Research Progress of Oxygen Consumption in Marine Sediments

  • Min ZHENG ,
  • Min LUO ,
  • Binbin PAN ,
  • Duofu CHEN
Expand
  • 1.Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
    2.Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
ZHENG Min (1994-), male, Shanghai City, Master student. Research area includes early diagenesis of marine sediments. E-mail: fsl_a@sina.com
LUO Min (1987-), male, Nanping City, Fujian Province, Professor. Research area includes marine geochemistry. E-mail: mluo@shou.edu.cn

Received date: 2022-08-08

  Revised date: 2022-12-07

  Online published: 2023-03-21

Supported by

the National Natural Science Foundation of China “Characteristics and sources of dissolved organic matter in seafloor sediments of the Mariana and New Britain Trenches”(42176069);Shanghai S & T Youth Rising-star Program “Fluorescence spectrum characteristics of dissolved organic matter in hadal sediments”(21QA1403700)

Abstract

Benthic O2 uptake is a robust proxy for organic matter mineralization in marine sediments. Therefore, studying sediment oxygen consumption is conducive to understanding the global marine carbon cycle. Three approaches are commonly used to measure oxygen consumption at the SWI: oxygen microprofiling, benthic incubation, and the eddy covariance technique. The emerging eddy covariance technique is a non-invasive approach that can measure benthic O2 flux on a relatively large scale, and thus has wide application. Globally, benthic oxygen consumption is controlled by water depth and primary productivity in surface water. In addition, benthic diffusive oxygen uptake and total oxygen uptake decreased significantly and their ratios approached 1 with increasing water depth. This was mainly caused by the substantial decrease in benthic biomass and resulting benthic oxygen consumption with increasing water depth. Despite more than half a century of observations of benthic oxygen consumption, in-situ data remain scarce, especially in deep-sea and extreme marine environments. A large amount of measured data are still single-point observations within a short time period. Against the background of global warming and the increasing impact of human activities on marine environments and ecosystems, it is necessary to conduct high-precision and long-term in situ observations of benthic oxygen consumption globally.

Cite this article

Min ZHENG , Min LUO , Binbin PAN , Duofu CHEN . Research Progress of Oxygen Consumption in Marine Sediments[J]. Advances in Earth Science, 2023 , 38(3) : 236 -255 . DOI: 10.11867/j.issn.1001-8166.2023.001

References

1 GLUD R N, KüHL M, WENZH?FER F, et al. Benthic diatoms of a high Arctic fjord (Young Sound, NE Greenland): importance for ecosystem primary production[J]. Marine Ecology Progress Series, 2002, 238: 15-29.
2 COLIJN F, de JONGE V N. Primary production of microphytobenthos in the Ems-dollard Estuary[J]. Marine Ecology Progress Series, 1984, 14: 185-196.
3 CAHOON L B, COOKE J E. Benthic microalgal production in onslow bay, north Carolina, USA[J]. Marine Ecology Progress Series, 1992, 84: 185-196.
4 DUNNE J P, SARMIENTO J L, GNANADESIKAN A. A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor[J]. Global Biogeochemical Cycles, 2007, 21(4).DOI: 10.1029/2006GB002907 .
5 BERNER R A, CANFIELD D E. A new model for atmospheric oxygen over Phanerozoic time[J]. American Journal of Science, 1989, 289(4): 333-361.
6 BJERRUM C J, CANFIELD D E. New insights into the burial history of organic carbon on the early Earth[J]. Geochemistry, Geophysics, Geosystems, 2004, 5(8). DOI: 10.1029/2004GC000713 .
7 GLUD R N. Oxygen dynamics of marine sediments[J]. Marine Biology Research, 2008, 4(4): 243-289.
8 FROELICH P N, KLINKHAMMER G P, BENDER M L, et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis[J]. Geochimica et Cosmochimica Acta, 1979, 43(7): 1 075-1 090.
9 N?HR GLUD R, GUNDERSEN J K, J?RGENSEN B B,et al. Diffusive and total oxygen uptake of deep-sea sediments in the eastern South Atlantic Ocean: in situ and laboratory measurements[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1994, 41(11/12): 1 767-1 788.
10 J?RGENSEN B B, WENZH?FER F, EGGER M,et al. Sediment oxygen consumption: role in the global marine carbon cycle[J]. Earth-Science Reviews, 2022, 228. DOI:10.1016/j.earscirev.2022.103987 .
