Enhanced Silicate Rock Weathering—A New Path of “Carbon Neutrality”

  • Weibin GAO ,
  • Yang CHEN ,
  • Haoxian WANG
Expand
  • 1.Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, and Frontier Science Center for Critical Earth Material Cycle, Nanjing University, Nanjing 210023, China
    2.Jiangsu Collaborative Innovation Center for Climate Change, Nanjing 210023, China
GAO Weibin (2000-), male, Tangshan City, Hebei Province, Master student. Research area includes geochemistry. E-mail: gwb1024194401@163.com
CHEN Yang (1973-), female, Yongkang City, Zhejiang Province, Associate professor. Research areas include chemical weathering and carbon sink. E-mail: chenyang@nju.edu.cn

Received date: 2022-10-29

  Revised date: 2022-12-12

  Online published: 2023-03-02

Supported by

the National Natural Science Foundation of China “Dynamics of continental weathering in the tectonically stable area”(41991321);Jiangsu Province Special Fund for Natural Resources Protection and Utilization (Pilot Project of Mine-Land Integration) “Pilot study on increasing production, carbon sequestration and ecological benefits of basalts in Xuyi area”(HAZC-2021110508-XY)

Abstract

Since the industrial revolution, human activities have emitted large amounts of CO2 into the atmosphere, causing a rapid increase in global surface temperatures. To cope with global warming, it is necessary to apply negative-emission technologies on a large scale. Enhanced silicate Rock Weathering (ERW) is a form of negative-emission technology based on geochemical principles that accelerates the chemical weathering process of silicate rock by adding silicate rock powder to farmland or forests to stabilize atmospheric CO2 over a short time period. China has abundant and widely-distributed basalt reserves and a large amount of unused mine tailings and alkaline silicate wastes. Therefore, there is great potential for the removal of atmospheric CO2 through ERW. The calculation results show that China can remove 0.13~0.80 Gt CO2 through ERW annually, which is conducive to the realization of the “carbon neutrality” goal. However, ERW still faces many problems. Combining the progress of domestic and international research, the main application effects and influencing factors of ERW are summarized, the potential of ERW application in China is analyzed, and the main issues facing ERW application in China are discussed from five aspects: technology, economy, safety, society, and policy. In view of the focus and shortcomings of the current research, the calculation of ERW carbon sequestration, potential hazards of application, and other key concerns and challenges are presented.

Cite this article

Weibin GAO , Yang CHEN , Haoxian WANG . Enhanced Silicate Rock Weathering—A New Path of “Carbon Neutrality”[J]. Advances in Earth Science, 2023 , 38(2) : 137 -150 . DOI: 10.11867/j.issn.1001-8166.2022.093

