Advances in Microbe Mediated Key Processes of the Carbon Cycle in Thermokarst Lakes
Received date: 2022-10-17
Revised date: 2022-12-29
Online published: 2023-05-10
Supported by
the National Key Research and Development Program of China “Effects of thermokarst landforms on greenhouse gas fluxes and their biological mechanisms”(2022YFF0801903);The Youth Innovation Promotion Association, Chinese Academy of Sciences(2020419)
As a result of global warming, the melting of ice-rich permafrost causes the ground to collapse, thereby creating thermokarst lakes, while the greenhouse effect caused by the concurrent release of greenhouse gases results in a positive feedback with climate warming. Microorganisms play important roles in various aspects of the carbon cycle. Understanding the mechanisms of microbial regulation of the carbon cycle in thermally melting lakes is of great significance for coping with future climate change. Therefore, by combining previous studies, this paper first elucidates the formation process of thermokarst lakes and the microorganisms inhabiting these special habitats; subsequently, the main microorganisms involved in organic carbon decomposition, methane production, and methane oxidation, and the regulation mechanisms and influencing factors are analyzed in detail. Based on this analysis, we conclude the following:
Key words: Permafrost; Thermokarst lake; Key microbial process; Greenhouse gases
Qian XU , Cunde XIAO , Yaru FENG , Zhiheng DU , Lei WANG , Zhiqiang WEI . Advances in Microbe Mediated Key Processes of the Carbon Cycle in Thermokarst Lakes[J]. Advances in Earth Science, 2023 , 38(5) : 470 -482 . DOI: 10.11867/j.issn.1001-8166.2023.016
1 | RAN Youhua, LI Xin. Progress,challenges and opportunities of permafrost mapping in China [J]. Advances in Earth Science,2019,34(10):1 015-1 027. |
1 | 冉有华,李新.中国多年冻土制图:进展、挑战与机遇[J]地球科学进展,2019,34(10):1 015-1 027. |
2 | GRUBER S. Derivation and analysis of a high-resolution estimate of global permafrost zonation[J]. The Cryosphere, 2012, 6(1):221-233. |
3 | FOX-KEMPER B, HEWITT H, XIAO C, et al. Ocean, cryosphere and sea level change[C]// Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2021:1 211-1 362. |
4 | OBU J, WESTERMANN S, BARTSCH A, et al. Northern hemisphere permafrost map based on TTOP modelling for 2000-2016 at 1 km2 scale [J]. Earth-Science Reviews, 2019, 193:299-316. |
5 | PENG X, ZHANG T, FRAUENFELD O W, et al. Permafrost response to land use and land cover change in the last millennium across the northern hemisphere [J]. Land Degradation & Development, 2020, 31(14):1 823-1 836. |
6 | HUGELIUS G, STRAUSS J, ZUBRZYCKI S, et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps [J]. Biogeosciences, 2014, 11(23):6 573-6 593. |
7 | SCHUUR E A G, VOGEL J G, CRUMMER K G,et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra [J]. Nature, 2009, 459(7 246):556-559. |
8 | BISKABORN B K, SMITH S L, NOETZLI J, et al. Permafrost is warming at a global scale[J]. Nature Communications, 2019, 10(1): 1-11. |
9 | KARJALAINEN O, LUOTO M, AALTO J, et al. High potential for loss of permafrost landforms in a changing climate [J]. Environmental Research Letters, 2020, 15(10). DOI: 10.1088/1748-9326/abafd5 . |