11 R?Y H, KALLMEYER J, ADHIKARI R R, et al. Aerobic microbial respiration in 86-million-year-old deep-sea red clay[J]. Science, 2012, 336(6 083): 922-925.
12 REIMERS C E, FISCHER K M, MEREWETHER R, et al. Oxygen microprofiles measured in situ in deep ocean sediments [J]. Nature, 1986, 320(6 064): 741-744.
13 CANFIELD D E, KRISTENSEN E, THAMDRUP B. Aquatic geomicrobiology[J]. Advances in Marine Biology, 2005, 48: 1-599.
14 ANDERSON L A, SARMIENTO J L. Redfield ratios of remineralization determined by nutrient data analysis[J]. Global Biogeochemical Cycles, 1994, 8(1): 65-80.
15 WENZH?FER F, GLUD R N. Benthic carbon mineralization in the Atlantic: a synthesis based on in situ data from the last decade[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2002, 49(7): 1 255-1 279.
16 J?RGENSEN B B, REVSBECH N P. Diffusive boundary layers and the oxygen uptake of sediments and detritus[J]. Limnology and Oceanography, 1985, 30(1): 111-122.
17 REVSBECH N P, NIELSEN L P, RAMSING N B. A novel microsensor for determination of apparent diffusivity in sediments[J]. Limnology and Oceanography, 1998, 43(5): 986-992.
18 RABOUILLE C, DENIS L, DEDIEU K, et al. Oxygen demand in coastal marine sediments: comparing in situ microelectrodes and laboratory core incubations[J]. Journal of Experimental Marine Biology and Ecology, 2003, 285/286: 49-69.
19 TAILLEFERT M, NUZZIO D B. The application of electrochemical tools for in situ measurements in aquatic systems[J]. Electroanalysis, 2000, 12(6): 401-412.
20 GLUD R N, WENZH?FER F, MIDDELBOE M, et al. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth[J]. Nature Geoscience, 2013, 6(4): 284-288.
21 GLUD R N, GUNDERSEN J K, HOLBY O. Benthic in situ respiration in the upwelling area off central Chile [J]. Marine Ecology Progress Series, 1999, 186: 9-18.
22 DEVOL A H, CHRISTENSEN J P. Benthic fluxes nitrogen cycling in sediments of continental margin of eastern North Pacific[J]. Journal of Marine Research, 1993, 51(2): 345-372.
23 GLUD R N, GUNDERSEN J K, R?Y H, et al. Seasonal dynamics of benthic O2 uptake in a semienclosed bay: importance of diffusion and faunal activity[J]. Limnology and Oceanography, 2003, 48(3): 1 265-1 276.
24 HALL P O J, BRUNNEG?RD J, HULTHE G, et al. Dissolved organic matter in abyssal sediments: core recovery artifacts[J]. Limnology and Oceanography, 2007, 52(1): 19-31.
25 WENZHOEFER F, LEMBURG J, HOFBAUER M, et al. Tramper[C]// OCEANS 2016 MTS/IEEE Monterey. Monterey, CA, USA: IEEE, 2016: 1-6.
26 LEMBURG J, WENZH?FER F, HOFBAUER M, et al. Benthic crawler NOMAD[C]//2018 OCEANS-MTS/IEEE Kobe Techno-Oceans. Kobe, Japan: IEEE, 2018: 1-7.
27 PAMATMAT M M, FENTON D. An instrument for measuring subtidal benthic metabolism in situ[J]. Limnology and Oceanography, 1968, 13(3): 537-540.
28 SMITH K L. Benthic community respiration in the N.W. Atlantic Ocean: in situ measurements from 40 to 5200 M[J]. Marine Biology, 1978, 47(4): 337-347.
29 HALL P O J, ANDERSON L G, van der LOEFF M M R, et al. Oxygen uptake kinetics in the benthic boundary layer[J]. Limnology and Oceanography, 1989, 34(4): 734-746.
30 CAPRAIS J C, LANTERI N, CRASSOUS P, et al. A new CALMAR benthic chamber operating by submersible: first application in the cold-seep environment of Napoli mud volcano (Mediterranean Sea)[J]. Limnology and Oceanography: Methods, 2010, 8(6): 304-312.