References

1 PENMAN D E, CAVES RUGENSTEIN J K, IBARRA D E, et al. Silicate weathering as a feedback and forcing in Earth’s climate and carbon cycle[J]. Earth-Science Reviews, 2020, 209. DOI:10.1016/j.earscirev.2020.103298 .
2 WALKER J C G, HAYS P B, KASTING J F. A negative feedback mechanism for the long-term stabilization of Earth's surface temperature[J]. Journal of Geophysical Research: Oceans, 1981, 86(C10): 9 776-9 782.
3 GAILLARDET J, DUPRé B, LOUVAT P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1/2/3/4): 3-30.
4 KELEMEN P, MCQUEEN N, WILCOX J, et al. Engineered carbon mineralization in ultramafic rocks for CO2 removal from air: review and new insights[J]. Chemical Geology, 2020, 550. DOI:10.1016/j.chemgeo.2020.119628 .
5 RINDER T, HAGKE C. The influence of particle size on the potential of enhanced basalt weathering for carbon dioxide removal-insights from a regional assessment[J]. Journal of Cleaner Production, 2021, 315. DOI:10.1016/j.jclepro.2021.128178 .
6 KANTOLA I B, MASTERS M D, BEERLING D J, et al. Potential of global croplands and bioenergy crops for climate change mitigation through deployment for enhanced weathering [J]. Biology Letters, 2017, 13(4). DOI:10.1098/rsbl.2016.0714 .
7 RENFORTH P, HENDERSON G. Assessing ocean alkalinity for carbon sequestration [J]. Reviews of Geophysics, 2017, 55(3): 636-674.
8 BEERLING D J, LEAKE J R, LONG S P, et al. Farming with crops and rocks to address global climate, food and soil security [J]. Nature Plants, 2018, 4(3): 138-147.
9 DONEY S C, FABRY V J, FEELY R A, et al. Ocean acidification: the other CO2 problem [J]. Annual Review of Marine Science, 2009, 1: 169-192.
10 SEIFRITZ W. CO2 disposal by means of silicates [J]. Nature, 1990, 345(6 275): 486-486.
11 SCHUILING R D, KRIJGSMAN P. Enhanced weathering: an effective and cheap tool to sequester CO2 [J]. Climatic Change, 2006, 74(1/2/3): 349-354.
12 K?HLER P, ABRAMS J F, V?LKER C, et al. Geoengineering impact of open ocean dissolution of olivine on atmospheric CO2, surface ocean pH and marine biology[J]. Environmental Research Letters, 2013, 8(1). DOI:10.1088/1748-9326/8/1/014009 .
13 RIGOPOULOS I, HARRISON A L, DELIMITIS A, et al. Carbon sequestration via enhanced weathering of peridotites and basalts in seawater [J]. Applied Geochemistry, 2018, 91: 197-207.
14 MEYSMAN F J R, MONTSERRAT F. Negative CO2 emissions viaenhanced silicate weathering in coastal environments[J]. Biology Letters, 2017, 13(4). DOI: 10.1098/rsbl.2016.0905 .
15 HANGX S J T, SPIERS C J. Coastal spreading of olivine to control atmospheric CO2 concentrations: a critical analysis of viability[J]. International Journal of Greenhouse Gas Control, 2009, 3(6): 757-767.
16 van STRAATEN P. Farming with rocks and minerals: challenges and opportunities [J]. Anais da Academia Brasileira de Ciências, 2006, 78: 731-747.
17 KELLAND M E, WADE P W, LEWIS A L, et al. Increased yield and CO2 sequestration potential with the C4 cereal Sorghum bicolor cultivated in basaltic rock dust-amended agricultural soil [J]. Global Change Biology, 2020, 26(6): 3 658-3 676.
18 RAMOS C G, de MEDEIROS D D S, GOMEZ L, et al. Evaluation of soil re-mineralizer from by-product of volcanic rock mining: experimental proof using black oats and maize crops [J]. Natural Resources Research, 2020, 29(3): 1 583-1 600.
19 HAQUE F, SANTOS R M, DUTTA A, et al. Co-benefits of wollastonite weathering in agriculture: CO2 sequestration and promoted plant growth [J]. ACS Omega, 2019, 4(1): 1 425-1 433.
20 K?HLER P, HARTMANN J, WOLF-GLADROW D A. Geoengineering potential of artificially enhanced silicate weathering of olivine[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(47): 20 228-20 233.
