Research Progress on Hydroxylamine, An Intermediate in the Nitrogen Cycle
Received date: 2023-03-16
Revised date: 2023-05-12
Online published: 2023-07-19
Supported by
the National Natural Science Foundation of China “Source and flux of N2O in the euphotic zone of the Northwestern Pacific”(92058204);Creative Research Groups of the National Natural Science Foundation of China “Nitrogen cycle under global change”(41721005)
Hydroxylamine (NH2OH) is one of the most active trace forms of nitrogen in oceans, and it is the key intermediate product of many nitrogen cycle processes, such as ammonia oxidation, dissimilatory nitrate reduction to ammonium and anaerobic ammonia oxidation. Therefore, it is an important component of the marine nitrogen cycle network framework. Concurrently, NH2OH is an important precursor of the greenhouse gas nitrous oxide (N2O), closely related to the production and release of marine N2O. Accordingly, a systematic understanding of the source and sink, spatiotemporal variations, and regulatory mechanisms of NH2OH in the ocean is essential to understand the oceanic nitrogen cycle and climate effects. However, the nanomolar concentration of NH2OH in the ocean and its complex and active migration and transformation processes render the oceanographic community’s understanding of NH2OH unclear. Current research on marine NH2OH is systematically reviewed, focusing on the potential source and sink processes of NH2OH, the determination methods of NH2OH, the possible contribution of NH2OH to marine N2O, and the distribution characteristics and potential impact factors of NH2OH in the ocean. Finally, the problems and difficulties in determining NH2OH and the possible mechanisms affecting its distribution are summarized, and suggestions and prospects for future research on marine NH2OH are discussed.
Key words: Marine nitrogen cycle; Hydroxylamine; Nitrous oxide
Senwei TONG , Jinyu YANG , Xianhui WAN , Qingqing NIU , Shuh-Ji KAO . Research Progress on Hydroxylamine, An Intermediate in the Nitrogen Cycle[J]. Advances in Earth Science, 2023 , 38(7) : 688 -702 . DOI: 10.11867/j.issn.1001-8166.2023.033
1 | GRUBER N, GALLOWAY J N. An Earth-system perspective of the global nitrogen cycle[J]. Nature, 2008, 451(7 176): 293-296. |
2 | GALLOWAY J N, DENTENER F J, CAPONE D G, et al. Nitrogen cycles: past, present, and future[J]. Biogeochemistry, 2004, 70(2): 153-226. |
3 | FOWLER D, COYLE M, SKIBA U, et al. The global nitrogen cycle in the twenty-first century[J]. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 2013, 368(1 621). DOI:10.1098/rstb.2013.0164 . |
4 | GALLOWAY J N, ABER J D, ERISMAN J W, et al. The nitrogen cascade[J]. BioScience, 2003, 53(4): 341-356. |
5 | TOWNSEND A R, HOWARTH R W, BAZZAZ F A, et al. Human health effects of a changing global nitrogen cycle[J]. Frontiers in Ecology and the Environment, 2003, 1(5): 240-246. |
6 | TOWNSEND A R, HOWARTH R W. Fixing the global nitrogen problem[J]. Scientific American, 2010, 302(2): 64-71. |
7 | ERISMAN J W, GALLOWAY J N, SEITZINGER S, et al. Consequences of human modification of the global nitrogen cycle[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368(1 621). DOI:10.1098/rstb.2013.0116 . |
8 | ROCKSTR?M J, STEFFEN W, NOONE K, et al. A safe operating space for humanity[J]. Nature, 2009, 461(7 263): 472-475. |
9 | STEFFEN W, RICHARDSON K, ROCKSTR?M J, et al. Planetary boundaries: guiding human development on a changing planet[J]. Science, 2015, 347(6 223). DOI:10.1126/science.1259855 . |
