Research on Aviation Carbon Emission Reduction Based on Optimal Spatial and Temporal Allocation of Airspace Resources

  • Ruiling HAN
Expand
  • School of Geographical Sciences, Hebei Normal University, Shijiazhuang 050024, China
HAN Ruiling (1984-), female, Langfang City, Hebei Province, Professor. Research areas include regional low-carbon and sustainable development. E-mail: hrl309@163.com

Received date: 2022-05-10

  Revised date: 2022-11-10

  Online published: 2023-03-21

Supported by

the National Natural Science Foundation of China “Study on spatial resource allocation and regional coupling based on reduction of aviation pollution emission”(42071266);The Natural Science Foundation of Hebei Province “Study on regional synergy and environmental effects of Beijing-Tianjin-Hebei multi-airport system based on airspace resource allocation”(D2021205003)

Abstract

China’s aviation carbon emissions continue to increase and show a growing trend. The inadequate supply of airspace resources and the ineffectiveness of technology-trending aviation carbon emission reduction have exacerbated aviation carbon emissions. This study analyzes the relationship between airspace resource allocation and aviation carbon emissions and reviews the optimal allocation of airspace resources in temporal and spatial dimensions to identify the path of aviation carbon emission reduction. The results show that the efficient allocation of airspace resources is an effective way to reduce aviation carbon emissions. Aviation carbon emissions vary in different phases of aircraft operations, and optimizing the organization of airport slots is important for improving the environmental efficiency of airspace. The airport terminal area is the main airspace for aviation carbon emissions, and building a multi-airport system can enhance the utilization efficiency of regional airspace resources. This study innovatively applies geographic research methods to the topic of aviation carbon emissions in conjunction with airspace. Based on the integration of land and airspace, the research idea of “airspace resource allocation-reducing air congestion-expanding airspace capacity-aviation carbon emission reduction” is proposed to build a co-promotion mechanism for aviation carbon emissions and airspace resource optimization allocation. Its aim is to enrich the content of geographical research, improve the multidisciplinary research paradigm of aviation carbon emissions, and provide practical scientific suggestions to promote China’s aviation carbon emission reduction and green development of the civil aviation industry.

Cite this article

Ruiling HAN . Research on Aviation Carbon Emission Reduction Based on Optimal Spatial and Temporal Allocation of Airspace Resources[J]. Advances in Earth Science, 2023 , 38(3) : 309 -319 . DOI: 10.11867/j.issn.1001-8166.2023.008