10 | YOKOHATA T, SAITO K, TAKATA K, et al. Model improvement and future projection of permafrost processes in a global land surface model [J]. Progress in Earth and Planetary Science, 2020, 7(1). DOI:10.1186/s40645-020-00380-w . |
11 | ’T ZANDT M H IN, LIEBNER S, WELTE C U. Roles of thermokarst lakes in a warming world [J]. Trends in Microbiology, 2020, 28(9): 769-779. |
12 | CANADELL J G, MONTEIRO P M S, COSTA M H, et al. Global carbon and other biogeochemical cycles and feedbacks[C]// Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2021:673-816. |
13 | QIN Dahe, YAO Tandong, DING Yongjian, et al. Glossary of cryosphere science[M]. Beijing:China Meteorological Press, 2014. |
13 | 秦大河, 姚檀栋,丁永健,等. 冰冻圈科学辞典[M].北京:中国气象出版社, 2014. |
14 | ZIMOV S A, SCHUUR E A G, CHAPIN F S III. Permafrost and the global carbon budget [J]. Science, 2006, 312:1 612-1 613. |
15 | OLIVA M, FRITZ M. Permafrost degradation on a warmer Earth: challenges and perspectives [J]. Current Opinion in Environmental Science & Health, 2018, 5:14-18. |
16 | ROIHA T, LAURION I, RAUTIO M. Carbon dynamics in highly heterotrophic subarctic thaw ponds [J]. Biogeosciences, 2015, 12(23): 7 223-7 237. |
17 | WEN Z, YANG Z, YU Q H, et al. Modeling thermokarst lake expansion on the Qinghai-Tibetan Plateau and its thermal effects by the moving mesh method [J]. Cold Regions Science and Technology, 2016, 121: 84-92. |
18 | WINKEL M, SEPULVEDA-JAUREGUI A, MARTINEZ-CRUZ K, et al. First evidence for cold-adapted anaerobic oxidation of methane in deep sediments of thermokarst lakes [J]. Environmental Research Communications, 2019, 1(2): 1-12. |
19 | TAKAKURA H, IIJIMA Y, FEDOROV A,et al. Permafrost and culture: global warming and the republic of Sakha (Yakutia), Russian Federation [R]. Center for Northeast Asian,2021. |
20 | MU Cuicui. Thermokarst terrains change landscape and Earth surface processes [J]. Chinese Journal of Nature, 2020, 42(5): 386-392. |
20 | 牟翠翠. 热喀斯特改变多年冻土区景观和地表过程 [J]. 自然杂志, 2020, 42(5): 386-392. |
21 | JORGENSON M T, ROMANOVSKY V, HARDEN J, et al. Resilience and vulnerability of permafrost to climate change—this article is one of a selection of papers from the dynamics of change in Alaska’s Boreal Forests: resilience and vulnerability in response to climate warming [J]. Canadian Journal of Forest Research, 2010, 40(7): 1 219-1 236. |
22 | MATHEUS CARNEVALI P B. Microbial ecology, biogeochemistry, and signatures of life at low temperature in Arctic thermokarst lake sediments and high sierra snow fields [D]. Reno, NV, USA: University of Nevada (Reno), 2015. |
23 | GROSSE G, JONES B, ARP C. Thermokarst lakes, drainage, and drained basins [J]. Treatise on Geomorphology, 2013, 8: 325-353. |
24 | IPCC. Climate change 2021: contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change [M]. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2021. |
25 | PAYANDI-ROLLAND D, SHIROKOVA L, TESFA M, et al. Dissolved organic matter biodegradation along a hydrological continuum in permafrost peatlands [J]. Science of the Total Environment, 2020, 749. DOI: 10.1016/j.scitotenv.2020.141463 . |
26 | MU C C, ABBOTT B W, NORRIS A J, et al. The status and stability of permafrost carbon on the Tibetan Plateau [J]. Earth-Science Reviews, 2020, 211. DOI: 10.1016/j.earscirev.2020.103433 . |
27 | BOUCHARD F, MACDONALD L A, TURNER K W, et al. Paleolimnology of thermokarst lakes: a window into permafrost landscape evolution [J]. Arctic Science, 2016, 3(2): 91-117. |