10 | LADE S J, STEFFEN W, de VRIES W, et al. Human impacts on planetary boundaries amplified by Earth system interactions[J]. Nature Sustainability, 2019, 3(2): 119-128. |
11 | MOORE C M, MILLS M M, ARRIGO K R, et al. Processes and patterns of oceanic nutrient limitation[J]. Nature Geoscience, 2013, 6(9): 701-710. |
12 | USTICK L J, LARKIN A A, GARCIA C A, et al. Metagenomic analysis reveals global-scale patterns of ocean nutrient limitation[J]. Science, 2021, 372(6 539): 287-291. |
13 | FALKOWSKI P G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean[J]. Nature, 1997, 387(6 630): 272-275. |
14 | DAIMS H, LüCKER S, WAGNER M. A new perspective on microbes formerly known as nitrite-oxidizing bacteria[J]. Trends in Microbiology, 2016, 24(9): 699-712. |
15 | CRUTZEN P J. The influence of nitrogen oxides on the atmospheric ozone content[J]. Quarterly Journal of the Royal Meteorological Society, 1970, 96(408): 320-325. |
16 | RAVISHANKARA A R, DANIEL J S, PORTMANN R W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century[J]. Science, 2009, 326(5 949): 123-125. |
17 | KORTH F, KOCK A, ARéVALO-MARTíNEZ D L, et al. Hydroxylamine as a potential indicator of nitrification in the open ocean[J]. Geophysical Research Letters, 2019, 46(4): 2 158-2 166. |
18 | HUGHES E D, INGOLD C K, RIDD J H. 13. Nitrosation, diazotisation, and deamination. part I. principles, background, and method for the kinetic study of diazotisation[J]. Journal of the Chemical Society (Resumed), 1958(0): 58-65. DOI:10.1039/JR9580000058 . |
19 | SZILáRD I, JACOBSEN E, SYV?OJA E L, et al. Stability constants of metal ion-hydroxylamine complexes in aqueous solution[J]. Acta Chemica Scandinavica, 1963, 17: 2 674-2 680. |
20 | ERLENMEYER H, FLIERL C, SIGEL H. Metal ions and hydrogen peroxide. XXI. On the kinetics and mechanism of the reactions of hydrogen peroxide with hydrazine or hydroxylamine, catalyzed by Cu2+ and by the Cu2+-2, 2'-bipyridyl complex[J]. Journal of the American Chemical Society, 1969, 91(5): 1 065-1 071. |
21 | SHARON N, KATCHALSKY A. Equilibrium constants in interaction of carbonyl compounds with hydroxylamine[J]. Analytical Chemistry, 1952, 24(9): 1 509-1 510. |
22 | FIADEIRO M, SOLóRZANO L, STRICKLAND J D H. Hydroxylamine in seawater[J]. Limnology and Oceanography, 1967, 12(3): 555-556. |
23 | von BREYMANN M T, de ANGELIS M A, GORDON L I. Gas chromatography with electron capture detection for determination of hydroxylamine in seawater[J]. Analytical Chemistry, 1982, 54(7): 1 209-1 210. |
24 | BUTLER J H, GORDON L I. An improved gas chromatographic method for the measurement of hydroxylamine in marine and fresh waters[J]. Marine Chemistry, 1986, 19(3): 229-243. |
25 | BUTLER J H, JONES R D, GARBER J H, et al. Seasonal distributions and turnover of reduced trace gases and hydroxylamine in Yaquina Bay, Oregon[J]. Geochimica et Cosmochimica Acta, 1987, 51(3): 697-706. |
26 | GEBHARDT S, WALTER S, NAUSCH G, et al. Hydroxylamine (NH2OH) in the Baltic Sea[J]. Biogeosciences Discussions, 2004, 1: 709-724. |
27 | MA X, BANGE H W, EIRUND G K, et al. Nitrous oxide and hydroxylamine measurements in the Southwest Indian Ocean[J]. Journal of Marine Systems, 2020, 209. DOI:10.1016/j.jmarsys.2018.03.003 . |
28 | GU X J, CHENG F, CHEN X L, et al. Dissolved nitrous oxide and hydroxylamine in the South Yellow Sea and the East China Sea during early spring: distribution, production, and emissions[J]. Frontiers in Marine Science, 2021, 8. DOI:10.3389/fmars.2021.725713 . |
29 | LEES H. Hydroxylamine as an intermediate in nitrification[J]. Nature, 1952, 169(4 291): 156-157. |