References

1 HAN R L, LI L L, ZHANG X Y, et al. Spatial-temporal evolution characteristics and decoupling analysis of influencing factors of China's aviation carbon emissions[J]. Chinese Geographical Science, 2022, 32(2): 218-236.
2 Department of Development Planning, Civil Aviation Administration of China. Civil aviation from a statistical perspective [M]. Beijing: China Civil Aviation Press. 2021.
2 中国民用航空局发展计划司.从统计看民航[M]. 北京:中国民航出版社, 2021.
3 ZHOU W J, WANG T, YU Y D, et al. Scenario analysis of CO2 emissions from China’s civil aviation industry through 2030[J]. Applied Energy, 2016, 175: 100-108.
4 TURGUT E T, CAVCAR M, USANMAZ O, et al. Investigating actual landing and takeoff operations for time-in-mode, fuel and emissions parameters on domestic routes in Turkey[J]. Transportation Research Part D:Transport and Environment, 2017, 53: 249-262.
5 HAN Ruiling, LU Zi, YAO Haifang. Study on dynamic transformation, application and comparison of aviation carbon emission environmental damage assessment methods[J]. Advances in Earth Science, 2019, 34(7): 688-696.
5 韩瑞玲, 路紫, 姚海芳. 航空碳排放环境损害评估方法的动态化转换、应用与比较研究[J]. 地球科学进展, 2019, 34(7): 688-696.
6 SONG Lisheng. Emission calculation of Chinese airports based on ICAO LTO model[J]. Journal of Civil Aviation University of China, 2013, 31(6): 46-48, 54.
6 宋利生. 基于ICAO起降模型的中国机场飞机排污计算研究[J]. 中国民航大学学报, 2013, 31(6): 46-48, 54.
7 KHOO H L, TEOH L E. A bi-objective dynamic programming approach for airline green fleet planning[J]. Transportation Research Part D: Transport and Environment, 2014, 33: 166-185.
8 SCHEELHAASE J, GRIMME W, SCHAEFER M. The inclusion of aviation into the EU emission trading scheme-Impacts on competition between European and non-European network airlines[J]. Transportation Research Part D: Transport and Environment, 2010, 15(1): 14-25.
9 LIU Hongming. Thinking about carbon emission reduction path of international aviation industry under target of zero growth of carbon emission in 2020[J]. World Environment, 2019(1): 33-35.
9 刘洪铭. 国际航空业2020年碳排放零增长目标下的碳减排路径思考[J]. 世界环境, 2019(1): 33-35.
10 WANG Zhongfengyan, TIAN Yong, WAN Lili, et al. Progress in the study of environmental impacts of high altitude flight[J]. Environmental Protection Science, 2017, 43(3): 100-105.
10 王中凤燕, 田勇, 万莉莉, 等. 高空飞行的环境影响研究进展[J]. 环境保护科学, 2017, 43(3): 100-105.
11 CHUA S. Economic growth, liberalization, and the environment: a review of the economic evidence[J]. Annual Review of Energy and the Environment, 1999, 24: 391-430.
12 WANG Junwen, REN Pingyang. The EU is actively promoting emissions reductions in the transport sector[J]. Ecological Economy, 2021, 37(3): 1-4.
12 王俊文, 任平阳.欧盟积极推进交通领域减排[J].生态经济, 2021, 37(3): 1-4.
13 ZHU Jialin, HU Rong, ZHANG Junfeng, et al. Research on the measurement and evolution characteristics of aircraft carbon emissions in China[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2020, 44(3): 558-563.
13 朱佳琳, 胡荣, 张军峰, 等. 中国航空器碳排放测算与演化特征研究[J]. 武汉理工大学学报(交通科学与工程版), 2020, 44(3): 558-563.
14 AVENALI A, D’ALFONSO T, LEPORELLI C, et al. An incentive pricing mechanism for efficient airport slot allocation in Europe[J]. Journal of Air Transport Management, 2015, 42: 27-36.
15 XUE Fei. International aviation carbon offsetting and emissions reduction scheme moves forward in twists and turns[N]. China Civil Aviation Network, 2018-02-08(4).
15 薛飞. 国际航空碳抵消和减排计划在曲折中前行[N]. 中国民航报, 2018-02-08(4).
16 LI Ganjie. Taking Xi Jinping’s Thought on socialism with chinese characteristics for a new era as a guide to open a new situation of ecological environment protection[J]. Environmental Protection, 2018,46(5):7-19.
16 李干杰. 以习近平新时代中国特色社会主义思想为指导奋力开创新时代生态环境保护新局面[J]. 环境保护,2018,46(5):7-19.
17 ZHOU N, PRICE L, DAI Y D, et al. A roadmap for China to peak carbon dioxide emissions and achieve a 20% share of non-fossil fuels in primary energy by 2030[J]. Applied Energy, 2019, 239: 793-819.