21 BABU T, TUBANA B, PAYE W, et al. Establishing soil silicon test procedure and critical silicon level for rice in Louisiana soils [J]. Communications in Soil Science and Plant Analysis, 2016, 47(12): 1 578-1 597.
22 LI J J, HITCH M, POWER I, et al. Integrated mineral carbonation of ultramafic mine deposits—a review[J]. Minerals, 2018, 8(4). DOI:10.3390/min8040147 .
23 CANADELL J G, MONTEIRO P M S, COSTA M H, et al. Global carbon and other biogeochemical cycles and feedbacks[M]// Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on climate change. Cambridge:Cambridge University Press, 2021.
24 BEERLING D J, KANTZAS E P, LOMAS M R, et al. Potential for large-scale CO2 removal via enhanced rock weathering with croplands [J]. Nature, 2020, 583(7 815): 242-248.
25 GOLL D S, CIAIS P, AMANN T, et al. Potential CO2 removal from enhanced weathering by ecosystem responses to powdered rock [J]. Nature Geoscience, 2021, 14(8): 545-549.
26 STREFLER J, AMANN T, BAUER N, et al. Potential and costs of carbon dioxide removal by enhanced weathering of rocks [J]. Environmental Research Letters, 2018, 13(3). DOI:10.1088/1748-9326/aaa9c4 .
27 SWOBODA P, D?RING T F, HAMER M. Remineralizing soils? The agricultural usage of silicate rock powders: a review[J]. Science of the Total Environment, 2022, 807(Pt 3). DOI:10.1016/j.scitotenv.2021.150976 .
28 BERGE H F TEN, van der MEER H G, STEENHUIZEN J W, et al. Olivine weathering in soil, and its effects on growth and nutrient uptake in Ryegrass (Lolium perenne L.): a pot experiment[J]. PLoS ONE, 2012, 7(8). DOI: 10.1371/journal.pone.0042098 .
29 AMANN T, HARTMANN J, STRUYF E, et al. Enhanced weathering and related element fluxes-a cropland mesocosm approach [J]. Biogeosciences, 2020, 17(1): 103-119.
30 DIETZEN C, HARRISON R, MICHELSEN-CORREA S. Effectiveness of enhanced mineral weathering as a carbon sequestration tool and alternative to agricultural lime: an incubation experiment[J]. International Journal of Greenhouse Gas Control, 2018, 74: 251-258.
31 HAQUE F, SANTOS R M, CHIANG Y W. CO2 sequestration by wollastonite-amended agricultural soils-an Ontario field study [J]. International Journal of Greenhouse Gas Control, 2020, 97. DOI:10.1016/j.ijggc.2020.103017 .
32 ANDA M, SHAMSHUDDIN J, FAUZIAH C I, et al. Dissolution of ground basalt and its effect on oxisol chemical properties and cocoa growth [J]. Soil Science, 2009, 174(5): 264-271.
33 GILLMAN G P, BURKETT D C, COVENTRY R J. Amending highly weathered soils with finely ground basalt rock [J]. Applied Geochemistry, 2002, 17(8): 987-1 001.
34 ANDA M, SHAMSHUDDIN J, FAUZIAH C I. Increasing negative charge and nutrient contents of a highly weathered soil using basalt and rice husk to promote cocoa growth under field conditions [J]. Soil and Tillage Research, 2013, 132: 1-11.
35 BAKKEN A K, GAUTNEB H, SVEISTRUP T, et al. Crushed rocks and mine tailings applied as K fertilizers on grassland[J]. Nutrient Cycling in Agroecosystems, 2000, 56(1): 53-57.
36 LEWIS A L, SARKAR B, WADE P, et al. Effects of mineralogy, chemistry and physical properties of basalts on carbon capture potential and plant-nutrient element release via enhanced weathering [J]. Applied Geochemistry, 2021, 132. DOI:10.1016/j.apgeochem.2021.105023 .
37 SMITS M M, BONNEVILLE S, BENNING L G, et al. Plant-driven weathering of apatite-the role of an ectomycorrhizal fungus [J]. Geobiology, 2012, 10(5): 445-456.
38 HEYBURN J, MCKENZIE P, CRAWLEY M J, et al. Long‐term belowground effects of grassland management: the key role of liming [J]. Ecological Applications, 2017, 27(7): 2 001-2 012.
39 VERBRUGGEN E, STRUYF E, VICCA S. Can arbuscular mycorrhizal fungi speed up carbon sequestration by enhanced weathering?[J]. Plants, People, Planet, 2021, 3(5): 445-453.
