Migration Processes of the Cenozoic Intracontinental Foreland Basins in Western China and Their Tectonics Implications
Received date: 2023-04-27
Revised date: 2023-06-02
Online published: 2023-07-19
Supported by
the National Natural Science Foundation of China “Deep structures of the Tian Shan unraveled by the evolution of the bilateral foreland basins”(42102250);“Quantifying the thermal effects of multi-scale geological processes within the Kuqa foreland basin”(42072153)
The migration processes of the Cenozoic intracontinental foreland basins in western China provide valuable insights into the shortening and uplifting histories of coupled orogenic belts. A comprehensive review of the research methodologies used to reconstruct foreland basin migration and its quantitative relationship with crustal shortening enables us to uncover the structural implications of this process. Seismic reflection profiles crossing the foreland basins image the stratal onlaps and conglomerate-sandstone transitions in the basins. Based on the interpretations of seismic profiles, the migration rate of foreland basins can be determined by integrating stratigraphic age constraints derived from magnetostratigraphy. The variations in the rates correspond to the variations in the underthrusting rates of the foreland basin basement relative to the orogenic belts, revealing changes in the horizontal crustal shortening rates absorbed by the orogenic belts. Through a comparative analysis of the migration processes of the rejuvenated intracontinental foreland basins on the northern side of the West Kunlun Mountains and the southern and northern sides of the Tianshan Mountains, these two mountains contrast markedly in terms of crustal shortening rates and deformation patterns since approximately 30 Ma. The contrast between these mountains indicates differences in their dynamic mechanisms. Furthermore, this method holds great potential for future applications in unraveling the growth process of the northeastern margin of the Qinghai-Tibet Plateau.
Chao LI , Guohui CHEN , Zhiyuan HE , Ping WANG , Fei XUE , Yifan SHI . Migration Processes of the Cenozoic Intracontinental Foreland Basins in Western China and Their Tectonics Implications[J]. Advances in Earth Science, 2023 , 38(7) : 729 -744 . DOI: 10.11867/j.issn.1001-8166.2023.038
1 | KAO H, GAO R, RAU R J, et al. Seismic image of the Tarim Basin and its collision with Tibet[J]. Geology, 2001, 29(7): 575-578. |
2 | HUANGFU Pengpeng, LI Zhonghai, ZHANG Kaijun. India-Tarim lithospheric mantle collision beneath western Tibet controls the Cenozoic building of Tian Shan[J]. Geophysical Research Letters, 2021, 48. DOI:10.1029/2021GL094561 . |
3 | GAO Rui, HUANG Dongding, LU Deyuan, et al. Deep seismic reflection profile across the juncture zone between the Tarim Basin and the West Kunlun Mountains[J]. Chinese Science Bulletin, 2000, 45(24): 2 281-2 286. |
4 | RAI S S, PRIESTLEY K, GAUR V K, et al. Configuration of the Indian Moho beneath the NW Himalaya and Ladakh[J]. Geophysical Research Letters, 2006, 33(15). DOI:10.1029/2006GL026076 . |