30 | B?TTCHER B, KOOPS H P. Growth of lithotrophic ammonia-oxidizing bacteria on hydroxylamine[J]. FEMS Microbiology Letters, 1994, 122(3): 263-266. |
31 | VAJRALA N, MARTENS-HABBENA W, SAYAVEDRA-SOTO L A, et al. Hydroxylamine as an intermediate in ammonia oxidation by globally abundant marine Archaea[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(3): 1 006-1 011. |
32 | KITS K D, JUNG M Y, VIERHEILIG J, et al. Low yield and abiotic origin of N2O formed by the complete nitrifier Nitrospira inopinata [J]. Nature Communications, 2019, 10. DOI:10.1038/s41467-019-09790-x . |
33 | GIBLIN A, TOBIAS C, SONG B, et al. The importance of Dissimilatory Nitrate Reduction to Ammonium (DNRA) in the nitrogen cycle of coastal ecosystems[J]. Oceanography, 2013, 26(3): 124-131. |
34 | HANSON T E, CAMPBELL B J, KALIS K M, et al. Nitrate ammonification by Nautilia profundicola AmH: experimental evidence consistent with a free hydroxylamine intermediate[J]. Frontiers in Microbiology, 2013, 4. DOI:10.3389/fmicb.2013.00180 . |
35 | van der STAR W R L, van de GRAAF M J, KARTAL B, et al. Response of anaerobic ammonium-oxidizing bacteria to hydroxylamine[J]. Applied and Environmental Microbiology, 2008, 74(14): 4 417-4 426. |
36 | KARTAL B, MAALCKE W J, de ALMEIDA N M, et al. Molecular mechanism of anaerobic ammonium oxidation[J]. Nature, 2011, 479(7 371): 127-130. |
37 | HU Z Y, WESSELS H J C T, van ALEN T, et al. Nitric oxide-dependent anaerobic ammonium oxidation[J]. Nature Communications, 2019, 10. DOI:10.1038/s41467-019-09268-w . |
38 | HANU?OVá J, HAVLíK B. The production of hydroxylamine by aquatic organisms[J]. Acta Hydrochimica et Hydrobiologica, 1979, 7(1): 35-41. |
39 | SHAW S, LUKOYANOV D, DANYAL K, et al. Nitrite and hydroxylamine as nitrogenase substrates: mechanistic implications for the pathway of N? reduction[J]. Journal of the American Chemical Society, 2014, 136(36): 12 776-12 783. |
40 | SOLER-JOFRA A, PéREZ J, van LOOSDRECHT M C M. Hydroxylamine and the nitrogen cycle: a review[J]. Water Research, 2021, 190. DOI:10.1016/j.watres.2020.116723 . |
41 | EINSLE O, MESSERSCHMIDT A, HUBER R, et al. Mechanism of the six-electron reduction of nitrite to ammonia by cytochrome c nitrite reductase[J]. Journal of the American Chemical Society, 2002, 124(39): 11 737-11 745. |
42 | TIKHONOVA T V, SLUTSKY A, ANTIPOV A N, et al. Molecular and catalytic properties of a novel cytochrome c nitrite reductase from nitrate-reducing haloalkaliphilic sulfur-oxidizing bacterium Thioalkalivibrio nitratireducens [J]. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2006, 1 764(4): 715-723. |
43 | SIMON J, KLOTZ M G. Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2013, 1 827(2): 114-135. |
44 | HAASE D, HERMANN B, EINSLE O, et al. Epsilonproteobacterial hydroxylamine oxidoreductase (εHao): characterization of a ‘missing link’ in the multihaem cytochrome c family[J]. Molecular Microbiology, 2017, 105(1): 127-138. |
45 | DIETL A, FEROUSI C, MAALCKE W J, et al. The inner workings of the hydrazine synthase multiprotein complex[J]. Nature, 2015, 527(7 578): 394-397. |
46 | KARTAL B, KELTJENS J T. Anammox biochemistry: a tale of heme c proteins[J]. Trends in Biochemical Sciences, 2016, 41(12): 998-1 011. |
47 | SEEFELDT L C, YANG Z Y, LUKOYANOV D A, et al. Reduction of substrates by nitrogenases[J]. Chemical Reviews, 2020, 120(12): 5 082-5 106. |
48 | NOVAK R, WILSON P W. The utilization of nitrogen in hydroxylamine and oximes by Azotobacter vinelandii [J]. Journal of Bacteriology, 1948, 55(4): 517-524. |