40 SOURI Z, KHANNA K, KARIMI N, et al. Silicon and plants: current knowledge and future prospects [J]. Journal of Plant Growth Regulation, 2021, 40(3): 906-925.
41 HAYNES R J. A contemporary overview of silicon availability in agricultural soils [J]. Journal of Plant Nutrition and Soil Science, 2014, 177(6): 831-844.
42 MILES N, MANSON A D, RHODES R, et al. Extractable silicon in soils of the South African sugar industry and relationships with crop uptake [J]. Communications in Soil Science and Plant Analysis, 2014, 45(22): 2 949-2 958.
43 KEEPING M G. Uptake of silicon by sugarcane from applied sources may not reflect plant-available soil silicon and total silicon content of sources [J]. Frontiers in Plant Science, 2017, 8. DOI: 10.3389/fpls.2017.00760 .
44 CARLSON K M, GERBER J S, MUELLER N D, et al. Greenhouse gas emissions intensity of global croplands [J]. Nature Climate Change, 2017, 7(1): 63-68.
45 BLANC‐BETES E, KANTOLA I B, GOMEZ‐CASANOVAS N, et al. In silico assessment of the potential of basalt amendments to reduce N2O emissions from bioenergy crops [J]. Global Change Biology Bioenergy, 2021, 13(1): 224-241.
46 SHAH G A, SHAH G M, RASHID M I, et al. Bedding additives reduce ammonia emission and improve crop N uptake after soil application of solid cattle manure [J]. Journal of Environmental Management, 2018, 209: 195-204.
47 LEONARDOS O H, THEODORO S H, ASSAD M L. Remineralization for sustainable agriculture: a tropical perspective from a Brazilian viewpoint[J]. Nutrient Cycling in Agroecosystems, 2000, 56(1): 3-9.
48 LI J G, DONG Y H. Effect of a rock dust amendment on disease severity of tomato bacterial wilt [J]. Antonie van Leeuwenhoek, 2013, 103(1): 11-22.
49 LI J G, MAVRODI D V, DONG Y H. Effect of rock dust-amended compost on the soil properties, soil microbial activity, and fruit production in an apple orchard from the Jiangsu Province of China[J]. Archives of Agronomy and Soil Science, 2021, 67(10): 1 313-1 326.
50 TAYLOR L L, QUIRK J, THORLEY R M S, et al. Enhanced weathering strategies for stabilizing climate and averting ocean acidification [J]. Nature Climate Change, 2016, 6(4): 402-406.
51 TAYLOR L L, DRISCOLL C T, GROFFMAN P M, et al. Increased carbon capture by a silicate-treated forested watershed affected by acid deposition [J]. Biogeosciences, 2021, 18(1): 169-188.
52 von WILPERT K, LUKES M. Ecochemical effects of phonolite rock powder, dolomite and potassium sulfate in a spruce stand on an acidified glacial loam [J]. Nutrient Cycling in Agroecosystems, 2003, 65(2): 115-127.
53 Goreau T J, Goreau M, Lufkin F, et al. Basalt powder restores soil fertility and greatly accelerates tree growth on impoverished tropical soils in Panama[C]// Proceedings of the world conference on ecological restoration. Merida, Yucatan, Mexico, 2011.
54 SHAO S, DRISCOLL C T, JOHNSON C E, et al. Long-term responses in soil solution and stream-water chemistry at Hubbard Brook after experimental addition of wollastonite [J]. Environmental Chemistry, 2016, 13(3): 528-540.
55 GU W Y, DRISCOLL C T, SHAO S, et al. Aluminum is more tightly bound in soil after wollastonite treatment to a forest watershed[J]. Forest Ecology and Management, 2017, 397: 57-66.
56 JUICE S M, FAHEY T J, SICCAMA T G, et al. Response of sugar maple to calcium addition to northern hardwood forest [J]. Ecology, 2006, 87(5): 1 267-1 280.
57 AMIOTTE SUCHET P, PROBST J L, LUDWIG W. Worldwide distribution of continental rock lithology: implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans[J]. Global Biogeochemical Cycles, 2003, 17(2). DOI:10.1029/2002GB001891 .
