Definitions of Groundwater Age and Dating Methods: Progresses and Prospects

  • Qiue XU ,
  • Yuanmei JIAO ,
  • Zhaonian ZHANG ,
  • Yinping DING ,
  • Hongsen ZHANG ,
  • Yan TAO
Expand
  • 1.Faculty of Geography, Yunnan Normal University, Kunming 650500, China
    2.College of Tourism and Geographical Sicence, Leshan Normal University, Leshan Sichuan 614000, China
XU Qiue (1996-), female, Qujing City, Yunnan Province, Master student. Research area includes isotope hydrology. E-mail: qiueXu8403@163.com
JIAO Yuanmei (1972-), female, Qujing City, Yunnan Province, Professor. Research area includes landscape ecology. E-mail: ymjiao@ynnu.edu.cn

Received date: 2022-10-30

  Revised date: 2023-01-19

  Online published: 2023-06-07

Supported by

the Yunnan Provincial Basic Research Project-Key Project “Research on landscape change and water ecological environment effect of characteristic agricultural watershed in Yunnan Plateau”(202201AS070024);Yunnan Fundamental Research Projects “Scientific investigation of Cangshan Mountain”(202201BC070001);Postgraduate Research and Innovation Fund of Yunnan Normal University “Study on the landscape pattern of hydrogen and oxygen isotopes and its key impact factors in multiple Water in the Hani rice terraces”(YJSJJ22-B99)

Abstract

Groundwater dating is one of the key links in the study of water cycles, especially in hydrogeology. However, the proposed concept of groundwater age and its dating methods are complex and difficult to distinguish, which hinders practical application and further development. This study systematically examines the concept of groundwater age and resident time that often appear in academic circles, simultaneously differentiating and analyzing the derived idealized age, tracer age, apparent age, age distribution, and model age, and comprehensively analyzes and draws a relationship diagram among the definitions. Data of the sample collection and analysis methods, advantages, and disadvantages of the natural isotopes of groundwater dating (including the radionuclide decay method and stable nuclide linear calculation method), and the methods for detecting radionuclides produced by human activities and greenhouse gas tracers are summarized and reviewed. There are two perspectives of groundwater dating methods: water sample points and water systems. The model interpretation methods of multi-tracer combination and age data from the perspective of the water body system (dynamic) are reviewed. Furthermore, we synthetically state that the groundwater dating method should be determined comprehensively according to the research objectives and range of application of tracers, with more attention paid to the study of age distribution characterizing the spatiotemporal dynamics of groundwater systems. Future studies should strengthen the integration and model research of multidisciplinary data, such as geology, hydrology, and hydrochemistry, to establish a numerical model of groundwater flow to describe age distribution and model research.

Cite this article

Qiue XU , Yuanmei JIAO , Zhaonian ZHANG , Yinping DING , Hongsen ZHANG , Yan TAO . Definitions of Groundwater Age and Dating Methods: Progresses and Prospects[J]. Advances in Earth Science, 2023 , 38(6) : 594 -609 . DOI: 10.11867/j.issn.1001-8166.2023.028