5 | WITTLINGER G, VERGNE J, TAPPONNIER P, et al. Teleseismic imaging of subducting lithosphere and Moho offsets beneath western Tibet[J]. Earth and Planetary Science Letters, 2004, 221(1/2/3/4): 117-130. |
6 | ZHAO Junmeng, LIU Guodong, LU Zaoxun, et al. Lithospheric structure and dynamic processes of the Tianshan orogenic belt and the Junggar Basin[J]. Tectonophysics, 2003, 376(3):199-239. |
7 | ZHAO Junmeng, YUAN Xiaohui, LIU Hongbing, et al. The boundary between the Indian and Asian tectonic plates below Tibet[J]. Proceedings of the National Academy of Sciences, 2010, 107(25): 11 229-11 233. |
8 | MOLNAR P, TAPPONNIER P. Cenozoic tectonics of Asia: effects of a continental collision[J]. Science, 1975, 189: 419-426. |
9 | ROYDEN L H, BURCHFIEL B C, van der HILST R D. The geological evolution of the Tibetan Plateau[J]. Science, 2008, 321(5 892): 1 054-1 058. |
10 | Honghua Lü, LI Youli. Development of tectonic geomorphology study promoted by new methods in China: a viewpoint from reviewing the Tian Shan researches[J]. Advances in Earth Science, 2020, 35(6): 594-606. |
10 | 吕红华, 李有利. 不断融入新元素的我国构造地貌学研究: 以天山为例[J]. 地球科学进展, 2020, 35(6): 594-606. |
11 | LU Xueyun, JI Jianqing, WANG Lining,et al. Research advances and prospects of climate-tectonic-erosion interactions[J]. Advances in Earth Science,2023,38(3):270-285. |
11 | 鲁学云,季建清,王丽宁,等. 气候—构造—剥蚀相互作用研究进展与展望[J]. 地球科学进展,2023,38(3):270-285. |
12 | YIN An. Mode of Cenozoic east-west extension in Tibet suggesting a common origin of rifts in Asia during the Indo-Asian collision[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B9): 21 745-21 759. |
13 | TAPPONNIER P, XU Z Q, ROGER F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294(5 547): 1 671-1 677. |
14 | WANG Min, SHEN Zhengkang. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(2). DOI:10.1029/2019JB018774 . |
15 | ZHANG Peizhen, WANG Weitao, GAN Weijun, et al. Present-day deformation and geodynamic processes of the Tibetan Plateau[J]. Acta Geologica Sinica, 2022, 96(10): 3 297-3 313. |
15 | 张培震, 王伟涛, 甘卫军, 等. 青藏高原的现今构造变形与地球动力过程[J]. 地质学报, 2022, 96(10): 3 297-3 313. |
16 | MOLNAR P, LYON-CAENT H. Fault plane solutions of earthquakes and active tectonics of the Tibetan Plateau and its margins[J]. Geophysical Journal International, 1989, 99(1): 123-153. |
17 | XU Xiwei, Cheng Jia, XU Chong, et al. Discussion on block kinematic model and future themed areas for earthquake occurrence in the Tibetan plateau: inspiration from the Ludian and Jinggu earthquakes[J]. Seismology and Geology, 2014, 36(4):1 116-1 134. |
17 | 徐锡伟,程佳,许冲,等. 青藏高原块体运动模型与地震活动主体地区讨论:鲁甸和景谷地震的启示[J]. 地震地质, 2014, 36(4): 1 116-1 134. |
18 | GUILLOT S, GARZANTI E, BARATOUX D, et al. Reconstructing the total shortening history of the NW Himalaya[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(7). DOI:10.1029/2002GC000484 . |
19 | COPLEY A, AVOUAC J P, ROYER J Y. India-Asia collision and the Cenozoic slowdown of the Indian plate: implications for the forces driving plate motions[J]. Journal of Geophysical Research, 2010, 115(B3). DOI:10.1029/2009JB006634 . |
20 | MEYER B, TAPPONNIER P, BOURJOT L, et al. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet Plateau[J]. Geophysical Journal International, 1998, 135(1): 1-47. |