58 MOOSDORF N, RENFORTH P, HARTMANN J. Carbon dioxide efficiency of terrestrial enhanced weathering [J]. Environmental Science & Technology, 2014, 48(9): 4 809-4 816.
59 ZENG Qingrui, LIU Zaihua. Is basalt weathering a major mechanism for atmospheric CO2 consumption?[J]. Chinese Science Bulletin, 2017, 62(10):1 041-1 049.
59 曾庆睿, 刘再华. 玄武岩风化是重要的碳汇机制吗? [J]. 科学通报, 2017, 62(10): 1 041-1 049.
60 HAQUE F, CHIANG Y W, SANTOS R. Risk assessment of Ni, Cr, and Si release from alkaline minerals during enhanced weathering[J]. Open Agriculture, 2020, 5: 166-175.
61 SILVA B, PARADELO R, VáZQUEZ N, et al. Effect of the addition of granitic powder to an acidic soil from Galicia (NW Spain) in comparison with lime[J]. Environmental Earth Sciences, 2013, 68(2): 429-437.
62 FARAONE N, EVANS R, LEBLANC J, et al. Soil and foliar application of rock dust as natural control agent for two-spotted spider mites on tomato plants[J]. Scientific Reports, 2020, 10(1). DOI:10.1038/s41598-020-69060-5 .
63 BOLLAND M D A, BAKER M J. Powdered granite is not an effective fertilizer for clover and wheat in sandy soils from Western Australia[J]. Nutrient Cycling in Agroecosystems, 2000, 56(1): 59-68.
64 DUPRé B, DESSERT C, OLIVA P, et al. Rivers, chemical weathering and Earth’s climate[J]. Comptes Rendus Geoscience, 2003, 335(16): 1 141-1 160.
65 POWER I M, DIPPLE G M, BRADSHAW P M D, et al. Prospects for CO2 mineralization and enhanced weathering of ultramafic mine tailings from the Baptiste nickel deposit in British Columbia, Canada [J]. International Journal of Greenhouse Gas Control, 2020, 94. DOI:10.1016/j.ijggc.2019.102895 .
66 WILSON S A, HARRISON A L, DIPPLE G M, et al. Offsetting of CO2 emissions by air capture in mine tailings at the Mount Keith Nickel Mine, Western Australia: rates, controls and prospects for carbon neutral mining [J]. International Journal of Greenhouse Gas Control, 2014, 25: 121-140.
67 WOLFF-BOENISCH D, GISLASON S R, OELKERS E H, et al. The dissolution rates of natural glasses as a function of their composition at pH 4 and 10.6, and temperatures from 25 to 74 ℃[J]. Geochimica et Cosmochimica Acta, 2004, 68(23): 4 843-4 858.
68 OELKERS E H, GISLASON S R. The mechanism, rates and consequences of basaltic glass dissolution: I. an experimental study of the dissolution rates of basaltic glass as a function of aqueous Al, Si and oxalic acid concentration at 25℃ and pH=3 and 11[J]. Geochimica et Cosmochimica Acta, 2001, 65(21): 3 671-3 681.
69 ZHANG G R, KANG J T, WANG T X, et al. Review and outlook for agromineral research in agriculture and climate mitigation[J]. Soil Research, 2018, 56(2). DOI:10.1071/SR17157 .
70 BANDSTRA J Z, BRANTLEY S L. Data fitting techniques with applications to mineral dissolution kinetics[M]// Kinetics of water-rock interaction. New York: Springer, 2008: 211-257.
71 PALANDRI J L, KHARAKA Y K. A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling[R]. Menlo Park, California: U.S. Geological Survey, 2004.
72 WU Weihua, ZHENG Hongbo, YANG Jiedong, et al. Review and advancements of studies on silicate weathering and the global carbon cycle[J]. Geological Journal of China Universities, 2012, 18(2): 215-224.
72 吴卫华, 郑洪波, 杨杰东, 等. 硅酸盐风化与全球碳循环研究回顾及新进展 [J]. 高校地质学报, 2012, 18(2): 215-224.
73 PHIL R. The negative emission potential of alkaline materials[J]. Nature Communications, 2019, 10(1). DOI:10.1038/s41467-019-09475-5 .
74 RENFORTH P, MANNING D A C, LOPEZ-CAPEL E. Carbonate precipitation in artificial soils as a sink for atmospheric carbon dioxide [J]. Applied Geochemistry, 2009, 24(9): 1 757-1 764.
75 RENFORTH P, von STRANDMANN P A E P, HENDERSON G M. The dissolution of olivine added to soil: implications for enhanced weathering[J]. Applied Geochemistry, 2015, 61: 109-118.