References

1 GLEESON T, CUTHBERT M, FERGUSON G, et al. Global groundwater sustainability, resources, and systems in the anthropocene[J]. Annual Review of Earth and Planetary Sciences, 2020, 48(1): 431-463.
2 RODELL M, FAMIGLIETTI J S, WIESE D N, et al. Emerging trends in global freshwater availability[J]. Nature, 2018, 557(7 707): 651-659.
3 JASECHKO S, PERRONE D. Global groundwater wells at risk of running dry[J]. Science, 2021, 372(6 540): 418-421.
4 FOSTER S, CHILTON J, NIJSTEN G J, et al. Groundwater—a global focus on the ‘local resource’[J]. Current Opinion in Environmental Sustainability, 2013, 5(6): 685-695.
5 DALIN C, WADA Y, KASTNER T, et al. Groundwater depletion embedded in international food trade[J]. Nature, 2017, 543(7 647): 700-704.
6 JAIN M, FISHMAN R, MONDAL P, et al. Groundwater depletion will reduce cropping intensity in India[J]. Science Advances, 2021, 7(9). DOI:10.1126/sciadv.abd2849 .
7 FERGUSON G, GLEESON T. Vulnerability of coastal aquifers to groundwater use and climate change[J]. Nature Climate Change, 2012, 2(5): 342-345.
8 OUDE E G, van BAAREN E, de LOUW P. Effects of climate change on coastal groundwater systems: a modeling study in the Netherlands[J]. Water Resources Research, 2010, 46(10). DOI:10.1029/2009WR008719 .
9 FREEZE R A, CHERRY J A. Groundwater[M]. Englewood Cliffs, NJ: Prentice-Hall, 1979.
10 KAZEMI G A, LEHR J H, PERROCHET P. Groundwater age[M]. Canada: John Wiley & Sons Inc., 2006.
11 CHAMBERS L A, GOODDY D C, BINLEY A M. Use and application of CFC-11, CFC-12, CFC-113 and SF6 as environmental tracers of groundwater residence time: a review[J]. Geoscience Frontiers, 2019, 10(5): 1 643-16 52.
12 FERGUSON G, CUTHBERT M O, BEFUS K, et al. Rethinking groundwater age[J]. Nature Geoscience, 2020, 13(9): 592-594.
13 SUCKOW A, AGGARWAL P K, ARAGUA?S L. Isotope methods for dating old groundwater[M]. Vienna: International Atomic Energy Agency, 2013.
14 SELTZER A M, BEKAERT D V, BARRY P H, et al. Groundwater residence time estimates obscured by anthropogenic carbonate[J]. Science Advances, 2021, 7(17). DOI:10.1126/sciadv.abf3503 .
15 WILSKE C, SUCKOW A, MALLAST U, et al. A multi-environmental tracer study to determine groundwater residence times and recharge in a structurally complex multi-aquifer system[J]. Hydrology and Earth System Sciences, 2020, 24(1): 249-267.
16 MOECK C, POPP A, BRENNWALD M, et al. Combined method of 3H/3He apparent age and on-site helium analysis to identify groundwater flow processes and transport of perchloroethylene (PCE) in an urban area[J]. Journal of Contaminant Hydrology, 2021, 238. DOI:10.1016/j.jconhyd.2021.103773 .
17 KELLY J L, GLENN C R. Chlorofluorocarbon apparent ages of groundwaters from west Hawaii, USA[J]. Journal of Hydrology, 2015, 527: 355-366.
18 KAMTCHUENG B T, FANTONG W Y, WIRMVEM M J, et al. A multi-tracer approach for assessing the origin, apparent age and recharge mechanism of shallow groundwater in the Lake Nyos catchment, Northwest, Cameroon[J]. Journal of Hydrology, 2015, 523: 790-803.
19 TOBIAS H, JANEK G, JüRGEN S, et al. Groundwater age distribution in a highly dynamic coastal aquifer[J]. Advances in Water Resources, 2021, 149. DOI:10.1016/J.ADVWATRES.2021.103850 .
20 LAMONTAGNE S, SUCKOW A, GERBER C, et al. Groundwater sources for the Mataranka Springs (Northern Territory, Australia)[J]. Scientific Reports, 2021, 11(1). DOI:10.1038/s41598-021-03701-1 .