21 | LU Huafu, HOWELL D G, JIA Dong, et al. Rejuvenation of the kuqa foreland basin, northern flank of the Tarim Basin, northwest China[J]. International Geology Review, 1994, 36(12): 1 151-1 158. |
22 | LI Desheng, LIANG Digang, JIA Chengzao. Hydrocarbon accumulations in the Tarim Basin, China[J]. AAPG Bulletin, 1996, 80: 1 587-1 603. |
23 | LI Chuanxin, GUO Zhaojie. Quantitative analyses of Late Cenozoic tectonic deformation across the northern Tianshan forland[J]. Chinese Journal of Geology, 2011, 46(3): 709-722. |
23 | 李传新, 郭召杰. 晚新生代天山北缘构造变形定量研究[J]. 地质科学, 2011, 46(3): 709-722. |
24 | QI Jiafu, LI Yong, WU Chao, et al. The interpretation models and discussion on the contractive structure deformation of Kuqa Depression, Tarim Basin[J]. Geology in China, 2013, 40(1): 106-120. |
24 | 漆家福, 李勇, 吴超, 等. 塔里木盆地库车坳陷收缩构造变形模型若干问题的讨论[J]. 中国地质, 2013, 40(1): 106-120. |
25 | LIU Hefu, WANG Zecheng, XIONG Baoxian, et al. Coupling analysis of Mesozoic-Cenozoic foreland basin and mountain system in central and Western China[J]. Earth Science Frontiers, 2000, 7(3): 55-72. |
25 | 刘和甫, 汪泽成, 熊保贤, 等. 中国中西部中、新生代前陆盆地与挤压造山带耦合分析[J]. 地学前缘, 2000, 7(3): 55-72. |
26 | DING Xiaozhong, LIN Changsong, LIU Jingyan, et al. The sequence stratigraphic response to the basin-orogene coupling process of Cretaceous-Neogene in Tarim Basin, China[J]. Earth Science Frontiers, 2011, 18(4): 144-157. |
26 | 丁孝忠, 林畅松, 刘景彦, 等. 塔里木盆地白垩纪—新近纪盆山耦合过程的层序地层响应[J]. 地学前缘, 2011, 18(4): 144-157. |
27 | JOHNSON D D, BEAUMONT C. Preliminary results from a planform kinematic model of orogen evolution, surface processes and the development of clastic foreland basin stratigraphy[M]//Stratigraphic evolution of foreland basins. SEPM (Society for Sedimentary Geology), 1995: 3-24. |
28 | DeCELLES P G, DECELLES P C. Rates of shortening, propagation, underthrusting, and flexural wave migration in continental orogenic systems[J]. Geology, 2001, 29(2): 135-138. |
29 | DeCELLES P G, GILES K A. Foreland basin systems[J]. Basin Research, 1996, 8(2): 105-123. |
30 | NAYLOR M, SINCLAIR H D. Pro- vs. retro-foreland basins[J]. Basin Research, 2008, 20(3): 285-303. |
31 | SINCLAIR H D, NAYLOR M. Foreland Basin subsidence driven by topographic growth versus plate subduction[J]. Geological Society of America Bulletin, 2012, 124(3/4): 368-379. |
32 | WANG Shengli, CHEN Yan, CHARREAU J, et al. Tectono-stratigraphic history of the southern Junggar Basin: seismic profiling evidences[J]. Terra Nova, 2013, 25(6): 490-495. |
33 | WANG Shengli, CHEN Yan, CHARREAU J, et al. Underthrusting of the Tarim lithosphere beneath the western Kunlun range, insights from seismic profiling evidence[J]. Tectonics, 2021, 40(2). DOI:10.1029/2019TC005932 . |
34 | LI Chao, WANG Shengli, WANG Liangshu. Tectonostratigraphic history of the southern Tian Shan, Western China, from seismic reflection profiling[J]. Journal of Asian Earth Sciences, 2019, 172: 101-114. |
35 | LI Chao, WANG Shengli, LI Yongxiang, et al. Growth of the Tian Shan drives migration of the conglomerate-sandstone transition in the southern Junggar foreland basin[J]. Geophysical Research Letters, 2022, 49(4). DOI:10.1029/2021GL097545 . |