28 | WEI Z Q, DU Z H, WANG L, et al. Sentinel-based inventory of thermokarst lakes and ponds across permafrost landscapes on the Qinghai-Tibet Plateau [J]. Earth and Space Science, 2021, 8. DOI:10.1029/2021EA001950 . |
29 | CAVICCHIOLI R, THOMAS T, CURMI P M G. Cold stress response in Archaea [J]. Extremophiles, 2000, 4(6): 321-331. |
30 | MARGESIN R, SCHINNER F, MARX J C, et al. Limits for microbial life at subzero temperatures[M]// Psychrophiles: from biodiversity to biotechnology. Berlin/Heidelberg, Germany: Springer, 2008. |
31 | PIKUTA E V, HOOVER R B, TANG J. Microbial extremophiles at the limits of life [J]. Critical Reviews in Microbiology, 2007, 33(3): 183-209. |
32 | LIU Guangxiu, CHEN Tuo, LI Shiweng, et al. Extreme environmental microbiology [M]. Beijing: Science Press, 2016: 90-98. |
32 | 刘光琇, 陈拓, 李师翁, 等. 极端环境微生物学 [M]. 北京: 科学出版社, 2016: 90-98. |
33 | CRUMP B C, AMARAL-ZETTLER L A, KLING G W. Microbial diversity in Arctic freshwaters is structured by inoculation of microbes from soils [J]. ISME Journal, 2012, 6(9): 1 629-1 639. |
34 | VONK J E, TANK S E, BOWDEN W B, et al. Reviews and syntheses: effects of permafrost thaw on Arctic aquatic ecosystems [J]. Biogeosciences, 2015, 12(23): 7 129-7 167. |
35 | FIERER N, BRADFORD M A, JACKSON R B. Toward an ecological classification of soil bacteria [J]. Ecology, 2007, 88(6): 1 354-1 364. |
36 | MAKONDE H M, MWIRICHIA R, OSIEMO Z, et al. 454 Pyrosequencing-based assessment of bacterial diversity and community structure in termite guts, mounds and surrounding soils [J]. SpringerPlus, 2015, 4: 471. DOI: 10.1186/s40064-015-1262-6 . |
37 | XIAN Wendong, ZHANG Xiaotong, LI Wenjun. Research status and prospect on bacterial Phylum Chloroflexi [J]. Acta Microbiologica Sinica, 2020, 60(9): 1 801-1 820. |
37 | 鲜文东, 张潇橦, 李文均. 绿弯菌的研究现状及展望 [J]. 微生物学报, 2020, 60(9): 1 801-1 820. |
38 | LIU F T, KOU D, CHEN Y L, et al. Altered microbial structure and function after thermokarst formation [J]. Global Change Biology, 2021, 27(4): 823-835. |
39 | WU X D, XU H Y, LIU G M, et al. Effects of permafrost collapse on soil bacterial communities in a wet meadow on the northern Qinghai-Tibetan Plateau [J]. BMC Ecology, 2018, 18(1): 27. DOI:10.1186/s12898-018-0183-y . |
40 | XUE K, YUAN M M, SH Z J, et al. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming [J]. Nature Climate Change, 2016, 6(6): 595-600. |
41 | NEGANDHI K, LAURION I, LOVEJOY C. Bacterial communities and greenhouse gas emissions of shallow ponds in the High Arctic [J]. Polar Biology, 2014, 37(11): 1 669-1 683. |
42 | de JONG A E E, ’T ZANDT M H IN, MEISEL O H, et al. Increases in temperature and nutrient availability positively affect methane-cycling microorganisms in Arctic thermokarst lake sediments [J]. Environmental Microbiology, 2018, 20(12): 4 314-4 327. |
43 | NEGANDHI K, LAURION I, LOVEJOY C. Temperature effects on net greenhouse gas production and bacterial communities in arctic thaw ponds [J]. FEMS Microbiology Ecology, 2016, 92(8). DOI: 10.1093/femsec/fiw117 . |
44 | XU Q, DU Z H, WANG L, et al. The role of thermokarst lake expansion in altering the microbial community and methane cycling in beiluhe basin on Tibetan Plateau [J]. Microorganisms, 2022, 10(8). DOI: 10.3390/microorganisms10081620 . |