31 LUO M, GLUD R N, PAN B B, et al. Benthic carbon mineralization in hadal trenches: insights from in situ determination of benthic oxygen consumption[J]. Geophysical Research Letters, 2018, 45(6): 2 752-2 760.
32 VIOLLIER E. Benthic biogeochemistry: state of the art technologies and guidelines for the future of in situ survey[J]. Journal of Experimental Marine Biology and Ecology, 2003, 285/286: 5-31.
33 ARCHER D, DEVOL A. Benthic oxygen fluxes on the Washington shelf and slope: a comparison of in situ microelectrode and chamber flux measurements[J]. Limnology and Oceanography, 1992, 37(3): 614-629.
34 KONONETS M, TENGBERG A, NILSSON M, et al. In situ incubations with the Gothenburg benthic chamber landers: applications and quality control[J]. Journal of Marine Systems, 2021, 214. DOI:10.1016/j.jmarsys.2020.103475 .
35 TENGBERG A. Benthic chamber and profiling landers in oceanography—a review of design, technical solutions and functioning[J]. Progress in Oceanography, 1995, 35(3): 253-294.
36 BENDER M, JAHNKE R, RAY W, et al. Organic carbon oxidation and benthic nitrogen and silica dynamics in San Clemente Basin, a continental borderland site[J]. Geochimica et Cosmochimica Acta, 1989, 53(3): 685-697.
37 GLUD R N, JENSEN K, REVSBECH N P, et al. Diffusivity in surficial sediments and benthic mats determined by use of a combined N2O-O2 microsensor[J]. Geochimica et Cosmochimica Acta, 1995, 59(2): 231-237.
38 GLUD R N, BERG P, FOSSING H, et al. Effect of the diffusive boundary layer on benthic mineralization and O2 distribution: a theoretical model analysis[J]. Limnology and Oceanography, 2007, 52(2): 547-557.
39 LORENZEN J, GLUD R N, REVSBECH N P. Impact of microsensor-caused changes in diffusive boundary layer thickness on O2 profiles and photosynthetic rates in benthic communities of microorganisms[J]. Marine Ecology Progress Series, 1995, 119: 237-241.
40 TENGBERG A. Resuspension and its effects on organic carbon recycling and nutrient exchange in coastal sediments: in situ measurements using new experimental technology[J]. Journal of Experimental Marine Biology and Ecology, 2003, 285/286: 119-142.
41 GLUD R N, FORSTER S, HUETTEL M. Influence of radial pressure gradients on solute exchange in stirred benthic Chambers[J]. Marine Ecology Progress Series, 1996, 141: 303-311.
42 SWINBANK W C. The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere[J]. Journal of Meteorology, 1951, 8(3): 135-145.
43 BERG P, R?Y H, JANSSEN F, et al. Oxygen uptake by aquatic sediments measured with a novel non-invasive eddy-correlation technique[J]. Marine Ecology Progress Series, 2003, 261: 75-83.
44 BERG P, GLUD R N, HUME A, et al. Eddy correlation measurements of oxygen uptake in deep ocean sediments[J]. Limnology and Oceanography: Methods, 2009, 7(8): 576-584.
45 REIMERS C E, ?ZKAN-HALLER H T, BERG P, et al. Benthic oxygen consumption rates during hypoxic conditions on the Oregon continental shelf: evaluation of the eddy correlation method[J]. Journal of Geophysical Research: Oceans, 2012, 117(C2). DOI:10.1029/2011JC007564 .
46 BERG P, HUETTEL M. Monitoring the seafloor using the noninvasive eddy correlation technique: integrated benthic exchange dynamics[J]. Oceanography, 2008, 21(4): 164-167.
47 BERG P, HUETTEL M, GLUD R N, et al. Aquatic eddy covariance: the method and its contributions to defining oxygen and carbon fluxes in marine environments[J]. Annual Review of Marine Science, 2022, 14: 431-455.
48 KUWAE T, KAMIO K, INOUE T, et al. Oxygen exchange flux between sediment and waterin an intertidal sandflat, measured in situ by the eddy-correlation method[J]. Marine Ecology Progress Series, 2006, 307: 59-68.
49 CUI Shanggong, YU Xinsheng, ZHAO Guangtao, et al. Research on the in situ observation methods for dissolved oxygen flux in the benthic boundary layer[J]. Journal of Ocean Technology, 2017, 36(2): 122-131.