36 | LI C, WANG S L, WANG Y J, et al. Modern southern Junggar foreland basin system adjacent to the northern Tian Shan, northwestern China[J]. Lithosphere, 2022(1). DOI:10.2113/2022/7872549 . |
37 | LYON-CAEN H, MOLNAR P. Gravity anomalies, flexure of the Indian Plate, and the structure, support and evolution of the Himalaya and Ganga Basin[J]. Tectonics, 1985, 4(6): 513-538. |
38 | SIMOES M, AVOUAC J P. Investigating the kinematics of mountain building in Taiwan from the spatiotemporal evolution of the foreland basin and western foothills[J]. Journal of Geophysical Research, 2006, 111. DOI:10.1029/2005JB004209 . |
39 | ALLEN P A, ALLEN J R. Basin analysis: principles and application to petroleum play assessment[M]. Wiley-Blackwell Publishing, 2013. |
40 | FLEMINGS P B, JORDAN T E. A synthetic stratigraphic model of foreland basin development[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B4): 3 851-3 866. |
41 | SINCLAIR H D, COAKLEY B J, ALLEN P A, et al. Simulation of Foreland Basin Stratigraphy using a diffusion model of mountain belt uplift and erosion: an example from the central Alps, Switzerland[J]. Tectonics, 1991, 10(3): 599-620. |
42 | ZHENG Hongbo, WEI Xiaochun, TADA R, et al. Late Oligocene-early Miocene birth of the Taklimakan Desert[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(25): 7 662-7 667. |
43 | BOSBOOM R, DUPONT-NIVET G, GROTHE A, et al. Linking Tarim Basin Sea retreat (west China) and Asian aridification in the late Eocene[J]. Basin Research, 2014, 26(5): 621-640. |
44 | BURBANK D W, BECK R A, RAYNOLDS R G H, et al. Thrusting and gravel progradation in foreland basins: a test of post-thrusting gravel dispersal[J]. Geology, 1988, 16(12): 1 143-1 146. |
45 | ALLEN P A, ARMITAGE J J, CARTER A, et al. The Qs problem: sediment volumetric balance of proximal foreland basin systems[J]. Sedimentology, 2013, 60(1): 102-130. |
46 | SMITH G S, FERGUSON R I. The gravel sand transition along river channels[J]. Journal of Sedimentary Research, 1995, 65(2): 423-430. |
47 | DINGLE E H, SINCLAIR H D, VENDITTI J G, et al. Sediment dynamics across gravel-sand transitions: implications for river stability and floodplain recycling[J]. Geology, 2020, 48(5): 468-472. |
48 | DINGLE E H, SINCLAIR H D, ATTAL M, et al. Subsidence control on river morphology and grain size in the ganga plain[J]. American Journal of Science, 2016, 316: 778-812. |
49 | DUBILLE M, LAVé J. Rapid grain size coarsening at sandstone/conglomerate transition: similar expression in Himalayan modern rivers and Pliocene molasse deposits[J]. Basin Research, 2015, 27(1): 26-42. |
50 | CHARREAU J, CHEN Y, GILDER S, et al. Neogene uplift of the Tian Shan Mountains observed in the magnetic record of the Jingou River section (northwest China)[J]. Tectonics, 2009, 28(2). DOI:10.1029/2007TC002137 . |
51 | LU H H, BURBANK D W, LI Y L, et al. Late Cenozoic structural and stratigraphic evolution of the northern Chinese Tian Shan foreland[J]. Basin Research, 2010, 22(3): 249-269. |
52 | DAVIS D, SUPPE J, DAHLEN F A. Mechanics of fold-and-thrust belts and accretionary wedges[J]. Journal of Geophysical Research, 1983, 88(B2): 1 153-1 172. |