18 DONG Zhanfeng, CHANG Dunhu. Accelerating deepening of environmental economic policy innovation and development to promote to build a Chinese Path to modernization in which human and nature coexist harmoniously[J]. Ecological Economy, 2023,39(1):25-30.
18 董战峰,昌敦虎. 加快深化环境经济政策创新与发展,建设人与自然和谐共生的中国式现代化[J]. 生态经济,2023,39(1):25-30.
19 LIU X, BAO Y, ZHANG Y C, et al. Decoupling analysis on China’s civil aviation carbon emissions from transportation revenue: a three-dimension decomposition framework[J]. Sustainable Production and Consumption, 2022, 32: 718-730.
20 WANG Z L, XU X D, ZHU Y F, et al. Evaluation of carbon emission efficiency in China’s airlines[J]. Journal of Cleaner Production, 2020, 243. DOI:10.1016/j.jclepro.2019.118500 .
21 WU C T, LIAO M Z, LIU C L. Acquiring and geo-visualizing aviation carbon footprint among urban agglomerations in China[J]. Sustainability, 2019, 11(17). DOI:10.3390/su11174515 .
22 CUI Q, LIN J L, JIN Z Y. Evaluating airline efficiency under “Carbon Neutral Growth from 2020” strategy through a network interval slack-based measure[J]. Energy, 2020, 193.DOI:10.1016/j.energy.2019.116734 .
23 TERRENOIRE E, HAUGLUSTAINE D A, GASSER T, et al. The contribution of carbon dioxide emissions from the aviation sector to future climate change[J]. Environmental Research Letters, 2019, 14(8). DOI:10.1088/1748-9326/ab3086 .
24 SHI Yuting, WU Weiwei, LI Xiaoxia. Study on development and influencing factors of China’s aviation carbon emission[J]. Journal of East China Jiaotong University, 2019, 36(6): 32-38.
24 石钰婷, 吴薇薇, 李晓霞. 我国航空碳排放发展特征及影响因素研究[J]. 华东交通大学学报, 2019, 36(6): 32-38.
25 LU Zi, LI Zhiyong, ZHANG Qiuluan. Introduction to airspace science[M]. Beijing: Higher Education Press, 2016.
25 路紫, 李志勇, 张秋娈. 空域学概论[M]. 北京:高等教育出版社, 2016.
26 LU Zi, DU Xinru. The theoretical sources, innovation of methodologies and practice of the exploitation and utilization of airspace in western countries[J]. Advances in Earth Science, 2015, 30(11): 1 260-1 267.
26 路紫, 杜欣儒. 国外空域资源开发利用的理论基础、方法论变革与实践[J]. 地球科学进展, 2015, 30(11): 1 260-1 267.
27 XU Xiaohao, WANG Lili. Suggestions to improve utility policy of national airspace resource[J]. Journal of Nanjing University of Aeronautics and Astronautics (Social Sciences), 2008, 10(2): 23-27.
27 徐肖豪, 王莉莉. 关于改善我国当前国家空域资源使用政策的建议[J]. 南京航空航天大学学报(社会科学版), 2008, 10(2): 23-27.
28 ZHANG Yinuo, LU Zi, DU Xinru, et al. Research on airspace resource allocation supported by spatiotemporal continuous data: review and prospect[J]. Advances in Earth Science, 2019, 34(9): 912-921.
28 张一诺, 路紫, 杜欣儒, 等. 时空连续数据支持下的空域资源配置研究: 评述与展望[J]. 地球科学进展, 2019, 34(9): 912-921.
29 YANG Tao. Allocation of airport slot resources[D]. Beijing: Beijing Jiaotong University, 2008.
29 杨涛. 航班起降时刻资源配置研究[D]. 北京: 北京交通大学, 2008.
30 Yanru HEI, HU Minghua. Studies on optimization of resource allocation and airspace structure adjustment[J]. Journal of Civil Aviation University of China, 2011, 29(2): 1-4.
30 黑妍茹, 胡明华. 空域资源优化配置及调整策略研究[J]. 中国民航大学学报, 2011, 29(2): 1-4.
31 SMITH P M, GAFFNEY M J, SHI W, et al., Drivers and barriers to the adoption and diffusion of Sustainable Jet Fuel (SJF) in the U.S. Pacific Northwest[J]. Journal of Air Transport Management, 2017, 58: 113-124.
32 WANG Wei, GUO Rui. Research on the aircraft carbon diffusion model and analysis of its carbon reduction effect[J]. Environmental Engineering, 2016, 34(8): 174-177.
32 王维, 郭瑞. 航空器碳排放扩散模型研究及减碳效果分析[J]. 环境工程, 2016, 34(8): 174-177.
33 WANG Y, YIN H L, ZHANG S H, et al. Multi-objective optimization of aircraft design for emission and cost reductions[J]. Chinese Journal of Aeronautics, 2014, 27(1): 52-58.
34 D’ALFONSO T, JIANG C, BRACAGLI V, et al. Air transport and high-speed rail competition: environmental implications and mitigation strategies[J]. Transportation Research Part A: Policy and Practice, 2016, 92: 261-276.