49 崔尚公, 于新生, 赵广涛, 等. 海底边界层溶解氧通量原位观测技术方法研究[J]. 海洋技术学报, 2017, 36(2): 122-131.
50 CUI Shanggong, YU Xinsheng, ZHAO Guangtao. In situ measurements of benthic oxygen fluxes in Huiquan Bay of Qingdao by eddy correlation techniques: short term pattern variations in gravel beach[J]. Marine Information, 2017(4): 51-62.
50 崔尚公, 于新生, 赵广涛. 应用涡动相关技术的底栖溶解氧通量原位观测: 以青岛汇泉湾砾石海滩短周期变化为例[J]. 海洋信息, 2017(4): 51-62.
51 HUME A C, BERG P, MCGLATHERY K J. Dissolved oxygen fluxes and ecosystem metabolism in an eelgrass (Zostera marina) meadow measured with the eddy correlation technique[J]. Limnology and Oceanography, 2011, 56(1): 86-96.
52 LONG M H, BERG P, FALTER J L. Seagrass metabolism across a productivity gradient using the eddy covariance, Eulerian control volume, and biomass addition techniques[J]. Journal of Geophysical Research: Oceans, 2015, 120(5): 3 624-3 639.
53 ATTARD K M, RODIL I F, BERG P, et al. Seasonal metabolism and carbon export potential of a key coastal habitat: the perennial canopy-forming macroalga Fucus vesiculosus [J]. Limnology and Oceanography, 2019, 64(1): 149-164.
54 LONG M H, BERG P, de BEER D, et al. In situ coral reef oxygen metabolism: an eddy correlation study[J]. PLoS ONE, 2013, 8(3). DOI:10.1371/journal.pone.0058581 .
55 ATTARD K M, RODIL I F, BERG P, et al. Metabolism of a subtidal rocky mussel reef in a high-temperate setting: pathways of organic C flow[J]. Marine Ecology Progress Series, 2020, 645: 41-54.
56 BERG P, R?Y H, WIBERG P L. Eddy correlation flux measurements: the sediment surface area that contributes to the flux[J]. Limnology and Oceanography, 2007, 52(4): 1 672-1 684.
57 REIMERS C E, SANDERS R D, DEWEY R, et al. Benthic fluxes of oxygen and heat from a seasonally hypoxic region of Saanich Inlet fjord observed by eddy covariance[J]. Estuarine, Coastal and Shelf Science, 2020, 243. DOI: 10.1016/j.ecss.2020.106815 .
58 AMBROSE W, CLOUGH L, TILNEY P, et al. Role of echinoderms in benthic remineralization in the Chukchi Sea[J]. Marine Biology, 2001, 139(5): 937-949.
59 GLUD R N, RISGAARD-PETERSEN N, THAMDRUP B, et al. Benthic carbon mineralization in a high-Arctic sound (Young Sound, NE Greenland)[J]. Marine Ecology Progress Series, 2000, 206: 59-71.
60 HEIP C H R. The role of the benthic biota in sedimentary metabolism and sediment-water exchange processes in the Goban Spur area (NE Atlantic)[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2001, 48(14/15): 3 223-3 243.
61 RODIL I F, ATTARD K M, NORKKO J, et al. Estimating respiration rates and secondary production of macrobenthic communities across coastal habitats with contrasting structural biodiversity[J]. Ecosystems, 2020, 23(3): 630-647.
62 KRISTENSEN E, KOSTKA J E. Macrofaunal burrows and irrigation in marine sediment: microbiological and biogeochemical interactions[M]// Coastal and estuarine studies. Washington, D. C.: American Geophysical Union, 2005: 125-157.
63 MIDDELBURG J J. Reviews and syntheses: to the bottom of carbon processing at the seafloor[J]. Biogeosciences, 2018, 15(2): 413-427.
64 VOLARIC M P, BERG P, REIDENBACH M A. Drivers of oyster reef ecosystem metabolism measured across multiple timescales[J]. Estuaries and Coasts, 2020, 43(8): 2 034-2 045.
65 SNELGROVE P V R, SOETAERT K, SOLAN M, et al. Global carbon cycling on a heterogeneous seafloor[J]. Trends in Ecology & Evolution, 2018, 33(2): 96-105.