21 MASSOUDIEH A, VISSER A, SHARIFI S, et al. A Bayesian modeling approach for estimation of a shape-free groundwater age distribution using multiple tracers[J]. Applied Geochemistry, 2014, 50: 252-264.
22 SMERDON B D, GARDNER W P. Characterizing groundwater flow paths in an undeveloped region through synoptic river sampling for environmental tracers[J]. Hydrological Processes, 2022, 36(1). DOI:10.1002/HYP.14464 .
23 SUCKOW A. The age of groundwater—definitions, models and why we do not need this term[J]. Applied Geochemistry, 2014, 50: 222-230.
24 MCCALLUM J L, COOK P G, SIMMONS C T. Limitations of the use of environmental tracers to infer groundwater age[J]. Groundwater, 2015, 53: 56-70.
25 JIANG Xiaowei, WAN Li, WANG Xusheng, et al. Distribution of groundwater age in drainage basins[J]. Hydrogeology and Engineering Geology, 2012, 39(4):1-6.
25 蒋小伟, 万力, 王旭升, 等. 盆地地下水年龄空间分布规律[J]. 水文地质工程地质, 2012, 39(4): 1-6.
26 COOK P G, HERCZEG A L. Environmental tracers in subsurface hydrology[M]. Australia: Springer, 2000: 2-3.
27 HAJDAS I, ASCOUGH P, GARNETT M H, et al. Radiocarbon dating[J]. Nature Reviews Methods Primers, 2021, 1(1). DOI:10.1038/s43586-021-00058-7 .
28 HAN L F, PLUMMER L N. A review of single-sample-based models and other approaches for radiocarbon dating of dissolved inorganic carbon in groundwater[J]. Earth-Science Reviews, 2016, 152: 119-142.
29 SCHAEFER J M, CODILEAN A T, WILLENBRING J K, et al. Cosmogenic nuclide techniques[J]. Nature Reviews Methods Primers, 2022, 2(1). DOI:10.1038/s43586-022-00096-9 .
30 TONG A L, GU J Q, YANG G M, et al. An atom trap system for 39Ar dating with improved precision[J]. Review of Scientific Instruments, 2021, 92(6). DOI:10.1063/s.0050620 .
31 BANKS E W, COOK P G, OWOR M, et al. Environmental tracers to evaluate groundwater residence times and water quality risk in shallow unconfined aquifers in sub Saharan Africa[J]. Journal of Hydrology, 2021, 598. DOI:10.1016/j.jhydrol.2020.125753 .
32 KIM S H, KIM H R, YU S, et al. Shift of nitrate sources in groundwater due to intensive livestock farming on Jeju Island, South Korea: with emphasis on legacy effects on water management[J]. Water Research, 2021, 191. DOI:10.1016/j.watres.2021.116814 .
33 PéROTIN L, de MONTETY V, LADOUCHE B, et al. Transfer of dissolved gases through a thick karstic vadose zone—implications for recharge characterisation and groundwater age dating in karstic aquifers[J]. Journal of Hydrology, 2021, 601. DOI:10.1016/j.jhydrol.2021.126576 .
34 CARTWRIGHT I, CENDóN D, CURRELL M, et al. A review of radioactive isotopes and other residence time tracers in understanding groundwater recharge: possibilities, challenges, and limitations[J]. Journal of Hydrology, 2017, 555: 797-811.
35 IVERACH C P, CENDóN D I, MEREDITH K T, et al. A multi-tracer approach to constraining artesian groundwater discharge into an alluvial aquifer[J]. Hydrology and Earth System Sciences, 2017, 21(11): 5 953-5 969.
36 REZNIK I J, PURTSCHERT R, SüLTENFUΒ J, et al. Fresh and saline groundwater ages and flow dynamics in a perturbed coastal aquifer[J]. Journal of Hydrology, 2021, 597. DOI:10.1016/j.jhydrol.2020.125721 .
37 JU Y, MASSOUDIEH A, GREEN C T, et al. Complexity of groundwater age mixing near a seawater intrusion zone based on multiple tracers and Bayesian inference[J]. Science of the Total Environment, 2021, 753. DOI:10.1016/j.scitotenv.2020.141994 .
38 PANG Zhonghe, WANG Quanjiu, SONG Xianfang. Isotope hydrology[M]. Beijing: Science Press,2011.
38 庞忠和, 王全九, 宋献方. 同位素水文学[M]. 北京: 科学出版社, 2011.
