Parameterized Adaptation of the Winter Atmospheric Boundary Layer in the Nyingchi Region of Southeast Tibet
Received date: 2023-06-01
Revised date: 2023-08-18
Online published: 2023-09-25
Supported by
the National Natural Science Foundation of China(42230610);The Ministry of Science and Technology of China(2019QZKK0103);The Natural Science Foundation of Sichuan Province(2022NSFSC0217)
The uncertainty of parameterization schemes makes it difficult for numerical simulations to describe atmospheric boundary layer processes accurately, and has, therefore, been the focus of many researchers in recent years. Four boundary layer schemes, namely the WRF model YSU, ACM2, QNSE, and BouLac, were used to conduct numerical simulation experiments on the atmospheric boundary layer in winter in Southeast Tibet. Radio sounding observations from January 3 to January 9, 2022, were used for validating the atmospheric boundary layer structural characteristics, including temperature, specific humidity, wind direction, wind speed, as well as the modeled results for the near-surface stratum, surface temperature, and heat fluxes. Subsequently, the applicability of different boundary layer parameterization schemes in Nyingchi, Southeast Tibet, was evaluated. Results show that the ACM2 scheme exhibits the smallest simulation deviation for the potential temperature. When convective exchange is weak, the parameterization scheme has a small boundary layer simulation error. Local versus nonlocal mixing contributes more to the boundary layer development than turbulent kinetic energy. For the boundary layer height, the effect of the TKE scheme is greater than that of the nonlocal scheme. For specific humidity, the simulations show significant drying out, and the BouLac scenario is overall the closest to the observations. For wind speed, simulations are more consistent with the observations. For the surface air temperature and surface temperature, the simulated values of the parameterized schemes are more consistent with the trend of the observed values, and the ACM2 scheme is the most effective. In winter, latent heat flux is low, sensible heat flux plays a dominant role, and the BouLac scheme simulates them most appropriately.
Pei XU , Maoshan LI , Na CHANG , Ming GONG , Wei FU . Parameterized Adaptation of the Winter Atmospheric Boundary Layer in the Nyingchi Region of Southeast Tibet[J]. Advances in Earth Science, 2023 , 38(9) : 954 -966 . DOI: 10.11867/j.issn.1001-8166.2023.053
1 | WU Guoxiong, MAO Jiangyu, DUAN Anmin, et al. Recent progress in the study on the impacts of Tibetan Plateau on Asian summer climate[J]. Acta Meteorologica Sinica, 2004, 62(5): 528-540. |
1 | 吴国雄, 毛江玉, 段安民, 等. 青藏高原影响亚洲夏季气候研究的最新进展[J]. 气象学报, 2004, 62(5): 528-540. |
2 | MA Yaoming, HU Zeyong, TIAN Lide, et al. Progress in the study of climate system changes on the Qinghai-Tibet Plateau and their impacts and mechanisms on the East Asian region[J]. Advances in Earth Science, 2014, 29(2): 207-215. |
2 | 马耀明, 胡泽勇, 田立德, 等. 青藏高原气候系统变化及其对东亚区域的影响与机制研究进展[J]. 地球科学进展, 2014, 29(2): 207-215. |
3 | XU Xiangde, CHEN Lianshou. Advances of the study on Tibetan Plateau experiment of atmospheric sciences[J]. Journal of Applied Meteorological Science, 2006, 17(6): 756-772. |
3 | 徐祥德, 陈联寿. 青藏高原大气科学试验研究进展[J]. 应用气象学报, 2006, 17(6): 756-772. |
4 | ZHU Yuxiang, DING Yihui, XU Huaigang. The decadal relationship between atmospheric heat source of winter and spring snow over Tibetan Plateau and rainfall in East China[J]. Acta Meteorologica Sinica, 2007, 65(6): 946-958. |