49 | PETHICA B A, ROBERTS E R, WINTER E R S. Role of hydroxylamine in biological fixation of nitrogen[J]. Nature, 1949, 163(4141). DOI:10.1038/163408a0 . |
50 | SEGAL W, WILSON P W. Hydroxylamine as a source of nitrogen for Azotobacter vinelandii [J]. Journal of Bacteriology, 1949, 57(1): 55-60. |
51 | CHAUDHARY M T, WILSON T G G, ROBERTS E R. Studies in the biological fixation of nitrogen II. inhibition in Azotobacter vinelandii by hyponitrous acid[J]. Biochimica et Biophysica Acta, 1954, 14: 507-513. |
52 | SPENCER D, TAKAHASHI H, NASON A. Relationship of nitrite and hydroxylamine reductases to nitrate assimilation and nitrogen fixation in azotobacter agile [J]. Journal of Bacteriology, 1957, 73(4): 553-562. |
53 | GARCIA-RIVERA J, BURRIS R H. Hydrazine and hydroxylamine as possible intermediates in the biological fixation of nitrogen[J]. Archives of Biochemistry and Biophysics, 1967, 119: 167-172. |
54 | HATTORI A. Adaptive formation of nitrate reducing system in Anabaena cylindrica [J]. Plant and Cell Physiology, 1962, 3(4): 371-377. |
55 | LU Guangyuan, SONG Xiuxian, YU Zhiming. Indirect determination of hydroxylamine in seawater in spectrophotometry[J]. Oceanologia et Limnologia Sinica, 2014, 45(5): 954-958. |
55 | 卢光远, 宋秀贤, 俞志明. 利用分光光度法间接测定海水中的羟胺[J]. 海洋与湖沼, 2014, 45(5): 954-958. |
56 | WARD B B, ARP D J, KLOTZ M G. Nitrification[M]. Washington, D.C.: ASM Press, 2011. |
57 | van KESSEL M A H J, SPETH D R, ALBERTSEN M, et al. Complete nitrification by a single microorganism[J]. Nature, 2015, 528(7 583): 555-559. |
58 | VERSANTVOORT W, POL A, JETTEN M S M, et al. Multiheme hydroxylamine oxidoreductases produce NO during ammonia oxidation in methanotrophs[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(39): 24 459-24 463. |
59 | CARANTO J D, LANCASTER K M. Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(31): 8 217-8 222. |
60 | COLEMAN R E, LANCASTER K M. Heme P460: a (cross) link to nitric oxide[J]. Accounts of Chemical Research, 2020, 53(12): 2 925-2 935. |
61 | KOZLOWSKI J A, STIEGLMEIER M, SCHLEPER C, et al. Pathways and key intermediates required for obligate aerobic ammonia-dependent chemolithotrophy in bacteria and Thaumarchaeota[J]. The ISME Journal, 2016, 10(8): 1 836-1 845. |
62 | CARINI P, DUPONT C L, SANTORO A E. Patterns of thaumarchaeal gene expression in culture and diverse marine environments[J]. Environmental Microbiology, 2018, 20(6): 2 112-2 124. |
63 | HOSSEINZADEH P, TIAN S L, MARSHALL N M, et al. A purple cupredoxin from Nitrosopumilus maritimus containing a mononuclear type 1 copper center with an open binding site[J]. Journal of the American Chemical Society, 2016, 138(20): 6 324-6 327. |
64 | CAMPBELL M A, NYERGES G, KOZLOWSKI J A, et al. Model of the molecular basis for hydroxylamine oxidation and nitrous oxide production in methanotrophic bacteria[J]. FEMS Microbiology Letters, 2011, 322(1): 82-89. |
65 | SUTKA R L, OSTROM N E, OSTROM P H, et al. Nitrogen isotopomer site preference of N2O produced by Nitrosomonas europaea and Methylococcus capsulatus Bath[J]. Rapid Communications in Mass Spectrometry, 2003, 17(7): 738-745. |
66 | LIU S R, HAN P, HINK L, et al. Abiotic conversion of extracellular NH2OH contributes to N2O emission during ammonia oxidation[J]. Environmental Science & Technology, 2017, 51(22): 13 122-13 132. |
67 | WALTER S, BANGE H W, BREITENBACH U, et al. Nitrous oxide in the North Atlantic Ocean[J]. Biogeosciences, 2006, 3(4): 607-619. |
68 | CHARPENTIER J, FARIAS L, YOSHIDA N, et al. Nitrous oxide distribution and its origin in the central and eastern South Pacific Subtropical Gyre[J]. Biogeosciences, 2007, 4(5): 729-741. |