35 LI Guozheng. The allocative efficiency of resources for time schedules: the view of public products[J]. Journal of Lanzhou Jiaotong University, 2016, 35(5): 73-78.
35 李国政. 航班时刻资源配置效率: 公共产品的视角[J]. 兰州交通大学学报, 2016, 35(5): 73-78.
36 WU Wenjie, ZHANG Xiaolei, YANG Zhaoping, et al. Temporal-spatial network analysis on time resource and airline layout of Urumqi international airport[J]. Arid Land Geography, 2015, 38(6): 1 290-1 299.
36 吴文婕, 张小雷, 杨兆萍, 等. 乌鲁木齐国际机场时刻资源与航线布局的时空网络模式分析[J]. 干旱区地理, 2015, 38(6): 1 290-1 299.
37 JIANG Tao. Analysis on influencing factors of flight schedules based on the RBV theory[J]. Journal of Civil Aviation, 2018, 2(6): 70-75.
37 姜涛. 基于RBV理论的航班时刻制定影响因素分析[J]. 民航学报, 2018, 2(6): 70-75.
38 HUANG Jie, WANG Jiaoe. Wave-system structures of airport hubs and spatial patterns of possible indirect connections[J]. Scientia Geographica Sinica, 2018, 38(11): 1 750-1 758.
38 黄洁, 王姣娥. 枢纽机场的航班波体系结构及其喂给航线的空间格局研究[J]. 地理科学, 2018, 38(11): 1 750-1 758.
39 LI Xiaojin, WANG Chunfeng, ZHANG Qing. Empirical research on relationship of airspace, civil aviation transportation and economy growth[J]. Journal of Civil Aviation University of China, 2013, 31(2): 93-96.
39 李晓津, 王春凤, 张清. 空域资源、民航发展以及国民经济关系的研究[J]. 中国民航大学学报, 2013, 31(2): 93-96.
40 LI Chaoyi, SUN Jianzhong, YAN Hongsheng, et al. Estimation of exhausts pollution emissions for civil aircraft engine based on QAR data[J]. Chinese Journal of Environmental Engineering, 2017, 11(6): 3 607-3 616.
40 李超役, 孙见忠, 闫洪胜, 等. 基于QAR数据的民航发动机尾气污染物排放量估算[J]. 环境工程学报, 2017, 11(6): 3 607-3 616.
41 LIU Nanxi, BAI Junqiang, HUA Jun, et al. Multidisciplinary design optimization incorporating aircraft emission impacts[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1):168-181.
41 刘楠溪, 白俊强, 华俊, 等. 考虑排放影响的飞机多学科优化设计[J]. 航空学报, 2017, 38(1):168-181.
42 KOUDIS G S, HU S J, MAJUMDAR A, et al. Airport emissions reductions from reduced thrust takeoff operations[J]. Transportation Research Part D: Transport and Environment, 2017, 52: 15-28.
43 GUO R, ZHANG Y, WANG Q. Comparison of emerging ground propulsion systems for electrified aircraft taxi operations[J]. Transportation Research Part C: Emerging Technologies, 2014, 44: 98-109.
44 O’KELLY M E. Fuel burn and environmental implications of airline hub networks[J]. Transportation Research Part D: Transport and Environment, 2012, 17(7): 555-567.
45 MULLER D, UDAY P, MARAIS K. Evaluation of the potential environmental benefits of RNAV/RNP arrival procedures[C]//11th AIAA Aviation Technology, Integration, and Operations (ATIO) conference. Virginia Beach, VA. Reston, Virginia: AIAA, 2011.
46 KURNIAWAN J S, KHARDIS S. Comparison of methodologies estimating emissions of aircraft pollutants, environmental impact assessment around airports[J]. Environmental Impact Assessment Review, 2011, 31(3): 240-252.
47 HAN Bo, LIU Yating, TAN Hongzhi, et al. Emission characterization of civil aviation aircraft during a whole flight[J]. Acta Scientiae Circumstantiae, 2017, 37(12): 4 492-4 502.
47 韩博, 刘雅婷, 谭宏志, 等. 一次航班飞行全过程大气污染物排放特征[J]. 环境科学学报, 2017, 37(12): 4 492-4 502.
48 TIAN Meng. The study of operation-oriented flight schedule construction for airports under planning[D]. Tianjin: Civil Aviation University of China, 2017.
48 田猛. 面向运行的规划机场航班时刻表制定方法研究[D]. 天津: 中国民航大学, 2017.
49 GRUYER N, LENOIR N. Should we auction airport slots? [C]// Control in transportation systems 2003. Tokyo: Aviation Economics and Econometrics Laboratory (AEEL), 2004.
50 SHENG Dian, LI Zhichun, XIAO Yibin, et al. Slot auction in an airport network with demand uncertainty[J]. Transportation Research Part E: Logistics and Transportation Review, 2015, 82: 79-100.
51 GUIOMARD C. Airport slots: can regulation be coordinated with competition? Evidence from Dublin airport[J]. Transportation Research Part A: Policy and Practice, 2018, 114: 127-138.