39 MODICA E, PLUMMER L N, BURTON H T. Evaluating the source and residence times of groundwater seepage to streams, New Jersey Coastal Plain[J]. Water Resources Research, 1998, 34(11): 2 797-2 810.
40 TORGERSEN T, PURTSCHERT R, PHILLIPS F M, et al. Defining groundwater age[C]// SUCKOW A, AGGARWAL O K, ARAGUAS-ARAGUAS L J. Isotope methods for dating old groundwater. Vienna: IAEA, 2013: 21-32, 1 023-1 038.
41 PURTSCHERT R. Timescales and tracers[M]// Natural groundwater quality. Blackwell Publishing Ltd., 2009: 91-108.
42 KIPFER R, AESCHBACH-HERTIG W, PEETERS F, et al. Noble gases in lakes and ground waters[J]. Reviews in Mineralogy & Geochemistry, 2002, 47: 615-700.
43 MCMAHON P B, LANDON M K, DAVIS T A, et al. Relative risk of groundwater-quality degradation near California (USA) oil fields estimated from 3H, 14C, and 4He[J]. Applied Geochemistry, 2021, 131. DOI:10.1016/j.apgeochem.2021.105024 .
44 WEINSTEIN Y, FRIEDHEIM O, ODINTSOV L, et al. Using radium isotopes to constrain the age of saline groundwater, implications to seawater intrusion in aquifers[J]. Journal of Hydrology, 2021, 598. DOI:10.1016/j.jhydrol.2021.126412 .
45 CORNATON F, PERROCHET P. Groundwater age, life expectancy and transit time distributions in advective-dispersive systems: 1. generalized reservoir theory[J]. Advances in Water Resources, 2006, 29(9): 1 267-1 291.
46 ENGDAHL N B, GINN T R, FOGG G E. Non-Fickian dispersion of groundwater age[J]. Water Resources Research, 2012, 48(7). DOI:10.1029/2012WR012251 .
47 MCCALLUM J, ENGDAHL N, GINN T, et al. Nonparametric estimation of groundwater residence time distributions: what can environmental tracer data tell us about groundwater residence time?[J]. Water Resources Research, 2014, 50: 2 022-2 038.
48 VISSER A, BROERS H P, PURTSCHERT R, et al. Groundwater age distributions at a public drinking water supply well field derived from multiple age tracers (85Kr, 3H/3He, and 39Ar)[J]. Water Resources Research, 2013, 49(11): 7 778-7 796.
49 SOLOMON D K, GENEREUX D P, PLUMMER L N, et al. Testing mixing models of old and young groundwater in a tropical lowland rain forest with environmental tracers[J]. Water Resources Research, 2010, 46(4). DOI:10.1029/2009WR008341 .
50 TURNADGE C, SMERDON B D. A review of methods for modelling environmental tracers in groundwater: advantages of tracer concentration simulation[J]. Journal of Hydrology, 2014, 519: 3 674-3 689.
51 EKWURZEL B, SCHLOSSER P, SMETHIE W, et al. Dating of shallow groundwater: comparison of the transient tracers 3H/3He, chlorofluorocarbons, and 85Kr[J]. Water Resources Research, 1994, 30(6): 1 693-1 708.
52 BEGEMANN F, LIBBY W F. Continental water balance, ground water inventory and storage times, surface ocean mixing rates and world-wide water circulation patterns from cosmic-ray and bomb tritium[J]. Geochimica et Cosmochimica Acta, 1957, 12(4): 277-296.
53 TOLSTIKHIN I, KAMENSKII I. Determination of groundwater age by the T-3He method[J]. Geochemistry International, 1969, 6(2): 237-245.
54 MARINE I W. The use of naturally occurring helium to estimate groundwater velocities for studies of geologic storage of radioactive waste[J]. Water Resources Research, 1979, 15(5): 1 130-1 136.
55 THOMPSON G M, HAYES J M, DAVIS S N. Fluorocarbon tracers in hydrology[J]. Geophysical Research Letters, 1974, 1(4): 177-180.
56 BUSENBERG E, PLUMMER L. Use of sulfur hexafluoride as a dating tool and as a tracer of igneous and volcanic fluids in ground water[C]// 1997 annual meeting, abstracts with programs. Geological Society of America, 1997.
