Review of Surface Renewal, a New Method for Measuring Evapotranspiration based on High Frequency Temperature
Received date: 2023-07-09
Revised date: 2023-09-08
Online published: 2023-11-08
Supported by
the National Natural Science Foundation of China(42071395);The National Key Research and Development Program of China(2021YFE0117100)
Evapotranspiration (ET) encompasses water loss through transpiration and evaporation from soil and water surfaces. Accurate observation of ET is essential for comprehending the ET process, and mechanism, as well as water-energy nexus and land-atmosphere feedback. ET serves as a pivotal link between the hydrological cycle and energy processes. In-situ measurements provide fundamental datasets for validating remotely sensed ET products. The surface renewal theory differs from the commonly used eddy covariance method in describing the physical ET process. Unlike the expensive sonic anemometers in the eddy covariance system, the surface renewal method is cost-effective because it uses a fine- diameter thermocouple to record high-frequency air temperature and estimate the sensible heat flux through coherent structures. The surface renewal method for measuring ET, with an accuracy comparable to that of the eddy covariance system, and it has been widely applied for ET measurements in America and Europe. Recognizing the substantial potential of this method, this paper reviews the theory of surface renewal and research advancements in the method made over the past 30 years. Additionally, preliminary studies related to ET measurements in China using the surface renewal method are also presented. By summarizing this progress and exploring the challenges in the application of the surface renewal method, we can enhance our understanding and promote a variety of domestic ET observation methods.
Yujiu XIONG , Xu WANG , Chenbin WU . Review of Surface Renewal, a New Method for Measuring Evapotranspiration based on High Frequency Temperature[J]. Advances in Earth Science, 2023 , 38(11) : 1097 -1106 . DOI: 10.11867/j.issn.1001-8166.2023.069
1 | WANG K C, DICKINSON R. A review of global terrestrial evapotranspiration: observation, modeling, climatology, and climatic variability[J]. Reviews of Geophysics, 2012, 50(12). DOI:10.1029/2011RG000373 . |
2 | FISHER J B, MELTON F, MIDDLETON E, et al. The future of evapotranspiration: global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources[J]. Water Resources Research, 2017, 53(4): 2 618-2 626. |
3 | YANG Dawen, XU Zongxue, LI Zhe, et al. Progress and prospect of hydrological sciences[J]. Progress in Geography, 2018, 37(1): 36-45. |
3 | 杨大文, 徐宗学, 李哲, 等. 水文学研究进展与展望[J]. 地理科学进展, 2018, 37(1): 36-45. |
4 | CHEN Fahu, FU Bojie, XIA Jun, et al. Important progress and prospect of basic research on physical geography and living environment in China in recent 70 years[J]. Science China: Earth Sciences, 2019, 49(11): 1 659-1 696. |
4 | 陈发虎, 傅伯杰, 夏军, 等. 近70年来中国自然地理与生存环境基础研究的重要进展与展望[J]. 中国科学:地球科学, 2019, 49(11): 1 659-1 696. |
5 | LIU Yuanbo, QIU Guoyu, ZHANG Hongsheng, et al. Shifting from homogeneous to heterogeneous surfaces in estimating terrestrial evapotranspiration: review and perspectives[J]. Science China: Earth Sciences, 2022, 52(3): 381-399. |
5 | 刘元波, 邱国玉, 张宏昇, 等. 陆域蒸散的测算理论方法: 回顾与展望[J]. 中国科学:地球科学, 2022, 52(3): 381-399. |
6 | BALDOCCHI D. ‘Breathing’ of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems[J]. Australian Journal of Botany, 2008, 56(1). DOI:10.1071/BT07151 . |
7 | BALDOCCHI D. Measuring fluxes of trace gases and energy between ecosystems and the atmosphere-the state and future of the eddy covariance method[J]. Global Change Biology, 2014, 20(12): 3 600-3 609. |
8 | YU Guirui, ZHANG Leiming, SUN Xiaomin. Progresses and prospects of Chinese terrestrial ecosystem flux observation and research network (ChinaFLUX)[J]. Progress in Geography, 2014, 33(7): 903-917. |
8 | 于贵瑞, 张雷明, 孙晓敏. 中国陆地生态系统通量观测研究网络(ChinaFLUX)的主要进展及发展展望[J]. 地理科学进展, 2014, 33(7): 903-917. |