66 MAZLUMYAN S, BOLTACHОVA N. Long-term variations in macrobenthos diversity at the Istanbul strait’s (Bosporus) outlet area of the black sea[J]. Ecologica Montenegrina, 2017, 14: 80-91.
67 VEDENIN A, GUSKY M, GEBRUK A, et al. Spatial distribution of benthic macrofauna in the central Arctic Ocean[J]. PLoS ONE, 2018, 13(10). DOI:10.1371/journal.pone.0200121 .
68 HUGHES S J M, RUHL H A, HAWKINS L E, et al. Deep-sea echinoderm oxygen consumption rates and an interclass comparison of metabolic rates in Asteroidea, Crinoidea, Echinoidea, Holothuroidea and Ophiuroidea[J]. The Journal of Experimental Biology, 2011, 214(Pt 15): 2 512-2 521.
69 CHRISTIANSEN B, DIEL-CHRISTIANSEN S. Respiration of lysianassoid amphipods in a subarctic fjord and some implications on their feeding ecology[J]. Sarsia, 1993, 78(1): 9-15.
70 YANG T H, SOMERO G N. Effects of feeding and food deprivation on oxygen consumption, muscle protein concentration and activities of energy metabolism enzymes in muscle and brain of shallow-living (Scorpaena guttata) and deep-living (Sebastolobus alascanus) scorpaenid fishes[J]. Journal of Experimental Biology, 1993, 181(1): 213-232.
71 SERGEEVA N G, MAZLUMYAN S A. Deep-water hypoxic meiobenthic protozoa and Metazoa taxa of the Istanbul strait’s (Bosporus) outlet area of the black sea[J]. Ecologica Montenegrina, 2015, 2(3): 255-270.
72 STRATMANN T, van OEVELEN D, MARTíNEZ A P, et al. The BenBioDen database, a global database for meio-, macro- and megabenthic biomass and densities[J]. Scientific Data, 2020, 7. DOI:10.1038/s41597-020-0551-2 .
73 LEDUC D, ROWDEN A A, GLUD R N, et al. Comparison between infaunal communities of the deep floor and edge of the Tonga Trench: possible effects of differences in organic matter supply[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2016, 116: 264-275.
74 KRISTENSEN E, PENHA-LOPES G, DELEFOSSE M, et al. What is bioturbation?The need for a precise definition for fauna in aquatic sciences[J]. Marine Ecology Progress Series, 2012, 446: 285-302.
75 HUFFARD C L, KUHNZ L A, LEMON L,et al. Demographic indicators of change in a deposit-feeding abyssal holothurian community (Station M, 4 000 m)[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2016, 109: 27-39.
76 DURDEN J M, BETT B J, HUFFARD C L, et al. Response of deep-sea deposit-feeders to detrital inputs: a comparison of two abyssal time-series sites[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2020, 173. DOI:10.1016/j.dsr2.2019.104677 .
77 VOLKENBORN N, POLERECKY L, HEDTKAMP S I C, et al. Bioturbation and bioirrigation extend the open exchange regions in permeable sediments[J]. Limnology and Oceanography, 2007, 52(5): 1 898-1 909.
78 J?RGENSEN B B, GLUD R N, HOLBY O. Oxygen distribution and bioirrigation in Arctic fjord sediments (Svalbard, Barents Sea)[J]. Marine Ecology Progress Series, 2005, 292: 85-95.
79 ALLER R C. Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation[J]. Chemical Geology, 1994, 114(3/4): 331-345.
80 ALLER R C. Conceptual models of early diagenetic processes: the muddy seafloor as an unsteady, batch reactor[J]. Journal of Marine Research, 2004, 62(6): 815-835.
81 J?RGENSEN B B. Bacterial sulfate reduction within reduced microniches of oxidized marine sediments[J]. Marine Biology, 1977, 41(1): 7-17.
82 J?RGENSEN B B. Bacteria and marine biogeochemistry[M]//Marine geochemistry. Berlin/Heidelberg: Springer-Verlag, 2006: 169-206.
83 BRADLEY J A, ARNDT S, AMEND J P, et al. Widespread energy limitation to life in global subseafloor sediments[J]. Science Advances, 2020, 6(32). DOI: 10.1126/sciadv.aba0697 .
84 J?RGENSEN B B. Mineralization of organic matter in the sea bed—the role of sulphate reduction[J]. Nature, 1982, 296(5 858): 643-645.