4 | 朱玉祥, 丁一汇, 徐怀刚. 青藏高原大气热源和冬春积雪与中国东部降水的年代际变化关系[J]. 气象学报, 2007, 65(6): 946-958. |
5 | DEARDORFF J W. Numerical investigation of neutral and unstable planetary boundary layers[J]. Journal of the Atmospheric Sciences, 1972, 29(1): 91-115. |
6 | SEIBERT P, BEYRICH F, GRYNING S E, et al. Review and intercomparison of operational methods for the determination of the mixing height[J]. Atmospheric Environment, 2000, 34(7): 1 001-1 027. |
7 | MEDEIROS B, HALL A, STEVENS B. What controls the mean depth of the PBL?[J]. Journal of Climate, 2005, 18(16): 3 157-3 172. |
8 | LIU S Y, LIANG X Z. Observed diurnal cycle climatology of planetary boundary layer height[J]. Journal of Climate, 2010, 23(21): 5 790-5 809. |
9 | LEVENTIDOU E, ZANIS P, BALIS D, et al. Factors affecting the comparisons of planetary boundary layer height retrievals from CALIPSO, ECMWF and radiosondes over Thessaloniki, Greece[J]. Atmospheric Environment, 2013, 74: 360-366. |
10 | KONOR C S, BOEZIO G C, MECHOSO C R, et al. Parameterization of PBL processes in an atmospheric general circulation model: description and preliminary assessment[J]. Monthly Weather Review, 2009, 137(3): 1 061-1 082. |
11 | YE Duzheng. Meteorology of Qinghai-Tibet Plateau[M]. Beijing: Science Press, 1979. |
11 | 叶笃正. 青藏高原气象学[M]. 北京: 科学出版社, 1979. |
12 | ZHOU Wen, YANG Shengpeng, JIANG Xi, et al. Estimating planetary boundary layer height over the Tibetan Plateau using COSMIC radio occultation data[J]. Acta Meteorologica Sinica, 2018, 76(1): 117-133. |
12 | 周文, 杨胜朋, 蒋熹, 等. 利用COSMIC掩星资料研究青藏高原地区大气边界层高度[J]. 气象学报, 2018, 76(1): 117-133. |
13 | ZUO H C, HU Y Q, LI D L, et al. Seasonal transition and its boundary layer characteristics in Anduo area of Tibetan Plateau[J]. Progress in Natural Science, 2005, 15(3): 239-245. |
14 | LI Maoshan, DAI Youxue, MA Yaoming, et al. Analysis on structure of atmospheric boundary layer and energy exchange of surface layer over mount Qomolangma region[J]. Plateau Meteorology, 2006, 25(5): 807-813. |
14 | 李茂善, 戴有学, 马耀明, 等. 珠峰地区大气边界层结构及近地层能量交换分析[J]. 高原气象, 2006, 25(5): 807-813. |
15 | CHEN X L, A?EL J A, SU Z B, et al. The deep atmospheric boundary layer and its significance to the stratosphere and troposphere exchange over the Tibetan Plateau[J]. PLoS ONE, 2013, 8(2). DOI: 10.1371/journal.pone.0056909 . |
16 | CHE J H, ZHAO P. Characteristics of the summer atmospheric boundary layer height over the Tibetan Plateau and influential factors[J]. Atmospheric Chemistry and Physics, 2021, 21(7): 5 253-5 268. |
17 | GU L L, YAO J M, HU Z Y, et al. Characteristics of the atmospheric boundary layer’s structure and heating (cooling) rate in summer over the Northern Tibetan Plateau[J]. Atmospheric Research, 2022, 269. DOI: 10.1016/j.atmosres.2022.106045 . |
18 | CHOU Yan. Numerical simulation study on the formation of deep atmospheric boundary layer on Qinghai-Tibet Plateau and its influence on ozone transport[D]. Lanzhou: Lanzhou University, 2022. |
18 | 丑岩. 青藏高原深厚大气边界层的形成及其对臭氧传输影响的数值模拟研究[D]. 兰州: 兰州大学, 2022. |
19 | WANG Qianru. Numerical simulation of the influence of atmospheric boundary layer height on plateau vortex in Qinghai-Tibet Plateau[D]. Chengdu: Chengdu University of Information Engineering, 2018. |
19 | 王倩茹. 青藏高原大气边界层高度对高原涡影响的数值模拟[D]. 成都: 成都信息工程大学, 2018. |
20 | WANG Yinjun. Study on the parameterization of Dali boundary layer and the influence of turbulence characteristics in the southeast margin of Qinghai-Tibet Plateau[D]. Beijing: Chinese Academy of Meteorological Sciences, 2014. |