69 | de la PAZ M, GARCíA-IBá?EZ M I, STEINFELDT R, et al. Ventilation versus biology: what is the controlling mechanism of nitrous oxide distribution in the North Atlantic?[J]. Global Biogeochemical Cycles, 2017, 31(4): 745-760. |
70 | CARANTO J D, VILBERT A C, LANCASTER K M. Nitrosomonas europaea cytochrome P460 is a direct link between nitrification and nitrous oxide emission[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(51): 14 704-14 709. |
71 | BONNER F T, DZELZKALNS L S, BONUCCI J A. Properties of nitroxyl as intermediate in the nitric oxide-hydroxylamine reaction and in trioxodinitrate decomposition[J]. Inorganic Chemistry, 1978, 17(9): 2 487-2 494. |
72 | STIEGLMEIER M, MOOSHAMMER M, KITZLER B, et al. Aerobic nitrous oxide production through N-nitrosating hybrid formation in ammonia-oxidizing Archaea[J]. The ISME Journal, 2014, 8(5): 1 135-1 146. |
73 | STEIN L Y, KLOTZ M G. Nitrifying and denitrifying pathways of methanotrophic bacteria[J]. Biochemical Society Transactions, 2011, 39(6): 1 826-1 831. |
74 | WAN X S, HOU L, KAO S J, et al. Pathways of N2O production by marine ammonia-oxidizing Archaea determined from dual-isotope labeling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(11). DOI:10.1073/pnas.222069712 . |
75 | QI M T, QIAN W, SARDANS J, et al. Spatial and seasonal variability of hydroxylamine concentrations in a human-impacted estuary off southeast China[J]. Journal of Geophysical Research: Biogeosciences, 2023, 128(3). DOI:10.1029/2022JG007208 . |
76 | MOEWS P C, AUDRIETH L F. The autoxidation of hydroxylamine[J]. Journal of Inorganic and Nuclear Chemistry, 1959, 11(3): 242-246. |
77 | ANDERSON J H. The copper-catalysed oxidation of hydroxylamine[J]. Analyst, 1964, 89(1 058): 357-362. |
78 | TERADA A, SUGAWARA S, HOJO K, et al. Hybrid nitrous oxide production from a partial nitrifying bioreactor: hydroxylamine interactions with nitrite[J]. Environmental Science & Technology, 2017, 51(5): 2 748-2 756. |
79 | SOLER-JOFRA A, PICIOREANU C, YU R, et al. Importance of hydroxylamine in abiotic N2O production during transient anoxia in planktonic axenic Nitrosomonas cultures[J]. Chemical Engineering Journal, 2018, 335: 756-762. |
80 | HEIL J, LIU S R, VEREECKEN H, et al. Abiotic nitrous oxide production from hydroxylamine in soils and their dependence on soil properties[J]. Soil Biology and Biochemistry, 2015, 84: 107-115. |
81 | HUGHES M N, NICKLIN H G. Autoxidation of hydroxylamine in alkaline solutions[J]. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1971: 164. DOI:10.1039/J19710000164 . |
82 | TIAN Xiaolei. Study on the determination method of hydroxylamine in short-cut nitrification process [D]. Xi’an: Chang’an University, 2017. |
82 | 田晓雷. 短程硝化过程羟胺的测定方法研究 [D]. 西安:长安大学, 2017. |
83 | BRAY W C, SIMPSON M E, MACKENZIE A A. The volumetric determination of hydroxylamine[J]. Journal of the American Chemical Society, 1919, 41(9): 1 363-1 378. |
84 | FREAR D S, BURRELL R C. Spectrophotometric method for determining hydroxylamine reductase activity in higher plants[J]. Analytical Chemistry, 1955, 27(10): 1 664-1 665. |
85 | AFKHAMI A, MADRAKIAN T, MALEKI A. Indirect kinetic spectrophotometric determination of hydroxylamine based on its reaction with iodate[J]. Analytical Sciences, 2006, 22(2): 329-331. |
86 | LI Jingxiong, WEN Xinrong, WU Xiuping. Spectrophotometric determination of hydroxylamine hydrochloride with ammonium phosphomolybdate [J]. Chinese Journal of Analysis Laboratory, 2013, 32(3): 86-88. |
86 | 李京雄, 温欣荣, 吴秀萍. 磷钼酸铵分光光度法测定盐酸羟胺 [J]. 分析试验室, 2013, 32(3): 86-88. |