85 M?RZ C. Phosphorus dynamics around the sulphate-methane transition in continental margin sediments: authigenic apatite and Fe(II) phosphates[J]. Marine Geology, 2018, 404: 84-96.
86 RAISWELL R, CANFIELD D E. Sources of iron for pyrite formation in marine sediments[J]. American Journal of Science, 1998, 298(3): 219-245.
87 BERNER R A. Sedimentary pyrite formation[J]. American Journal of Science, 1970, 268(1): 1-23.
88 J?RGENSEN B B, FINDLAY A J, PELLERIN A. The biogeochemical sulfur cycle of marine sediments[J]. Frontiers in Microbiology, 2019, 10. DOI:10.3389/fmicb.2019.00849 .
89 WALLMANN K, PINERO E, BURWICZ E, et al. The global inventory of methane hydrate in marine sediments: a theoretical approach[J]. Energies, 2012, 5(7): 2 449-2 498.
90 CADéE G C. Primary production of the benthic microflora living on tidal flats in the Dutch Wadden Sea[J]. Netherlands Journal of Sea Research, 1974, 8(2/3): 260-291.
91 BARRANGUET C, KROMKAMP J, PEENE J. Factors controlling primary production and photosynthetic characteristics of intertidal microphytobenthos[J]. Marine Ecology Progress Series, 1998, 173: 117-126.
92 GLUD R N, RAMSING N B, REVSBECH N P. Photosynthesis and photosynthesis-coupled respiration in natural biofilms quantified with oxygen microsensors1[J]. Journal of Phycology, 1992, 28(1): 51-60.
93 FENCHEL T, GLUD R N. Benthic primary production and O2-CO2 dynamics in a shallow-water sediment: spatial and temporal heterogeneity[J]. Ophelia, 2000, 53(2): 159-171.
94 EPPING E H G, KHALILI A, THAR R. Photosynthesis and the dynamics of oxygen consumption in a microbial mat as calculated from transient oxygen microprofiles[J]. Limnology and Oceanography, 1999, 44(8): 1 936-1 948.
95 KüHL M, GLUD R N, PLOUG H, et al. Microenvironmental control of photosynthesis and photosynthesis-coupled respiration in an epilithic cyanobacterial biofilm1[J]. Journal of Phycology, 1996, 32(5): 799-812.
96 WIELAND A, KüHL M. Irradiance and temperature regulation of oxygenic photosynthesis and O2 consumption in a hypersaline cyanobacterial mat (Solar Lake, Egypt)[J]. Marine Biology, 2000, 137(1): 71-85.
97 HANCKE K, GLUD R N. Temperature effects on respiration and photosynthesis in three diatom-dominated benthic communities[J]. Aquatic Microbial Ecology, 2004, 37: 265-281.
98 THAMDRUP B, HANSEN J W, J?RGENSEN B B. Temperature dependence of aerobic respiration in a coastal sediment[J]. FEMS Microbiology Ecology, 1998, 25(2): 189-200.
99 THAMDRUP B, FLEISCHER S. Temperature dependence of oxygen respiration, nitrogen mineralization, and nitrification in Arctic sediments[J]. Aquatic Microbial Ecology, 1998, 15: 191-199.
100 THERKILDSEN M S, LOMSTEIN B A. Seasonal variation in net benthic C-mineralization in a shallow estuary[J]. FEMS Microbiology Ecology, 1993, 12(2): 131-142.
101 HARRIS P T. Geomorphology of the oceans[J]. Marine Geology, 2014, 352: 4-24.
102 SMITH K L, RUHL H A, KAUFMANN R S, et al. Tracing abyssal food supply back to upper-ocean processes over a 17-year time series in the northeast Pacific[J]. Limnology and Oceanography, 2008, 53(6): 2 655-2 667.
103 WIEDMANN I, ERSHOVA E, BLUHM B, et al. What feeds the benthos in the Arctic Basins? assembling a carbon budget for the deep Arctic Ocean[J]. Frontiers in Marine Science, 2020. DOI:10.3389/FMARS.2020.00224 .
104 PAK H, ZANEVELD J R V. Bottom nepheloid layers and bottom mixed layers observed on the continental shelf off Oregon[J]. Journal of Geophysical Research, 1977, 82(27): 3 921-3 931.