45 | VIGNERON A, CRUAUD P, BHIRY N, et al. Microbial community structure and methane cycling potential along a thermokarst pond-peatland continuum [J]. Microorganisms, 2019, 7(11). DOI: 10.3390/microorganisms7110486 . |
46 | CARNEVALI P B M, HERBOLD C W, HAND K P, et al. Distinct microbial aassemblage structure and archaeal diversity in sediments of Arctic thermokarst lakes differing in methane sources[J]. Frontiers in Microbiology, 2018, 9. DOI: 10.3389/fmicb.2018.01192 . |
47 | HESLOP J K, ANTHONY K M, WALTER WINKEL M, et al. A synthesis of methane dynamics in thermokarst lake environments[J]. Earth-Science Reviews, 2020, 210. DOI: 10.1016/j.earscirev.2020.103365 . |
48 | LIU Yangying, WANG Shang, LI Shuzhen, et al. Advances in molecular ecology on microbial functional genes of carbon cycle [J]. Microbiology China, 2017, 44(7): 1 676-1 689. |
48 | 刘洋荧, 王尚, 厉舒祯, 等. 基于功能基因的微生物碳循环分子生态学研究进展 [J]. 微生物学通报, 2017, 44(7): 1 676-1 689. |
49 | WAUTHY M, RAUTIO M, CHRISTOFFERSEN K S, et al. Increasing dominance of terrigenous organic matter in circumpolar freshwaters due to permafrost thaw [J]. Limnology and Oceanography Letters, 2018, 3(3): 186-198. |
50 | COOLEN M J L, van de GIESSEN J, ZHU E Y, et al. Bioavailability of soil organic matter and microbial community dynamics upon permafrost thaw [J]. Environmental Microbiology, 2011, 13(8): 2 299-2 314. |
51 | MACKELPRANG R, WALDROP M P, DeANGELIS K M, et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw [J]. Nature, 2011, 480(7 377): 368-371. |
52 | HULTMAN J, WALDROP M P, MACKELPRANG R, et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes [J]. Nature, 2015, 521(7 551): 208-212. |
53 | MONTEUX S, WEEDON J T, BLUME-WERRY G, et al. Long-term in situ permafrost thaw effects on bacterial communities and potential aerobic respiration [J]. ISME Journal, 2018, 12(9): 2 129-2 141. |
54 | CHEN Y L, LIU F T, KANG L Y, et al. Large-scale evidence for microbial response and associated carbon release after permafrost thaw [J]. Global Change Biology, 2021, 27(14): 3 218-3 229. |
55 | PEURA S, WAUTHY M, SIMONE D,et al. Ontogenic succession of thermokarst thaw ponds is linked to dissolved organic matter quality and microbial degradation potential [J]. Limnology and Oceanography, 2020, 65():S248-S263. |
56 | ROSSI P G, LAURION I, LOVEJOY C. Distribution and identity of Bacteria in subarctic permafrost thaw ponds [J]. Aquatic Microbial Ecology, 2013, 69(3):231-245. |
57 | DESHPANDE B N, MACINTYRE S, MATVEEV A, et al. Oxygen dynamics in permafrost thaw lakes: anaerobic bioreactors in the Canadian subarctic [J]. Limnology and Oceanography, 2015, 60(5): 1 656-1 670. |
58 | LAURION I, MLADENOV N. Dissolved organic matter photolysis in Canadian Arctic thaw ponds [J]. Environmental Research Letters, 2013, 8(3). DOI: 10.1088/1748-9326/8/3/035026 . |
59 | DESHPANDE B N, MAPS F, MATVEEV A, et al. Oxygen depletion in subarctic peatland thaw lakes [J]. Arctic Science, 2017, 3(2): 406-428. |
60 | GROSSE G, HARDEN J, TURETSKY M, et al. Vulnerability of high-latitude soil organic carbon in North America to disturbance [J]. Journal of Geophysical Research: Biogeosciences, 2011, 116(G4). DOI: 10.1029/2010JG001507 . |