53 | DENG Wanming, YIN Jixiang, GUO Zhongping. Basic-ultramafic and volcanic rocks in Changbu-Shuanghu area of northern Xizang (Tibet) [J]. Science China Serie D: Earth Sciences, 1996, 26(4): 296-301. |
53 | 邓万明,尹集祥,呙中平. 羌塘茶布—双湖地区基性超基性岩和火山岩研究[J]. 中国科学D辑:地球科学, 1996,26(4): 296-301. |
54 | XIAO Wenjiao, HAN Fanglin, WINDLEY B F, et al. Multiple accretionary orogenies and episodic growth of continents: insights from the western Kunlun Range, central Asia[J]. International Geology Review, 2003, 45: 303-328. |
55 | LU Renqi, XU Xiwei, HE Dengfa, et al. Coseismic and blind fault of the 2015 Pishan Mw 6.5 earthquake: implications for the sedimentary-tectonic framework of the western Kunlun Mountains, northern Tibetan Plateau[J]. Tectonics, 2016, 35(4): 956-964. |
56 | GUILBAUD C, SIMOES M, BARRIER L, et al. Kinematics of active deformation across the western Kunlun Mountain range (Xinjiang, China) and potential seismic hazards within the southern Tarim Basin[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(12): 10 398-10 426. |
57 | ZHANG Shiben, HUANG Zhibin, ZHU Huaicheng. Phanerozoic strata in the Tarim Basin[M]. Beijing: Petroleum Industry Press, 2004. |
57 | 张师本, 黄智斌, 朱怀诚. 塔里木盆地覆盖区显生宙地层[M]. 北京: 石油工业出版社, 2004. |
58 | JIANG Xiaodian, LI Zhengxiang. Seismic reflection data support episodic and simultaneous growth of the Tibetan Plateau since 25?Myr[J]. Nature Communications, 2014, 5. DOI:10.1038/ncomms6453 . |
59 | WANG Wei, QIAO Xuejun, YANG Shaomin, et al. Present-day velocity field and block kinematics of Tibetan Plateau from GPS measurements[J]. Geophysical Journal International, 2017, 208(2): 1 088-1 102. |
60 | LABORDE A, BARRIER L, SIMOES M, et al. Cenozoic deformation of the Tarim Basin and surrounding ranges (Xinjiang, China): a regional overview[J]. Earth-Science Reviews, 2019, 197. DOI:10.1016/j.earscirev.2019.102891 . |
61 | BANDE A, SOBEL E R, MIKOLAICHUK A, et al. Talas-Fergana Fault Cenozoic timing of deformation and its relation to Pamir indentation[J]. Geological Society, London, Special Publications, 2017, 427(1): 295-311. |
62 | XU Xiwei, TAN Xibin, WU Guodong, et al. Surface rupture features of the 2008 Yutian MS 7.3 earthquake and its tectonic nature[J]. Seismology and Geology, 2011, 33(2): 462-471. |
62 | 徐锡伟, 谭锡斌, 吴国栋, 等. 2008年于田MS 7.3地震地表破裂带特征及其构造属性讨论[J]. 地震地质, 2011, 33(2): 462-471. |
63 | XIAO Wenjiao, WINDLEY B F, ALLEN M B, et al. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage[J]. Gondwana Research, 2013, 23(4): 1 316-1 341. |
64 | HENDRIX M S, GRAHAM S A, CARROLL A R, et al. Sedimentary record and climatic implications of recurrent deformation in the Tian Shan: evidence from Mesozoic strata of the North Tarim, South Junggar, and Turpan Basins, northwest China[J]. Geological Society of America Bulletin, 1992, 104(1): 53-79. |
65 | DUMITRU T A, ZHOU D, CHANG E Z, et al. Uplift, exhumation, and deformation in the Chinese Tian Shan[M]// HENDRIX M S, DAVIS G A. Paleozoic and Mesozoic tectonic evolution of central Asia: from continental assembly to intracontinental deformation. Geological Society of America Memoir, 2001, 194: 71-99. |