105 SPINRAD R W, ZANEVELD J R V, KITCHEN J C. A study of the optical characteristics of the suspended particles in the benthic nepheloid layer of the Scotian Rise[J]. Journal of Geophysical Research: Oceans, 1983, 88(C12): 7 641-7 645.
106 RANSOM B. Comparison of pelagic and nepheloid layer marine snow: implications for carbon cycling[J]. Marine Geology, 1998, 150(1/2/3/4): 39-50.
107 TREUDE T, SMITH C R, WENZH?FER F, et al. Biogeochemistry of a deep-sea whale fall: sulfate reduction, sulfide efflux and methanogenesis[J]. Marine Ecology Progress Series, 2009, 382: 1-21.
108 BOETIUS A, ALBRECHT S, BAKKER K, et al. Export of algal biomass from the melting Arctic Sea ice[J]. Science, 2013, 339(6 126): 1 430-1 432.
109 SMITH K L, HUFFARD C L, SHERMAN A D, et al. Decadal change in sediment community oxygen consumption in the abyssal northeast Pacific[J]. Aquatic Geochemistry, 2016, 22(5/6): 401-417.
110 PAULMIER A. Oxygen Minimum Zones (OMZs) in the modern ocean[J]. Progress in Oceanography, 2009, 80(3/4): 113-128.
111 BREITBURG D, LEVIN L A, OSCHLIES A, et al. Declining oxygen in the global ocean and coastal waters [J]. Science, 2018, 359(6 371). DOI: 10.1126/science.aam7240 .
112 SCHMIDTKO S, STRAMMA L, VISBECK M. Decline in global oceanic oxygen content during the past five decades[J]. Nature, 2017, 542(7 641): 335-339.
113 LAM P, KUYPERS M M M. Microbial nitrogen cycling processes in oxygen minimum zones[J]. Annual Review of Marine Science, 2011, 3: 317-345.
114 SEITAJ D, SCHAUER R, SULU-GAMBARI F, et al. Cable bacteria generate a firewall against Euxinia in seasonally hypoxic basins[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(43): 13 278-13 283.
115 ORSI W D, MORARD R, VUILLEMIN A, et al. Anaerobic metabolism of Foraminifera thriving below the seafloor[J]. The ISME Journal, 2020, 14(10): 2 580-2 594.
116 LEVIN L A. Oxygen and organic matter thresholds for benthic faunal activity on the Pakistan margin oxygen minimum zone (700-1 100 m)[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2009, 56(6/7): 449-471.
117 CANFIELD D E. Factors influencing organic carbon preservation in marine sediments[J]. Chemical Geology, 1994, 114(3/4): 315-329.
118 BARONI I R, PALASTANGA V, SLOMP C P. Enhanced organic carbon burial in sediments of oxygen minimum zones upon ocean deoxygenation[J]. Frontiers in Marine Science, 2020, 6. DOI:10.3389/fmars.2019.00839 .
119 WOLFF T. The hadal community, an introduction[J]. Deep Sea Research (1953), 1959, 6: 95-124.
120 JAMIESON A J. Hadal trenches: the ecology of the deepest places on Earth[J]. Trends in Ecology & Evolution, 2010, 25(3): 190-197.
121 DU M R, PENG X T, ZHANG H B, et al. Geology, environment, and life in the deepest part of the world’s oceans[J]. Innovation (Cambridge (Mass)), 2021, 2(2). DOI: 10.1016/j.xinn.2021.100109 .
122 XU Y P. Biogeochemistry of hadal trenches: recent developments and future perspectives[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2018, 155: 19-26.
123 LUO M. Provenances, distribution, and accumulation of organic matter in the southern Mariana Trench rim and slope: implication for carbon cycle and burial in hadal trenches[J]. Marine Geology, 2017, 386: 98-106.
124 XU Y P, JIA Z, XIAO W, et al. Glycerol dialkyl glycerol tetraethers in surface sediments from three Pacific trenches: distribution, source and environmental implications[J]. Organic Geochemistry, 2020, 147. DOI:10.1016/j.orggeochem.2020.104079 .
125 WENZH?FER F, OGURI K, MIDDELBOE M, et al. Benthic carbon mineralization in hadal trenches: assessment by in situ O2 microprofile measurements[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2016, 116: 276-286.