61 | HAYES D J, KICKLIGHTER D W, MCGUIRE A D, et al. The impacts of recent permafrost thaw on land-atmosphere greenhouse gas exchange [J]. Environmental Research Letters, 2014, 9(4). DOI: 10.1088/1748-9326/9/4/045005 . |
62 | LAWRENCE D M, KOVEN C D, SWENSON S C, et al. Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions [J]. Environmental Research Letters, 2015, 10(9). DOI: 10.1088/1748-9326/10/9/094011 . |
63 | CONRAD R. Control of microbial methane production in wetland rice fields [J]. Nutrient Cycling in Agroecosystems, 2002, 64(1): 59-69. |
64 | FANG Xiaoyu, LI Jiabao, RUI Junpeng, et al. Research progress in biochemical pathways of methanogenesis [J]. Chinese Journal of Applied and Environmental Biology, 2015, 21(1): 1-9. |
64 | 方晓瑜, 李家宝, 芮俊鹏, 等. 产甲烷生化代谢途径研究进展 [J]. 应用与环境生物学报, 2015, 21(1): 1-9. |
65 | HERSHEY A E, NORTHINGTON R M, WHALEN S C. Substrate limitation of sediment methane flux, methane oxidation and use of stable isotopes for assessing methanogenesis pathways in a small arctic lake [J]. Biogeochemistry, 2014, 117(2): 325-336. |
66 | KOTSYURBENKO O R. Trophic interactions in the methanogenic microbial community of low-temperature terrestrial ecosystems [J]. FEMS Microbiology Ecology, 2005, 53(1): 3-13. |
67 | LIEBNER S, GANZERT L, KISS A, et al. Shifts in methanogenic community composition and methane fluxes along the degradation of discontinuous permafrost [J]. Frontiers in Microbiology, 2015, 6. DOI: 10.3389/fmicb.2015.00356 . |
68 | MCCALLEY C K, WOODCROFT B J, HODGKINS S B, et al. Methane dynamics regulated by microbial community response to permafrost thaw [J]. Nature, 2014, 514(7 523): 478-481. |
69 | MONDAV R, WOODCROFT B J, KIM E H, et al. Discovery of a novel methanogen prevalent in thawing permafrost [J]. Nature Communications, 2014, 5(1): 1-7. |
70 | WAGNER D, LIPSKI A, EMBACHER A, et al. Methane fluxes in permafrost habitats of the Lena Delta: effects of microbial community structure and organic matter quality [J]. Environmental Microbiology, 2005, 7(10): 1 582-1 592. |
71 | CARNEVALI P B M, ROHRSSEN M, WILLIAMS M R, et al. Methane sources in Arctic thermokarst lake sediments on the North Slope of Alaska [J]. Geobiology, 2015, 13(2): 181-197. |
72 | CREVECOEUR S, VINCENT W F, LOVEJOY C. Environmental selection of planktonic methanogens in permafrost thaw ponds [J]. Scientific Reports, 2016, 6(1): 1-10. |
73 | LIDSTROM M E, SOMERS L. Seasonal study of methane oxidation in lake Washington [J]. Applied and Environmental Microbiology, 1984, 47(6): 1 255-1 260. |
74 | KALLISTOVA A S, SAVVICHEV A S, RUSANOV I I, et al. Thermokarst lakes, ecosystems with intense microbial processes of the methane cycle [J]. Microbiology, 2019, 88(6): 649-661. |
75 | LOFTON D D, WHALEN S C, HERSHEY A E. Vertical sediment distribution of methanogenic pathways in two shallow Arctic Alaskan lakes [J]. Polar Biology, 2015, 38(6): 815-827. |
76 | BOUCHARD F, LAURION I, PRESKIENIS V,et al. Modern to millennium-old greenhouse gases emitted from ponds and lakes of the Eastern Canadian Arctic (Bylot Island, Nunavut) [J]. Biogeosciences, 2015, 12(23):7 279-7 298. |
77 | BLODAU C, REES R, FLESSA H, et al. A snapshot of CO2 and CH4 evolution in a thermokarst pond near Igarka, northern Siberia [J]. Journal of Geophysical Research: Biogeosciences, 2008, 113(G3). DOI: 10.1029/2007JG000652 . |