57 BUSENBERG E, PLUMMER L N. Dating young groundwater with sulfur hexafluoride: natural and anthropogenic sources of sulfur hexafluoride[J]. Water Resources Research, 2000, 36: 3 011-3 030.
58 NIJAMPURKAR V N, AMIN B S, KHARKAR D P, et al. ‘Dating’ ground waters of ages younger than 1,000-1,500 years using natural silicon-32[J]. Nature, 1966, 210(5 035): 478-480.
59 BRINKMANN R, MüNNICH K O, VOGEL J C. C14-Altersbestimmung von Grundwasser[J]. Naturwissenschaften, 1959, 46(1): 10-12.
60 DAVIS S N, de WIEST R J M. Hydrogeology[M]. New York: Wiley, 1966.
61 OESCHGER H, GUGLEMANN A, LOOSLI H, et al. 39Ar dating of groundwater[M]// Isotope techniques in groundwater hydrology. Vienna: IAEA, 1974.
62 ROZANSKI K, FLORKOWSKI T. Krypton-85 dating of groundwater[M]// Isotope hydrology. Vienna: IAEA, 1978: 949-961.
63 LOOSLI H H, OESCHGER H. 37Ar and 81Kr in the atmosphere[J]. Earth and Planetary Science Letters, 1969, 7(1): 67-71.
64 HAITJEMA H M. On the residence time distribution in idealized groundwatersheds[J]. Journal of Hydrology, 1995, 172(1): 127-146.
65 TAN H B, LIU Z H, RAO W B, et al. Understanding recharge in soil-groundwater systems in high loess hills on the Loess Plateau using isotopic data[J]. CATENA, 2017, 156: 18-29.
66 FANG S C. Study on 14C dating analysis of deep groundwater resources on islands[J]. Journal of Environmental Radioactivity, 2019, 208/209. DOI:10.1016/j.jenvrad.2019.105994 .
67 SHIMADA J, MATSUTANI J, DAPAAH-SIAKWAN S, et al. Recent trend of tritium concentration in precipitation at Tsukuba, Japan[J]. Annual Report of the Institute of Geoscience, the University of Tsukuba, 1994, 20: 11-4.
68 LU Z T, SCHLOSSER P, SMETHIE W M, et al. Tracer applications of noble gas radionuclides in the geosciences[J]. Earth-Science Reviews, 2014, 138: 196-214.
69 WEI W, AESCHBACH-HERTIG W, CHEN Z Y. Identification of He sources and estimation of He ages in groundwater of the North China Plain[J]. Applied Geochemistry, 2015, 63: 182-189.
70 CHEN Zongyu, QI Jixiang, ZHANG Zhaoji. Application of isotope hydrogeological methods in typical basins in north China[M]. Beijing: Science Press,2010.
70 陈宗宇, 齐继祥, 张兆吉. 北方典型盆地同位素水文地质学方法应用[M]. 北京: 科学出版社, 2010.
71 USGS. Air curve in the reston chlorofluorocarbon laboratory[Z/OL]. https://water.usgs.gov/lab/software/air_curve/index.html, 2016.
72 COOK P G, PLUMMER L N, SOLOMON D K, et al. Effects and processes that can modify apparent CFC age[M]// Use of chlorofluorocarbons in hydrology: a guidebook. Vienna: IAEA, 2006.
73 BOLLH?FER A, SCHLOSSER C, SCHMID S, et al. Half a century of Krypton-85 activity concentration measured in air over Central Europe: trends and relevance for dating young groundwater[J]. Journal of Environmental Radioactivity, 2019, 205/206: 7-16.
74 STEWART M K, van der RAAIJ R W. Response of the Christchurch groundwater system to exploitation: carbon-14 and tritium study revisited[J]. Science of the Total Environment, 2022, 817. DOI: 10.1016/j.scitotenv.2021.152730 .
75 ZHANG J, WANG X S, YIN L, et al. Inflection points on groundwater age and geochemical profiles along wellbores light up hierarchically nested flow systems[J]. Geophysical Research Letters, 2021, 48(16). DOI:10.1029/2020GL092337 .
76 RAM R, PURTSCHERT R, ADAR E M, et al. Controls on the 36Cl/Cl input ratio of paleo-groundwater in arid environments: new evidence from 81Kr/Kr data[J]. Science of the Total Environment, 2021, 762. DOI:10.1016/j.scitotenv.2020.144106 .