87 | YUAN Junjun. Determination of hydroxylamine hydrochloride by violuric acid-Fe(Ⅲ) spectrophotometry[J]. Chemical Analysis and Meterage, 2014, 23(6): 49-51. |
87 | 袁君君. 紫尿酸—Fe(Ⅲ)分光光度法测定盐酸羟胺[J]. 化学分析计量, 2014, 23(6): 49-51. |
88 | SEIKE Y, FUKUMORI R, SENGA Y, et al. A simple and sensitive method for the determination of hydroxylamine in fresh-water samples using hypochlorite followed by gas chromatography[J]. Analytical Sciences, 2004, 20(1): 139-142. |
89 | KOCK A, BANGE H W. Nitrite removal improves hydroxylamine analysis in aqueous solution by conversion with iron(III)[J]. Environmental Chemistry, 2013, 10(1): 64-76. |
90 | HIKINO A, SUGAHARA S, KATO T, et al. Sensitive gas chromatography detection of nanomolar hydroxylamine in environmental water by Fe(III) oxidation[J]. Analytical Sciences, 2021, 37(2): 347-351. |
91 | KORTE W D. Determination of hydroxylamine in aqueous solutions of pyridinium aldoximes by high-performance liquid chromatography with UV and fluorometric detection[J]. Journal of Chromatography A, 1992, 603(1/2): 145-150. |
92 | SONG M, WU S, LU P B, et al. A selective and sensitive pre-column derivatization HPLC method for the trace analysis of genotoxic impurity hydroxylamine in active pharmaceutical ingredients[J]. Analytical Methods, 2016, 8(47): 8 352-8 361. |
93 | PENG S X, STROJNOWSKI M J, HU J K, et al. Gas chromatographic-mass spectrometric analysis of hydroxylamine for monitoring the metabolic hydrolysis of metalloprotease inhibitors in rat and human liver microsomes[J]. Journal of Chromatography B: Biomedical Sciences and Applications, 1999, 724(1): 181-187. |
94 | YANG M, ZHU J J. Indirect voltammetric determination of trace hydroxylamine using magnetic microspheres[J]. The Analyst, 2003, 128(2): 178-181. |
95 | KANNAN P, JOHN S A. Highly sensitive determination of hydroxylamine using fused gold nanoparticles immobilized on Sol-gel film modified gold electrode[J]. Analytica Chimica Acta, 2010, 663(2): 158-164. |
96 | KRISHNAN R G, SARASWATHYAMMA B. Electro-generated poly (cysteine) film as a sensor platform towards the simultaneous electroanalysis of hydrazine and hydroxylamine[J]. Materials Chemistry and Physics, 2021, 271. DOI:10.1016/j.matchemphys.2021.124880 . |
97 | MALAKOOTIAN M, GHOLAMI Z, MAHMOUDI-MOGHADDAM H. Electrochemical determination of hydroxylamine in water samples using modified screen-printed electrode with TiO2/GO[J]. International Journal of Environmental Analytical Chemistry, 2021, 101(1): 35-47. |
98 | TAJIK S, BEITOLLAHI H, AHMADI S A, et al. Screen-printed electrode surface modification with NiCo2O4/RGO nanocomposite for hydroxylamine detection[J]. Nanomaterials, 2021, 11(12). DOI:10.3390/nano11123208 . |
99 | XI W Y, ZHAI J L, TIAN L, et al. Curcumin-Cu2+ complex generated on carbon nanotubes for electrocatalytic application toward electrooxidation of hydroxylamine[J]. Microchemical Journal, 2021, 161. DOI:10.1016/j.microc.2020.105792 . |
100 | SEDGWICK A C, CHAPMAN R S L, GARDINER J E, et al. A bodipy based hydroxylamine sensor[J]. Chemical Communications, 2017, 53(75): 10 441-10 443. |
101 | RANA P, PANDA L, MURMU N, et al. Fluorometric sensing of hydroxylamine in an aqueous medium utilizing a diphenyl imidazole-based probe[J]. Organic & Biomolecular Chemistry, 2020, 18(30): 5 963-5 971. |
102 | KOLASA T, WARDENCKI W. Quantitative determination of hydroxylamine[J]. Talanta, 1974, 21(8): 845-857. |
103 | KATO T, SUGAHARA S, MURAKAMI M, et al. Sensitive method for the oxidation-determination of trace hydroxylamine in environmental water using hypochlorite followed by gas chromatography[J]. Analytical Sciences, 2017, 33(6): 691-695. |