9 | PAPALE D. Ideas and perspectives: enhancing the impact of the FLUXNET network of eddy covariance sites[J]. Biogeosciences, 2020, 17(22): 5 587-5 598. |
10 | MAUDER M, FOKEN T, CUXART J. Surface-energy-balance closure over land: a review[J]. Boundary-Layer Meteorology, 2020, 177(2): 395-426. |
11 | HILL T, CHOCHOLEK M, CLEMENT R. The case for increasing the statistical power of eddy covariance ecosystem studies: why, where and how?[J]. Global Change Biology, 2017, 23(6): 2 154-2 165. |
12 | XIONG Y J, CHEN X H, TANG L, et al. Comparison of surface renewal and Bowen ratio derived evapotranspiration measurements in an arid vineyard[J]. Journal of Hydrology, 2022, 613. DOI:10.1016/j.jhydrol.2022.128474 . |
13 | SCHASCHKE C. A dictionary of chemical engineering[M]. Oxford: Oxford University Press, 2014. |
14 | KERMANI A, SHEN L. Surface age of surface renewal in turbulent interfacial transport[J]. Geophysical Research Letters, 2009, 36(10). DOI:10.1029/2008GL037050 . |
15 | HIGBIE R. The rate of absorption of a pure gas into a still liquid during short periods of exposure[J]. Transactions of American Institute of Chemical Engineers, 1935, 31: 365-390. |
16 | GAO W, SHAW R H. Observation of organized structure in turbulent flow within and above a forest canopy[J]. Boundary-Layer Meteorology, 1989, 47(1): 349-377. |
17 | PAW U K T, QIU J, SU H B, et al. Surface renewal analysis: a new method to obtain scalar fluxes[J]. Agricultural and Forest Meteorology, 1995, 74(1/2): 119-137. |
18 | ZHAO Jianhua, ZHANG Feng, LIANG Yun, et al. Research progress on turbulent coherent structure in atmospheric boundary layer[J]. Arid Zone Research, 2019, 36(6): 1 419-1 430. |
18 | 赵建华, 张峰, 梁芸, 等. 大气边界层湍流相干结构研究进展[J]. 干旱区研究, 2019, 36(6): 1 419-1 430. |
19 | van ATTA C W. Effect of coherent structures on structure functions of temperature in the atmospheric boundary layer [J]. Archives of Mechanics, 1977, 29(1): 161-171. |
20 | SNYDER R L, SPANO D, PAW U K T. Surface renewal analysis for sensible and latent heat flux density[J]. Boundary-Layer Meteorology, 1996, 77(3/4): 249-266. |
21 | SNYDER R L, PAW U K T, SPANO D, et al. Surface renewal estimates of evapotranspiration. theory[J]. Acta Horticulturae, 1997, 449(1): 49-56. |
22 | PAW U K T, SNYDER R L, SPANO D, et al. Surface renewal estimates of scalar exchange[M]// Agronomy monographs. Madison, WI, USA: American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, 2015: 455-483. |
23 | SPANO D, SNYDER R L, DUCE P, et al. Estimating sensible and latent heat flux densities from grapevine canopies using surface renewal[J]. Agricultural and Forest Meteorology, 2000, 104(3): 171-183. |
24 | SHAPLAND T M, SNYDER R L, PAW U K T, et al. Thermocouple frequency response compensation leads to convergence of the surface renewal alpha calibration[J]. Agricultural and Forest Meteorology, 2014, 189: 36-47. |
25 | SUVO?AREV K, CASTELLVí F, REBA M L, et al. Surface renewal measurements of H, λE and CO2 fluxes over two different agricultural systems[J]. Agricultural and Forest Meteorology, 2019, 279. DOI:10.1016/j.agrformet.2019.107763 . |
26 | PARRY C K, SHAPLAND T M, WILLIAMS L E, et al. Comparison of a stand-alone surface renewal method to weighing lysimetry and eddy covariance for determining vineyard evapotranspiration and vine water stress[J]. Irrigation Science, 2019, 37(6): 737-749. |
27 | CHEN W J, NOVAK M D, BLACK T A, et al. Coherent eddies and temperature structure functions for three contrasting surfaces. part I: ramp model with finite microfront time [J]. Boundary-Layer Meteorology, 1997, 84(1): 99-123. |
28 | CHEN W J, NOVAK M D, BLACK T A, et al. Coherent eddies and temperature structure functions for three contrasting surfaces. part II: renewal model for sensible heat flux[J]. Boundary-Layer Meteorology, 1997, 84(1): 125-147. |
29 | CASTELLVí F, SNYDER R L. A comparison between latent heat fluxes over grass using a weighing lysimeter and surface renewal analysis[J]. Journal of Hydrology, 2010, 381(3/4): 213-220. |