78 | ALLEN D T, TORRES V M, THOMAS J, et al. Measurements of methane emissions at natural gas production sites in the United States [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(44): 17 768-17 773. |
79 | PEETERS F, HOFMANN H. Oxic methanogenesis is only a minor source of lake-wide diffusive CH4 emissions from lakes [J]. Nature Communications, 2021, 12(1):1-5. |
80 | SINGLETON C M, MCCALLEY C K, WOODCROFT B J, et al. Methanotrophy across a natural permafrost thaw environment [J]. ISME Journal, 2018, 12(10): 2 544-2 558. |
81 | BORREL G, JéZéQUEL D, BIDERRE-PETIT C, et al. Production and consumption of methane in freshwater lake ecosystems [J]. Research in Microbiology, 2011, 162(9): 832-847. |
82 | MARTINEZ-CRUZ K, SEPULVEDA-JAUREGUI A, WALTER A K, et al. Geographic and seasonal variation of dissolved methane and aerobic methane oxidation in Alaskan Lakes [J]. Biogeosciences, 2015, 12(15): 4 595-4 606. |
83 | van WINDEN J F, REICHART G J, MCNAMARA N P, et al. Temperature-induced increase in methane release from peat bogs: a mesocosm experiment [J]. PLoS ONE, 2012, 7(6). DOI:10.1371/journal.pone.0039614 . |
84 | LIEBNER S, ZEYER J, WAGNER D, et al. Methane oxidation associated with submerged brown mosses reduces methane emissions from Siberian polygonal tundra [J]. Journal of Ecology, 2011, 99(4): 914-922. |
85 | OSUDAR R, LIEBNER S, ALAWI M, et al. Methane turnover and methanotrophic communities in Arctic aquatic ecosystems of the Lena Delta, Northeast Siberia [J]. FEMS Microbiology Ecology, 2016, 92(8). DOI: 10.1093/femsec/fiw116 . |
86 | HE R, WOOLLER M J, POHLMAN J W, et al. Shifts in identity and activity of methanotrophs in Arctic lake sediments in response to temperature changes [J]. Applied and Environmental Microbiology, 2012, 78(13): 4 715-4 723. |
87 | CREVECOEUR S, VINCENT W F, COMTE J, et al. Diversity and potential activity of methanotrophs in high methane-emitting permafrost thaw ponds[J]. PLoS ONE, 2017, 12(11). DOI: 10.1371/journal.pone.0188223.eCollection 2017 . |
88 | GRAEF C, HESTNES A G, SVENNING M M, et al. The active methanotrophic community in a wetland from the High Arctic [J]. Environmental Microbiology Reports, 2011, 3(4): 466-472. |
89 | LIEBNER S, RUBLACK K, STUEHRMANN T, et al. Diversity of aerobic methanotrophic bacteria in a permafrost active layer soil of the Lena Delta, Siberia [J]. Microbial Ecology, 2009, 57(1): 25-35. |
90 | TVEIT A, SCHWACKE R, SVENNING M M, et al. Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms [J]. ISME Journal, 2013, 7(2): 299-311. |
91 | CREVECOEUR S, VINCENT W F, COMTE J, et al. Bacterial community structure across environmental gradients in permafrost thaw ponds: methanotroph-rich ecosystems [J]. Frontiers in Microbiology, 2015, 6. DOI: 10.3389/fmicb.2015.00192 . |
92 | COMTE J, LOVEJOY C, CREVECOEUR S, et al. Co-occurrence patterns in aquatic bacterial communities across changing permafrost landscapes [J]. Biogeosciences, 2016, 13(1): 175-190. |
93 | DUNFIELD P F, YURYEV A, SENIN P, et al. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia [J]. Nature, 2007, 450(7 171): 879-882. |
94 | McDONALD I R, BODROSSY L, CHEN Y, et al. Molecular ecology techniques for the study of aerobic methanotrophs [J]. Applied and Environmental Microbiology, 2008, 74(5): 1 305-1 315. |