52 PICARD P M, TAMPIERI A, WAN X. Airport capacity and inefficiency in slot allocation[J]. International Journal of Industrial Organization, 2019, 62: 330-357.
53 MIRANDA V A P, OLIVERIRA A V M. Airport slots and the internalization of congestion by airlines: an empirical model of integrated flight disruption management in Brazil[J]. Transportation Research Part A: Policy and Practice, 2018, 116: 201-219.
54 KULKARNI S, GANESAN R, SHERRY L. Dynamic airspace configuration using approximate dynamic programming Intelligence—based Paradigm[J]. Transportation Research Record: Journal of the Transportation Research Board, 2012, 2266(1): 31-37.
55 COROLLI L, LULLI G, NTAIMO L. The time slot allocation problem under uncertain capacity[J]. Transportation Research Part C: Emerging Technologies, 2014, 46: 16-29.
56 SWAROOP P, ZOU B, HANSEN M, et al. Do more US airports need slot controls? A welfare based approach to determine slot levels[J]. Transportation Research Part B: Methodological, 2012, 46(9): 1 239-1 259.
57 DU Xinru, LU Zi, GAO Fang, et al. Design method, application and time alternative mechanism of flexible use of airspace[J]. Advances in Earth Science, 2016, 31(6): 643-649.
57 杜欣儒, 路紫, 郜方, 等. 灵活空域使用的设计方法与应用及其时间替代机制[J]. 地球科学进展, 2016, 31(6): 643-649.
58 DONG Y Q, LU Z, LIU Y, et al. China’s corridors-in-the-sky design and space-time congestion identification and the influence of air routes’ traffic flow[J]. Journal of Geographical Sciences, 2019, 29(12): 1 999-2 014.
59 DANIEL J I. The untolled problems with airport slot constraints[J]. Economics of Transportation, 2014, 3(1): 16-28.
60 RIBEIRO N A, JACQUILLAT A, ANTUNES A P, et al. An optimization approach for airport slot allocation under IATA guidelines[J]. Transportation Research Part B: Methodological, 2018, 112: 132-156.
61 PELLEGRINI P, BOLIC T, CASTELLI L, et al. SOSTA: an effective model for the simultaneous optimisation of airport slot allocation[J]. Transportation Research Part E: Logistics and Transportation Review, 2017, 99: 34-53.
62 TIAN Y, WAN L L, YE B J, et al. Research on evaluation of airport environment capacity[J]. Journal of Intelligent & Fuzzy Systems, 2019, 37: 1 695-1 706.
63 CHEN Xiaoyan, LIU Fumo. The impact of civil aviation Airport on environment and countermeasures—taking noise as an example[J]. Western China Technology, 2009, 8(34): 47-48.
63 陈晓燕, 刘福磨. 民航机场对环境的影响与对策——以噪声为例[J]. 中国西部科技, 2009, 8(34): 47-48.
64 ZHOU Xiongfei, HU Minghua. An overview on airspace capacity evaluation[J]. Journal of Civil Aviation Flight University of China, 2016, 27(6): 37-40.
64 周雄飞, 胡明华. 空域容量评估研究综述[J]. 中国民航飞行学院学报, 2016, 27(6): 37-40.
65 TIAN Yong, WAN Lili, YE Bojia. Green air traffic management technology[M]. Beijing: Science Press, 2017.
65 田勇, 万莉莉, 叶博嘉. 绿色空中交通管理技术[M]. 北京: 科学出版社, 2017.
66 ZHAO Yifei, WANG Mengqi. A study of fuel consumption based approach track efficiency indicators for terminal areas[J]. Journal of Safety and Environment, 2022, 22(6): 1-10.
66 赵嶷飞, 王梦琦. 基于燃油消耗的终端区进场航迹效率指标研究[J]. 安全与环境学报, 2022, 22(6): 1-10.
67 HE Weiwei, LI Wei. Air traffic flow management integration and evaluation environment based on airfield regional airspace[J]. Digital Technology & Application, 2021, 39(2): 171-174.
67 何巍巍, 李魏. 基于机场区域空域的流量验证评估环境[J]. 数字技术与应用, 2021, 39(2): 171-174.
68 MIHETEC T, STEINER S, ODI? D. Utilization of flexible airspace structure in flight efficiency optimization[J]. PROMET-Traffic & Transportation, 2013, 25(2): 109-118.
69 OLFAT L, AMIRI M, SOUFI J B, et al. A dynamic network efficiency measurement of airports performance considering sustainable development concept: a fuzzy dynamic network-DEA approach[J]. Journal of Air Transport Management, 2016, 57: 272-290.