77 CAMPILLO A, TAUPIN J D, BETANCUR T, et al. A multi-tracer approach for understanding the functioning of heterogeneous phreatic coastal aquifers in humid tropical zones[J]. Hydrological Sciences Journal, 2021, 66(4): 600-621.
78 BRKI? ?, LARVA O, KUHTA M. Groundwater age as an indicator of nitrate concentration evolution in aquifers affected by agricultural activities[J]. Journal of Hydrology, 2021, 602. DOI:10.1016/j.jhydrol.2021.126799 .
79 STEWART M K, MORGENSTERN U, TSUJIMURA M, et al. Mean residence times and sources of Christchurch springs [J]. Journal of Hydrology (New Zealand), 2018, 57(2): 81-94.
80 AVRAHAMOV N, YECHIELI Y, PURTSCHERT R, et al. Characterization of a carbonate karstic aquifer flow system using multiple radioactive noble gases (3H-3He, 85Kr, 39Ar) and 14C as environmental tracers[J]. Geochimica et Cosmochimica Acta, 2018, 242: 213-232.
81 KAGABU M, MATSUNAGA M, IDE K, et al. Groundwater age determination using 85Kr and multiple age tracers (SF6, CFCs, and 3H) to elucidate regional groundwater flow systems[J]. Journal of Hydrology: Regional Studies, 2017, 12: 165-180.
82 GREEN C T, JURGENS B C, ZHANG Y, et al. Regional oxygen reduction and denitrification rates in groundwater from multi-model residence time distributions, San Joaquin Valley, USA[J]. Journal of Hydrology, 2016, 543: 155-166.
83 CHATTON E, AQUILINA L, PéTELET-GIRAUD E, et al. Glacial recharge, salinisation and anthropogenic contamination in the coastal aquifers of Recife (Brazil)[J]. Science of the Total Environment, 2016, 569: 1 114-1 125.
84 SPRENGER M, STUMPP C, WEILER M, et al. The demographics of water: a review of water ages in the critical zone [J]. Reviews of Geophysics, 2019, 57(3): 800-834.
85 JASECHKO S, PERRONE D, BEFUS K M, et al. Global aquifers dominated by fossil groundwaters but wells vulnerable to modern contamination[J]. Nature Geoscience, 2017, 10(6): 425-429.
86 JIANG W, HU S M, LU Z T, et al. Latest development of radiokrypton dating—a tool to find and study paleogroundwater[J]. Quaternary International, 2020, 547: 166-171.
87 LOOSLI H H, LEHMANN B E, SMETHIE W M. Noble gas radioisotopes: 37Ar, 85Kr, 39Ar, 81Kr [M]// Environmental tracers in subsurface hydrology. Springer Science+Business Media, LLC, 2000.
88 YOKOCHI R, STURCHIO N C, PURTSCHERT R, et al. Noble gas radionuclides in Yellowstone geothermal gas emissions: a reconnaissance[J]. Chemical Geology, 2013, 339: 43-51.
89 JASECHKO S. Partitioning young and old groundwater with geochemical tracers[J]. Chemical Geology, 2016, 427: 35-42.
90 CHIDAMBARAM S, PANDA B, KEESARI T, et al. Isotopic signatures to address the groundwater recharge in coastal aquifers[J]. Marine Pollution Bulletin, 2022, 174. DOI:10.1016/j.marpolbul.2021.113273 .
91 BHANDARY H, SABARATHINAM C. Estimation of submarine groundwater discharge and nutrient loading using radium isotopes quartet in Kuwait[J]. Arabian Journal of Geosciences, 2020, 13(16). DOI:10.1007/s12517-020-05754-4 .
92 LEE S, CURRELL M, CENDóN D I. Marine water from mid-Holocene sea level highstand trapped in a coastal aquifer: evidence from groundwater isotopes, and environmental significance[J]. Science of the Total Environment, 2016, 544: 995-1 007.
93 YECHIELI Y, KAFRI U, SIVAN O. The inter-relationship between coastal sub-aquifers and the Mediterranean Sea, deduced from radioactive isotopes analysis[J]. Hydrogeology Journal, 2009, 17(2): 265-274.
94 YECHIELI Y, YOKOCHI R, ZILBERBRAND M, et al. Recent seawater intrusion into deep aquifer determined by the radioactive noble-gas isotopes 81Kr and 39Ar[J]. Earth and Planetary Science Letters, 2019, 507: 21-29.