66 | DUMITRU T A, ZHOU Da, CHANG E Z, et al. Uplift, exhumation, and deformation in the Chinese Tian Shan[M]// HENDRIX M S, DAVIS G A. Paleozoic and Mesozoic tectonic evolution of central Asia: from continental assembly to intracontinental deformation. Geological Society of America Memoir, 2001, 194: 71-99. |
67 | DENG Qidong, FENG Xianyue, ZHANG Peizhen, et al. Reverse fault and fold zone in the Urumqi range-front depression of the northern Tianshan and its genetic mechanism[J]. Earth Science Frontiers, 1999, 6(4): 191-201. |
67 | 邓起东, 冯先岳, 张培震, 等. 乌鲁木齐山前坳陷逆断裂—褶皱带及其形成机制[J]. 地学前缘, 1999, 6(4): 191-201. |
68 | HUBERT-FERRARI A, SUPPE J, GONZALEZ-MIERES R, et al. Mechanisms of active folding of the landscape (southern Tian Shan, China)[J]. Journal of Geophysical Research, 2007, 112(B3). DOI:10.1029/2006JB004362 . |
69 | GILLIGAN A, ROECKER S W, PRIESTLEY K F, et al. Shear velocity model for the Kyrgyz Tien Shan from joint inversion of receiver function and surface wave data[J]. Geophysical Journal International, 2014, 199(1): 480-498. |
70 | SUN Weijia, AO Songjian, TANG Qingya, et al. Forced Cenozoic continental subduction of Tarim craton-like lithosphere below the Tianshan revealed by ambient noise tomography[J]. Geology, 2022, 50(12): 1 393-1 397. |
71 | YANG Youqing, LIU Mian. Cenozoic deformation of the Tarim plate and the implications for mountain building in the Tibetan Plateau and the Tian Shan[J]. Tectonics, 2002, 21(6): 9-1-9-17. |
72 | CHARREAU J, GILDER S, CHEN Y, et al. Magnetostratigraphy of the Yaha section, Tarim Basin (China): 11 Ma acceleration in erosion and uplift of the Tian Shan Mountains[J]. Geology, 2006, 34(3): 181-184. |
73 | HUANG B, PIPER J, PENG S, et al. Magnetostratigraphic study of the Kuche Depression, Tarim Basin, and Cenozoic uplift of the Tian Shan Range, Western China[J]. Earth and Planetary Science Letters, 2006, 251(3/4): 346-364. |
74 | WU C Y, ZHANG P Z, ZHANG Z Q, et al. Slip partitioning and crustal deformation patterns in the Tianshan orogenic belt derived from GPS measurements and their tectonic implications[J]. Earth-Science Reviews, 2023, 238. DOI:10.1016/j.earscirev.2023.104362 . |
75 | CHARREAU J, BLARD P H, LAVé J, et al. Unsteady topography in the eastern Tianshan due to imbalance between denudation and crustal thickening[J]. Tectonophysics, 2023, 848. DOI:10.1016/j.tecto.2022.229702 . |
76 | WANG Xin, SUPPE J, GUAN Shuwei, et al. Cenozoic structure and tectonic evolution of the Kuqa fold belt, southern Tianshan, China[J]. American Association of Petroleum Geologists Memoir, 2011, 94: 215-243. |
77 | CHARREAU J, SAINT-CARLIER D, DOMINGUEZ S, et al. Denudation outpaced by crustal thickening in the eastern Tianshan[J]. Earth and Planetary Science Letters, 2017, 479: 179-191. |
78 | CHARREAU J, CHEN Y, GILDER S, et al. Magnetostratigraphy and rock magnetism of the Neogene Kuitun He section (northwest China): implications for Late Cenozoic uplift of the Tianshan Mountains[J]. Earth and Planetary Science Letters, 2005, 230(1/2): 177-192. |