70 KIM B, CLARKE J P. Modeling and optimization of terminal area utilization by assigning arrival and departure fixes[C]//AIAA Guidance, Navigation, & Control (GNC) Conference, 2013.
71 LI Ke, LI Zheng. Optimisation of taxiing routes considering aircraft emissions[J]. Energy Saving & Environmental Protection in Transportation, 2009, 3: 45-48.
71 李可, 李政. 考虑飞机排放的滑行路线优化[J]. 交通节能与环保, 2009, 3: 45-48.
72 KIM B, LI L H, CLARKE J P. Runway assignments that minimize terminal airspace and airport surface emissions[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3): 789-798.
73 NEUFVILLE R. Management of multi-airport systems: a development strategy[J]. Journal of Air Transport Management, 1995, 2(2): 99-110.
74 TAKEICHI N. Adaptive prediction of flight time uncertainty for ground-based 4D trajectory management[J]. Transportation Research Part C, 2018, 95: 335-345.
75 NINA S, MANUEL A A C, JUAN J R G, et al. STAM-based methodology to prevent concurrence events in a Multi-Airport System(MAS)[J]. Transportation Research Part C: Emerging Technologies, 2020, 110: 186-208.
76 CARMONA M, NIETO F S, GALLEGO C. A data-driven methodology for characterization of a terminal manoeuvring area in multi-airport systems[J]. Transportation Research Part C: Emerging Technologies, 2020, 111: 185-209.
77 SIDIROPOUS S, MAJUMDAR A, HAN K. A framework for the optimization of terminal airspace operations in multi-airport systems[J]. Transportation Research Part B: Methodological, 2018, 110: 160-187.
78 MUR?A M C R, HANSMAN R J, LI L S, et al. Flight trajectory data analytics for characterization of air traffic flows: a comparative analysis of terminal area operations between New York, Hong Kong and Sao Paulo[J]. Transportation Research Part C: Emerging Technologies, 2018, 97: 324-347.
79 GALLEGO C E V, COMENDAOR V F G, NIETO F J S, et al. Analysis of air traffic control operational impact on aircraft vertical profiles supported by machine learning[J]. Transportation Research Part C: Emerging Technologies, 2018, 95(17): 883-905.
80 ECKSTEIN A. Automated flight track taxonomy for measuring benefits from performance based navigation[C]// Integrated communications, navigation & surveillance conference, 2009: 1-12.
81 YANG Xinsheng, WANG Zixu, WANG Qian. Traffic emergency management strategy of multi-airport system based on flight evaluation[J]. China Sciencepaper, 2019, 14(6): 675-679.
81 杨新湦, 王梓旭, 王茜. 基于航班评价的多机场系统流量应急管理策略[J]. 中国科技论文, 2019, 14(6): 675-679.
82 MUR?A M C R, HANSMAN R J. Identification, characterization, and prediction of traffic flow patterns in multi-airport systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(5): 1 683-1 696.
83 TANG J, ALAM S, LOKAN C, et al. A multi-objective approach for dynamic airspace sectorization using agent based and geometric models[J]. Transportation Research Part C: Emerging Technologies, 2012, 21(1): 89-121.
84 ZHANG Jing, LU Zi, DONG Yaqing. Dynamic analysis of air passenger flow in Jing-Jin-Shi MAS terminal airspace and its application prospects[J]. Geography and Geo-Information Science, 2019, 35(5): 73-79, 117.
84 张菁, 路紫, 董雅晴. 京津石MAS终端空域航空流动态分析及其应用展望[J]. 地理与地理信息科学, 2019, 35(5): 73-79, 117.
85 LU J L, WANG C Y. Investigating the impacts of air travellers’ environmental knowledge on attitudes toward carbon offsetting and willingness to mitigate the environmental impacts of aviation[J]. Transportation Research Part D: Transport and Environment, 2018, 59: 96-107.
86 VALDéS R M A, COMENDADOR V F G, CAMPOS L M B. How much can carbon Taxes contribute to aviation decarbonization by 2050[J]. Sustainability, 2021, 13(3). DOI:10.3390/su13031086 .
87 WANG Yanjun, SHUI Xiaoyu, WANG Mengyin. Progress and challenges in airport slot allocation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022. DOI:10.13700/j.bh.1001-5965.2022.0425 .
87 王艳军, 水笑雨, 王梦尹. 机场航班时刻资源管理研究的进展及挑战[J]. 北京航空航天大学学报, 2022. DOI:10.13700/j.bh.1001-5965.2022.0425 .
Outlines

/