG F, et al. A fine-resolution soil moisture dataset for China in 2002-2018[J]. Earth System Science Data, 2021, 13(7): 3 239-3 261.
21 STOKES G M, SCHWARTZ S E. The Atmospheric Radiation Measurement (ARM) Program: programmatic background and design of the cloud and radiation test bed[J]. Bulletin of the American Meteorological Society, 1994, 75(7): 1 201-1 222.
22 LEWIS P, BARNSLEY M J. Influence of the sky radiance distribution on various formulations of the earth surface albedo[C]// 6th International Symposium on Physical Measurements and Signatures in Remote Sensing, ISPRS. CNES Val d’Isere, France, 1994: 707-715.
23 EILERS P H C. A perfect smoother[J]. Analytical Chemistry, 2003, 75(14): 3 631-3 636.
24 ATZBERGER C, REMBOLD F. Estimation of inter-annual winter crop area variation and spatial distribution with low resolution NDVI data by using neural networks trained on high resolution images[C]// Proceeding SPIE 7472, Remote Sensing for Agriculture, Ecosystems, and Hydrology XI, 2009, 7472: 44-55.
25 LIANG J Y, REN C, LI Y, et al. Using enhanced gap-filling and Whittaker smoothing to reconstruct high spatiotemporal resolution NDVI time series based on landsat 8, sentinel-2, and MODIS imagery[J]. ISPRS International Journal of Geo-Information, 2023, 12(6). DOI:10.3390/ijgi12060214 .
26 HU Haitao. Reconstruction of surface albedo, temporal and spatial evolution and influencing factors in Guizhou Province from 2001 to 2020[D]. Guiyang: Guizhou Normal University, 2023.
26 胡海涛. 贵州省2001—2020年地表反照率重建及时空演变与影响因素分析[D]. 贵阳: 贵州师范大学, 2023.
27 AMAZIRH A, BOURAS E H, OLIVERA-GUERRA L E, et al. Retrieving crop albedo based on radar sentinel-1 and random forest approach[J]. Remote Sensing, 2021, 13(16). DOI:10.3390/rs13163181 .
28 THEIL H. A Rank-Invariant method of linear and polynomial regression analysis[M]// RAJ B, KOERTS J. Henri Theil’s contributions to economics and econometrics. Dordrecht: Springer, 1992: 345-381.
29 MANN H B. Nonparametric tests against trend[J]. Econometrica, 1945, 13(3). DOI:10.2307/1907187 .
30 WANG Jinfeng, XU Chengdong. Geodetector: principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134.
30 王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116-134.
31 PI Guining, HE Zhonghua, ZHANG Lang, et al. Response of vegetation to meteorological drought in watershed at different time scales—a case study of Guizhou Province[J]. Research of Soil and Water Conservation, 2022, 29(4): 277-284, 291.
31 皮贵宁, 贺中华, 张浪, 等. 区域植被对不同时间尺度气象干旱的响应: 以贵州省为例[J]. 水土保持研究, 2022, 29(4): 277-284, 291.
32 MINNIS P, MAYOR S, SMITH W L, et al. Asymmetry in the diurnal variation of surface albedo[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(4): 879-890.
33 HAO G H, PIRAZZINI R, YANG Q H, et al. Spectral albedo of coastal landfast sea ice in Prydz Bay, Antarctica[J]. Journal of Glaciology, 2021, 67(261): 126-136.
34 ZHAO F, LAN X C, LI W Y, et al. Influence of land use change on the surface albedo and climate change in the Qinling-Daba Mountains[J]. Sustainability, 2021, 13(18). DOI:10.3390/su131810153 .
35 LIANG S L, SHUEY C J, RUSS A L, et al. Narrowband to broadband conversions of land surface albedo: II. validation[J]. Remote Sensing of Environment, 2003, 84(1): 25-41.
36 SCHWAIGER H P, BIRD D N. Integration of albedo effects caused by land use change into the climate balance: should we still account in greenhouse gas units?[J]. Forest Ecology and Management, 2010, 260(3): 278-286.
37 JIANG Huanyu, XIE Lijuan, PENG Yongshi, et al. Effect of temperature on near-infrared spectra of leaves[J]. Spectroscopy and Spectral Analysis, 2008, 28(7): 1 510-1 513.
37 蒋焕煜,谢丽娟,彭永石,等.温度对叶片近红外光谱的影响[J]. 光谱学与光谱分析, 2008, 28(7): 1 510-1 513.
38 YANG Jianqing, LUO Jijun, XU Jun, et al. Study on near infrared radiation attenuation based on distribution database of raindrops[J]. Laser Technology, 2018, 42(2): 161-165.
38 杨建清, 罗积军, 徐军, 等. 基于雨滴谱分布数据库的近红外辐射衰减研究[J]. 激光技术, 2018, 42(2): 161-165.
Outlines

/