126 GLUD R N, BERG P, THAMDRUP B, et al. Hadal trenches are dynamic hotspots for early diagenesis in the deep sea[J]. Communications Earth & Environment, 2021, 2. DOI:10.1038/s43247-020-00087-2 .
127 LUO M, GIESKES J, CHEN L Y, et al. Sources, degradation, and transport of organic matter in the new Britain shelf-trench continuum, Papua new Guinea[J]. Journal of Geophysical Research: Biogeosciences, 2019, 124(6): 1 680-1 695.
128 XU Y P, LI X X, LUO M, et al. Distribution, source, and burial of sedimentary organic carbon in Kermadec and Atacama trenches[J]. Journal of Geophysical Research: Biogeosciences, 2021, 126(5). DOI:10.1029/2020JG006189 .
129 ZHANG X, XU Y, XIAO W, et al. The hadal zone is an important and heterogeneous sink of black carbon in the ocean[J]. Communications Earth & Environment, 2022, 3. DOI: 10.1038/s43247-022-00351-7 .
130 OGURI K, KAWAMURA K, SAKAGUCHI A, et al. Hadal disturbance in the Japan Trench induced by the 2011 Tohoku-Oki earthquake[J]. Scientific Reports, 2013, 3. DOI:10.1038/srep01915 .
131 KANHAI L D K, OFFICER R, LYASHEVSKA O, et al. Microplastic abundance, distribution and composition along a latitudinal gradient in the Atlantic Ocean[J]. Marine Pollution Bulletin, 2017, 115(1/2): 307-314.
132 SUESS E. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions[J]. International Journal of Earth Sciences, 2014, 103(7): 1 889-1 916.
133 LEVIN L A, SIBUET M. Understanding continental margin biodiversity: a new imperative[J]. Annual Review of Marine Science, 2012, 4: 79-112.
134 ORPHAN V J, HOUSE C H, HINRICHS K U, et al. Methane-consuming Archaea revealed by directly coupled isotopic and phylogenetic analysis[J]. Science, 2001, 293(5 529): 484-487.
135 BOETIUS A, RAVENSCHLAG K, SCHUBERT C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407(6 804): 623-626.
136 REEBURGH W S. Oceanic methane biogeochemistry[J]. ChemInform, 2007, 38(20). DOI:10.1021/cr050362v .
137 REGNIER P. Quantitative analysis of Anaerobic Oxidation of Methane (AOM) in marine sediments: a modeling perspective[J]. Earth-Science Reviews, 2011, 106(1/2): 105-130.
138 BOETIUS A, WENZH?FER F. Seafloor oxygen consumption fuelled by methane from cold seeps[J]. Nature Geoscience, 2013, 6(9): 725-734.
139 SOMMER S, PFANNKUCHE O, LINKE P, et al. Efficiency of the benthic filter: biological control of the emission of dissolved methane from sediments containing shallow gas hydrates at Hydrate Ridge[J]. Global Biogeochemical Cycles, 2006, 20(2). DOI:10.1029/2004GB002389 .
140 GRüNKE S, FELDEN J, LICHTSCHLAG A, et al. Niche differentiation among mat-forming, sulfide-oxidizing bacteria at cold seeps of the Nile Deep Sea Fan (Eastern Mediterranean Sea)[J]. Geobiology, 2011, 9(4): 330-348.
141 LICHTSCHLAG A, FELDEN J, BRüCHERT V, et al. Geochemical processes and chemosynthetic primary production in different thiotrophic mats of the H?kon Mosby Mud Volcano (Barents Sea)[J]. Limnology and Oceanography, 2010, 55(2): 931-949.
142 SOMMER S. Benthic respiration in a seep habitat dominated by dense beds of ampharetid polychaetes at the Hikurangi Margin (New Zealand)[J]. Marine Geology, 2010, 272(1/2/3/4): 223-232.
143 FELDEN J, LICHTSCHLAG A, WENZH?FER F, et al. Limitations of microbial hydrocarbon degradation at the Amon mud volcano (Nile deep-sea fan)[J]. Biogeosciences, 2013, 10(5): 3 269-3 283.
144 RISTOVA P POP, WENZH?FER F, RAMETTE A, et al. Bacterial diversity and biogeochemistry of different chemosynthetic habitats of the REGAB cold seep (West African margin, 3160 m water depth) [J]. Biogeosciences, 2012, 9(12): 5 031-5 048.
Outlines

/