20 | 王寅钧. 青藏高原东南缘大理边界层参数化与湍流特征影响研究[D]. 北京: 中国气象科学研究院, 2014. |
21 | LI Maoshan, MA Yaoming, Shihua Lü, et al. Modeling of near surface energy and characteristic of boundary layer in the northern Tibetan Plateau[J]. Plateau Meteorology, 2008, 27(1): 36-45 |
21 | 李茂善, 马耀明, 吕世华, 等. 藏北高原地表能量和边界层结构的数值模拟[J]. 高原气象, 2008, 27(1): 36-45. |
22 | ZHANG Xiaopei, YIN Yan. Evaluation of the four PBL schemes in WRF Model over complex topographic areas[J]. Journal of Nanjing Institute of Meteorology, 2013, 36(1): 68-76. |
22 | 张小培, 银燕. 复杂地形地区WRF模式四种边界层参数化方案的评估[J]. 大气科学学报, 2013, 36(1): 68-76. |
23 | WANG Chenggang, SHEN Yingjie, LUO Feng, et al. Comparative analysis of several boundary layer parameterization schemes in WRF model under sunny and cloudy conditions[J]. Chinese Journal of Geophysics, 2017, 60(3): 924-934. |
23 | 王成刚, 沈滢洁, 罗峰, 等. 晴天及阴天条件下WRF模式中几种边界层参数化方案的对比分析研究[J]. 地球物理学报, 2017, 60(3): 924-934. |
24 | LI Fei, ZOU Han, ZHOU Libo, et al. Study of boundary layer parameterization schemes’ applicability of WRF model over complex underlying surfaces in southeast Tibet[J]. Plateau Meteorology, 2017, 36(2): 340-357. |
24 | 李斐, 邹捍, 周立波, 等. WRF模式中边界层参数化方案在藏东南复杂下垫面适用性研究[J]. 高原气象, 2017, 36(2): 340-357. |
25 | XU Lujun, LIU Huizhi, XU Xiangde, et al. Applicability of WRF model to simulation of atmospheric boundary layer in Naqu area of Qinghai-Tibet Plateau[J]. Acta Meteorologica Sinica, 2018, 76(6): 955-967. |
25 | 许鲁君, 刘辉志, 徐祥德, 等. WRF模式对青藏高原那曲地区大气边界层模拟适用性研究[J]. 气象学报, 2018, 76(6):955-967. |
26 | DAI C Y, GAO Z Q, WANG Q, et al. Analysis of atmospheric boundary layer height characteristics over the Arctic Ocean using the aircraft and GPS soundings[J]. Atmospheric and Oceanic Science Letters, 2011, 4(2): 124-130. |
27 | LIN Y L, JAO I C. A numerical study of flow circulations in the central valley of California and formation mechanisms of the Fresno eddy[J]. Monthly Weather Review, 1995, 123(11): 3 227-3 239. |
28 | DUDHIA J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J]. Journal of the Atmospheric Sciences, 1989, 46(20): 3 077-3 107. |
29 | MLAWER E J, TAUBMAN S J, BROWN P D, et al. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-K model for the longwave[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D14): 16 663-16 682. |
30 | GRELL G A, DéVéNYI D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques[J]. Geophysical Research Letters, 2002, 29(14). DOI: 10.1029/2002GL015311 . |
31 | CHEN F, DUDHIA J. Coupling an advanced land surface-hydrology model with the Penn state-NCAR MM5 modeling system. part I: model implementation and sensitivity[J]. Monthly Weather Review, 2001, 129(4): 569-585. |
32 | HONG S Y, NOH Y, DUDHIA J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Monthly Weather Review, 2006, 134(9): 2 318-2 341. |
33 | PLEIM J E. A combined local and nonlocal closure model for the atmospheric boundary layer. part I: model description and testing[J]. Journal of Applied Meteorology and Climatology, 2007, 46(9): 1 383-1 395. |
34 | SUKORIANSKY S, GALPERIN B, PEROV V. Application of a new spectral theory of stably stratified turbulence to the atmospheric boundary layer over sea ice[J]. Boundary-Layer Meteorology, 2005, 117(2): 231-257. |
35 | BOUGEAULT P, LACARRERE P. Parameterization of orography-induced turbulence in a mesobeta: scale model[J]. Monthly Weather Review, 1989, 117(8): 1 872-1 890. |
36 | CHEN X L, LIU Y M, WU G X. Understanding the surface temperature cold bias in CMIP5 AGCMs over the Tibetan Plateau[J].Advances in Atmospheric Sciences, 2017, 34(12): 1 447-1 460. |
/
〈 |
|
〉 |