30 | CASTELLVí F. Combining surface renewal analysis and similarity theory: a new approach for estimating sensible heat flux[J]. Water Resources Research, 2004, 40(5). DOI:10.1029/2003WR002677 . |
31 | CASTELLVíF, MARTíNEZ-COB A. Estimating sensible heat flux using surface renewal analysis and the flux variance method: a case study over olive trees at Sástago (NE of Spain)[J]. Water Resources Research, 2005, 41(9). DOI:10.1029/2005WR004035 . |
32 | CASTELLVí F, SNYDER R L. On the performance of surface renewal analysis to estimate sensible heat flux over two growing rice fields under the influence of regional advection[J]. Journal of Hydrology, 2009, 375(3/4): 546-553. |
33 | CASTELLVí F, SNYDER R L. Sensible heat flux estimates using surface renewal analysis a study case over a peach orchard[J]. Agricultural and Forest Meteorology, 2009, 149(9): 1 397-1 402. |
34 | CASTELLVíF, MARTíNEZ-COB A, PéREZ-COVETA O. Estimating sensible and latent heat fluxes over rice using surface renewal[J]. Agricultural and Forest Meteorology, 2006, 139(1/2): 164-169. |
35 | CASTELLVí F, GAVILáN P, GONZáLEZ-DUGO M P. Combining the bulk transfer formulation and surface renewal analysis for estimating the sensible heat flux without involving the parameter[J]. Water Resources Research, 2014, 50(10): 8 179-8 190. |
36 | SHAPLAND T M, MCELRONE A J, SNYDER R L, et al. Structure function analysis of two-scale scalar ramps. part I: theory and modelling[J]. Boundary-Layer Meteorology, 2012, 145(1): 5-25. |
37 | SHAPLAND T M, MCELRONE A J, SNYDER R L, et al. Structure function analysis of two-scale scalar ramps. part II: ramp characteristics and surface renewal flux estimation[J]. Boundary-Layer Meteorology, 2012, 145(1): 27-44. |
38 | SHAPLAND T M, SNYDER R L, SMART D R, et al. Estimation of actual evapotranspiration in winegrape vineyards located on hillside terrain using surface renewal analysis[J]. Irrigation Science, 2012, 30(6): 471-484. |
39 | POZNíKOVá G, FISCHER M, van KESTEREN B, et al. Quantifying turbulent energy fluxes and evapotranspiration in agricultural field conditions: a comparison of micrometeorological methods[J]. Agricultural Water Management, 2018, 209: 249-263. |
40 | SUVO?AREV K, SHAPLAND T M, SNYDER R L, et al. Surface renewal performance to independently estimate sensible and latent heat fluxes in heterogeneous crop surfaces[J]. Journal of Hydrology, 2014, 509: 83-93. |
41 | PARRY C K, KUSTAS W P, KNIPPER K R, et al. Comparison of vineyard evapotranspiration estimates from surface renewal using measured and modelled energy balance components in the GRAPEX project[J]. Irrigation Science, 2019, 37(3): 333-343. |
42 | ZHAO X S, LIU Y B, TANAKA H, et al. A comparison of flux variance and surface renewal methods with eddy covariance[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2010, 3(3): 345-350. |
43 | MARUYAMA T, ITO K, TAKIMOTO H. Abnormal data rejection range in the Bowen ratio and inverse analysis methods for estimating evapotranspiration[J]. Agricultural and Forest Meteorology, 2019, 269: 323-334. |
44 | FENG Fangguan. Comparing evapotranspiration estimates by the Bowen ratio energy balance and surface renewal methods [D]. Guangzhou: Sun Yat-sen University, 2021. |
44 | 冯房观. 基于波文比与高频温度的蒸散发观测方法对比研究[D]. 广州:中山大学, 2021. |
45 | HU Y G, BUTTAR N A, TANNY J, et al. Surface renewal application for estimating evapotranspiration: a review[J]. Advances in Meteorology, 2018, 2018. DOI:10.1155/2018/1690714 . |
46 | BUTTAR N A. Sensible and latent heat flux estimation in tea fields using surface renewal and flux variance methods [D]. Zhenjiang: Jiangsu University, 2019. |
47 | WANG J Z, BUTTAR N A, HU Y G, et al. Estimation of sensible and latent heat fluxes using surface renewal method: case study of a tea plantation[J]. Agronomy, 2021, 11(1). DOI:10.3390/agronomy11010179 . |
48 | HU H J, LU Y Z, HU Y G, et al. Evaluation of two surface renewal methods for calculating the sensible heat flux over a tea field ecosystem in hilly terrain[J]. Agronomy, 2023, 13(5). DOI:10.3390/agronomy13051302 . |
/
〈 |
|
〉 |