79 | LU Honghua, LI Bingjing, WU Dengyun, et al. Spatiotemporal patterns of the Late Quaternary deformation across the northern Chinese Tian Shan foreland[J]. Earth-Science Reviews, 2019, 194: 19-37. |
80 | CAO K, WANG G C, BERNET M, et al. Exhumation history of the West Kunlun Mountains, northwestern Tibet: evidence for a long-lived, rejuvenated orogen[J]. Earth and Planetary Science Letters, 2015, 432: 391-403. |
81 | YU S, CHEN W, EVANS N J, et al. Cenozoic uplift, exhumation and deformation in the North Kuqa Depression, China as constrained by (U-Th)/He thermochronometry[J]. Tectonophysics, 2014, 630: 166-182. |
82 | CHANG Jian, TIAN Yuntao, QIU Nansheng. Mid-Late Miocene deformation of the northern Kuqa fold-and-thrust belt (southern Chinese Tian Shan): an apatite (U-Th-Sm)/He study[J]. Tectonophysics, 2017, 694: 101-113. |
83 | WANG Yannan, ZHANG Jin, HUANG Xiao. Cenozoic exhumation of the Tianshan as constrained by regional low-temperature thermochronology[J]. Earth-Science Reviews, 2023, 237. DOI:10.1016/j.earscirev.2023.104325 . |
84 | NEIL E A, HOUSEMAN G A. Geodynamics of the Tarim Basin and the Tian Shan in central Asia[J]. Tectonics, 1997, 16(4): 571-584. |
85 | DAYEM K E, MOLNAR P, CLARK M K, et al. Far-field lithospheric deformation in Tibet during continental collision[J]. Tectonics, 2009, 28. DOI:10.1029/2008TC002344 . |
86 | LIU Fangbin, NIE Junsheng, ZHENG Dewen,et al. The Cenozoic exhumation history and forcing mechanism of SE Tibetan Plateau: a case study of the Lincang granite area[J]. Advances in Earth Science,2021,36(4):421-441. |
86 | 刘方斌,聂军胜,郑德文,等. 青藏高原东南缘新生代剥露历史及驱动机制探讨:以临沧花岗岩地区为例[J]. 地球科学进展,2021,36(4):421-441. |
87 | BABY G, SIMOES M, BARRIER L, et al. Kinematics of Cenozoic shortening of the Hotan anticline along the northwestern margin of the Tibetan Plateau (western Kunlun, China)[J]. Tectonics, 2022, 41(5). DOI:10.1029/2021TC006928 . |
88 | van HINSBERGEN D J J, KAPP P, DUPONT-NIVET G, et al. Restoration of Cenozoic deformation in Asia and the size of greater India[J]. Tectonics, 2011, 30(5). DOI:10.1029/2011TC002908 . |
89 | LEE T Y, LAWVER L A. Cenozoic plate reconstruction of Southeast Asia[J]. Tectonophysics, 1995, 251(1/2/3/4): 85-138. |
90 | SUN Chuang, LI Zhigang, ZUZA A V, et al. Controls of mantle subduction on crustal-level architecture of intraplate orogens, insights from sandbox modeling[J]. Earth and Planetary Science Letters, 2022, 584. DOI:10.1016/j.epsl.2022.117476 . |
91 | LI Qiong, WANG Jiaojiao, PAN Baotian. Numerical simulation of the influence of tectonics and precipitation on the evolution of alluvial fans at the northern foot of Qilian Mountains[J]. Advances in Earth Science, 2020, 35(6): 607-617. |
91 | 李琼, 王姣姣, 潘保田. 构造和降水对祁连山北麓冲积扇演化影响的数值模拟研究[J]. 地球科学进展, 2020, 35(6): 607-617. |
92 | JI Junliang, ZHANG Kexin, CLIFT P D, et al. High-resolution magnetostratigraphic study of the Paleogene-Neogene strata in the Northern Qaidam Basin: implications for the growth of the Northeastern Tibetan Plateau[J]. Gondwana Research, 2017, 46: 141-155. |
93 | WANG Weitao, ZHENG Wenjun, ZHANG Peizheng, et al. Expansion of the Tibetan Plateau during the Neogene[J]. Nature Communications, 2017, 8. DOI:10.1038/ncomms15887 . |
/
〈 |
|
〉 |