95 | SEMRAU J D, DiSPIRITO A A, YOON S. Methanotrophs and copper[J]. FEMS Microbiology Reviews, 2010, 34(4): 496-531. |
96 | TIMMERS P H A, WELTE C U, KOEHORST J J, et al. Reverse methanogenesis and respiration in methanotrophic Archaea [J]. Archaea, 2017. DOI: 10.1155/2017/1654237 . |
97 | WELTE C U, RASIGRAF O, VAKSMAA A, et al. Nitrate- and nitrite-dependent anaerobic oxidation of methane [J]. Environmental Microbiology Reports, 2016, 8(6): 941-955. |
98 | ETTWIG K F, BUTLER M K, PASLIER D L, et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria [J]. Nature, 2010, 464(7 288): 543-548. |
99 | AROMOKEYE D A, KULKARNI A C, ELVERT M, et al. Rates and microbial players of iron-driven anaerobic oxidation of methane in methanic marine sediments [J]. Frontiers in Microbiology, 2020, 10. DOI: 10.3389/fmicb.2019.03041 . |
100 | KAO-KNIFFIN J, WOODCROFT B J, CARVER S M, et al. Archaeal and bacterial communities across a chronosequence of drained lake basins in Arctic Alaska [J]. Scientific Reports, 2015, 5(1): 1-12. |
101 | ETTWIG K F, ZHU B L, SPETH D, et al. Archaea catalyze iron-dependent anaerobic oxidation of methane [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(45): 12 792-12 796. |
102 | CAI C, LEU A O, XIE G J, et al. A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction [J]. ISME Journal, 2018, 12(8): 1 929-1 939. |
103 | XIAO X, ZHOU Q Z, FU S Y, et al. Petrographical and geochemical signatures linked to Fe/Mn reduction in subsurface marine sediments from the hydrate-bearing area, Dongsha, the South China Sea[J]. Minerals, 2019, 9(10). DOI:10.3390/min9100624 . |
104 | HAROON M F, HU S H, SHI Y, et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage [J]. Nature, 2013, 500(7 464): 567-570. |
105 | LEU A O, CAI C, MCILROY S J, et al. Anaerobic methane oxidation coupled to Manganese reduction by members of the Methanoperedenaceae [J]. ISME Journal, 2020, 14(4): 1 030-1 041. |
106 | WINKEL M, MITZSCHERLING J, OVERDUIN P P, et al. Anaerobic methanotrophic communities thrive in deep submarine permafrost [J]. Scientific Reports, 2018, 8(1): 1-13. |
107 | SHCHERBAKOVA V, YOSHIMURA Y, RYZHMANOVA Y, et al. Archaeal communities of Arctic methane-containing permafrost [J]. FEMS Microbiology Ecology, 2016, 92(10). DOI:10.1093/femsec/fiw135 . |
108 | ZHAO Yunduo, HU Xia, YANG Zhiguang, et al. Research progress on effects of thermokarst lakes on soil carbon and microbiao community [J] Bulletin of Soil and Water Conservation, 2022,42(3):390-396. |
108 | 赵云朵, 胡霞, 杨志广,等. 热喀斯特湖对土壤碳和微生物的影响研究进展 [J]. 水土保持通报 2022,42(3):390-396. |
109 | ARLEN-POULIOT Y, BHIRY N. Palaeoecology of a palsa and a filled thermokarst pond in a permafrost peatland, subarctic Québec, Canada [J]. The Holocene, 2005, 15(3): 408-419. |
110 | TANG Yang, LIU Yongchao, YANG Jian, et al. Gene diversity involved in kalvin pathway of carbon fixation and its response to environmental variables in surface sediments of the northern Qinghai-Tibetan Plateau lakes [J]. Earth Science, 2018, 43(): 19-30. |
110 | 唐阳, 刘永超, 杨渐, 等. 青藏高原北部湖泊表层沉积物参与卡尔文循环的固碳基因多样性及其影响因素 [J]. 地球科学, 2018, 43(): 19-30. |
111 | ZHAO C C, GUPTA V V S R, DEGRYSE F, et al. Abundance and diversity of sulphur-oxidising bacteria and their role in oxidising elemental sulphur in cropping soils [J]. Biology and Fertility of Soils, 2017, 53(2): 159-169. |
/
〈 |
|
〉 |