95 MA?OSZEWSKI P, ZUBER A. Determining the turnover time of groundwater systems with the aid of environmental tracers 1. models and their applicability[J]. Journal of Hydrology, 1982, 57(3/4): 207-231.
96 SILVA A, COTA S. Groundwater age dating using single and time-series data of environmental tritium in the Moeda Synclyne, Quadrilátero Ferrífero, Minas Gerais, Brazil[J]. Journal of South American Earth Sciences, 2021, 107. DOI:10.1016/j.jsames.2020.103009 .
97 MALOSZEWSKI P, ZUBER A. Lumped parameter models for interpretation of environmental tracer data[R]. Vienna: IAEA, 1996.
98 RICHTER J, SZYMCZAK P, ABRAHAM T, et al. Use of combinations of lumped parameter models to interpret groundwater isotopic data[J]. Journal of Contaminant Hydrology, 1993, 14(1): 1-13.
99 HAN L F. Data evaluation software[M]// Use of chlorofluorocarbons in hydrology. a Guidebook. Vienna: International Atomic EnergyAgency, 2006:231-233.
100 KINZELBACH W, AESCHBACH W, ALBERICH C, et al. A survey of methods for analysing groundwater recharge in arid and semi-arid regions[M]. Nairobi: UNEP Division of Early Warning and Assessment, 2002.
101 AESCHBACH-HERTIG W, BEYERLE U, ZOELLMANN K P, et al. Use of spreadsheet Boxmodel for age determination with tritium and CFCs[M]// Use of chlorofluorocarbons in hydrology: a guidebook. Vienna: IAEA, 2006: 243-246.
102 JURGENS B C, B?HLKE J K, EBERTS S M. TracerLPM (Version 1): an Excel? workbook for interpreting groundwater age distributions from environmental tracer data[R]. Reston, VA: U.S. Geological Survey, 2012.
103 BAYARI S. TRACER: an EXCEL workbook to calculate mean residence time in groundwater by use of tracers CFC-11, CFC-12 and tritium[J]. Computers & Geosciences, 2002, 28(5): 621-630.
104 HUSSEIN M F. RIETHM: Radioisotope Environmental Tracer Hydrology Model using exponential and dispersion methods[C]// Application of tracers in arid zone hydrology. IAHS Publication No.232, 1995.
105 OZYURT N N, BAYARI C S. LUMPED: a visual basic code of lumped-parameter models for mean residence time analyses of groundwater systems[J]. Computers & Geosciences, 2003, 29(1): 79-90.
106 OZYURT N N, BAYARI C S. LUMPED unsteady: a visual basic? code of unsteady-state lumped-parameter models for mean residence time analyses of groundwater systems[J]. Computers & Geosciences, 2005, 31(3): 329-341.
107 SUCKOW A. Lumpy—an interactive lumped parameter modelling code based on MS access and MS excel[J/OL]. Geophysical Research Abstracts, 2012, 14. .
108 JIANG X W, WAN L, GE S M, et al. A quantitative study on accumulation of age mass around stagnation points in nested flow systems[J]. Water Resources Research, 2012, 48(12). DOI:10.1029/2012WR012509 .
109 KURUKULASURIYA D, HOWCROFT W, MOON E, et al. Selecting environmental water tracers to understand groundwater around mines: opportunities and limitations[J]. Mine Water and the Environment, 2022, 41(2): 357-369.
110 ZHAI Y Z, WANG J S, HUAN H, et al. Characterizing the groundwater renewability and evolution of the strongly exploited aquifers of the North China Plain by major ions and environmental tracers[J]. Journal of Radioanalytical and Nuclear Chemistry, 2013, 296(3): 1 263-1 274.
111 GEBEREGZIABHER M, JASECHKO S, PERRONE D. Widespread and increased drilling of wells into fossil aquifers in the USA[J]. Nature Communications, 2022, 13(1). DOI:10.1038/s41467-022-29678-7 .
Outlines

/