104 | CAVAZOS A R, TAILLEFERT M, TANG Y Z, et al. Kinetics of nitrous oxide production from hydroxylamine oxidation by birnessite in seawater[J]. Marine Chemistry, 2018, 202: 49-57. |
105 | SCHWEIGER B, HANSEN H P, BANGE H W. A time series of hydroxylamine (NH2OH) in the southwestern Baltic Sea[J]. Geophysical Research Letters, 2007, 34(24). DOI:10.1029/2007GL031086 . |
106 | TANAKA M. Occurrence of hydroxylamine in lake waters as an intermediate in bacterial reduction of nitrate[J]. Nature, 1953, 171(4 365): 1 160-1 161. |
107 | KOYAMA T, TOMINO T. Decomposition process of organic carbon and nitrogen in lake water[J]. Geochemical Journal, 1967, 1(3): 109-124. |
108 | PITTWELL L R. The determination of hydroxylamine in Ethiopian Rivers and lakes[J]. Microchimica Acta, 1975, 64(4): 425-429. |
109 | BIKBULATOVA E M, STEPANOVA I E, BIKBULATOV E S. Concentration and localization of hydroxylamine in the reservoirs and lakes in the territory of European Russia[J]. Water Resources, 2007, 34(5): 554-562. |
110 | SEIKE Y, MURAKAMI M, FUKUMORI R, et al. Behavior of hydroxylamine and nitrous oxide in the stratified brackish Lake Nakaumi, Japan[J]. SIL Proceedings, 1922-2010, 2009, 30(7): 1 073-1 076. |
111 | BUTLER J H, PEQUEGNAT J E, GORDON L I, et al. Cycling of methane, carbon monoxide, nitrous oxide, and hydroxylamine in a meromictic, coastal lagoon[J]. Estuarine, Coastal and Shelf Science, 1988, 27(2): 181-203. |
112 | LAM P, KUYPERS M M M. Microbial nitrogen cycling processes in oxygen minimum zones[J]. Annual Review of Marine Science, 2011, 3: 317-345. |
113 | YANG N, ZHANG C, WANG L Q, et al. Nitrogen cycling processes and the role of multi-trophic microbiota in dam-induced river-reservoir systems[J]. Water Research, 2021, 206. DOI:10.1016/j.watres.2021.117730 . |
114 | TISCHER J, ZOPFI J, FREY C, et al. Isotopic signatures of biotic and abiotic N2O production and consumption in the water column of meromictic, ferruginous Lake La Cruz (Spain)[J]. Limnology and Oceanography, 2022, 67(8): 1 760-1 775. |
115 | BIANCHI T S, DiMARCO S F, COWAN J H, et al. The science of hypoxia in the Northern Gulf of Mexico: a review[J]. Science of the Total Environment, 2010, 408(7): 1 471-1 484. |
116 | BHALLA S, MELNEKOFF D T, ALEMAN A, et al. Patient similarity network of newly diagnosed multiple myeloma identifies patient subgroups with distinct genetic features and clinical implications[J]. Science Advances, 2021, 7(47). DOI:10.1126/sciadv.abg9551 . |
117 | SAKAI S, NAKAYA M, TAKAYASU K. Hydrogen sulfide distribution in bottom and pore waters during an anoxic period in Lake Nakaumi, Japan [J]. Laguna, 2004, 11: 65-68. |
118 | KALVELAGE T, LAVIK G, LAM P, et al. Nitrogen cycling driven by organic matter export in the South Pacific oxygen minimum zone[J]. Nature Geoscience, 2013, 6(3): 228-234. |
119 | JI Q X, BABBIN A R, JAYAKUMAR A, et al. Nitrous oxide production by nitrification and denitrification in the Eastern Tropical South Pacific oxygen minimum zone[J]. Geophysical Research Letters, 2015, 42(24): 10 755-10 764. |
120 | WAN X S, SHENG H X, DAI M H, et al. Phytoplankton-nitrifier interactions control the geographic distribution of nitrite in the upper ocean[J]. Global Biogeochemical Cycles, 2021, 35(11). DOI: 10.1029/2021GB007072 . |
121 | LU S M, LIU X G, LIU C, et al. Influence of photoinhibition on nitrification by ammonia-oxidizing microorganisms in aquatic ecosystems[J].Reviews in Environmental Science and Bio/Technology, 2020, 19(3): 531-542. |
/
〈 |
|
〉 |