76 HARLEY A D, GILKES R J. Factors influencing the release of plant nutrient elements from silicate rock powders: a geochemical overview[J]. Nutrient Cycling in Agroecosystems, 2000, 56(1): 11-36.
77 EDWARDS D P, LIM F, JAMES R H, et al. Climate change mitigation: potential benefits and pitfalls of enhanced rock weathering in tropical agriculture [J]. Biology Letters, 2017, 13(4). DOI: 10.1098/rsbl.2016.0715 .
78 GUDBRANDSSON S, WOLFF-BOENISCH D, GISLASON S R, et al. An experimental study of crystalline basalt dissolution from 2≤pH≤11 and temperatures from 5 to 75 °C [J]. Geochimica et Cosmochimica Acta, 2011, 75(19): 5 496-5 509.
79 VANDEVIVERE P, WELCH S A, ULLMAN W J, et al. Enhanced dissolution of silicate minerals by bacteria at near-neutral pH[J]. Microbial Ecology, 1994, 27(3): 241-251.
80 MOULTON K L. Solute flux and mineral mass balance approaches to the quantification of plant effects on silicate weathering[J]. American Journal of Science, 2000, 300(7): 539-570.
81 DONTSOVA K, BALOGH‐BRUNSTAD Z, CHOROVER J. Plants as drivers of rock weathering [M]// Biogeochemical cycles: ecological drivers and environmental impact. Washington, D.C.: American Geophysical Union, 2020: 33-58.
82 HINSINGER P, BARROS O N F, BENEDETTI M F, et al. Plant-induced weathering of a basaltic rock: experimental evidence [J]. Geochimica et Cosmochimica Acta, 2001, 65(1): 137-152.
83 RIBEIRO I D A, VOLPIANO C G, VARGAS L K, et al. Use of mineral weathering bacteria to enhance nutrient availability in crops: a review [J]. Frontiers in Plant Science, 2020, 11. DOI:10.3389/fpls.2020.590774 .
84 SCHMALENBERGER A, DURAN A L, BRAY A W, et al. Oxalate secretion by ectomycorrhizal Paxillus involutus is mineral-specific and controls calcium weathering from minerals [J]. Scientific Reports, 2015, 5. DOI:10.1038/srep12187 .
85 HE Linyan, ZHANG Yin, SHENG Xiafang, et al. Isolation of a siderophore-producting bacterial strain and mica-bacterial interactions. [J]. Geological Journal of China Universities, 2012, 18 (1):117-124.
85 何琳燕, 张垠, 盛下放, 等. 一株产铁载体细菌的筛选及其与云母的相互作用 [J]. 高校地质学报, 2012, 18(1): 117-124.
86 ZHOU Yuefei, LU Xiancai, WANG Rucheng, et al. Recent progress in the study of microbiomineralogy of feldspar[J]. Advances in Earth Science, 2008, 23(1): 17-23.
86 周跃飞, 陆现彩, 王汝成, 等. 长石微生物风化作用的研究现状与展望[J]. 地球科学进展, 2008, 23(1): 17-23.
87 LEFEBVRE D, GOGLIO P, WILLIAMS A, et al. Assessing the potential of soil carbonation and enhanced weathering through life cycle assessment: a case study for Sao Paulo State, Brazil [J]. Journal of Cleaner Production, 2019, 233: 468-481.
88 ALI J R, THOMPSON G M, ZHOU M F, et al. Emeishan large igneous province, SW China[J]. Lithos, 2005, 79(3/4): 475-489.
89 YANG Shufeng, CHEN Hanlin, LI Zilong, et al. Early Permian Tarim Large Igneous Province in northwest China [J]. Science China: Earth Sciences, 2014, 44 (2):187-199.
89 杨树锋, 陈汉林, 厉子龙, 等. 塔里木早二叠世大火成岩省 [J]. 中国科学: 地球科学, 2014, 44(2): 187-199.
90 CHEN Xiayu, CHEN Lihui, CHEN Yang, et al. Distribution summary of Cenozoic Basalts in Central and Eastern China [J]. Geological Journal of China Universities, 2014, 20 (4):507-519.
90 陈霞玉, 陈立辉, 陈晹, 等. 中国中—东部地区新生代玄武岩的分布规律与面积汇总 [J]. 高校地质学报, 2014, 20(4): 507-519.
91 MENG Yuehui, NI Wen, ZHANG Yuyan. Current state of ore tailings reusing and its future development in China[J]. China Mine Engineering, 2010, 39(5): 4-9.
91 孟跃辉, 倪文, 张玉燕. 我国尾矿综合利用发展现状及前景[J]. 中国矿山工程, 2010, 39(5): 4-9.
92 LI Zibo, LIU Lianwen, ZHAO Liang, et al. Carbon dioxide sequestration by ultramafic-hosted mine tailings: example from Jinchuan copper-nickel mine tailing[J]. Quaternary Sciences, 2011, 31(3): 464-472.
92 李子波, 刘连文, 赵良, 等. 应用超基性岩尾矿封存CO2: 以金川铜镍矿尾矿为例[J]. 第四纪研究, 2011, 31(3): 464-472.
93 JI Xinting, ZHAO Liang, LIU Lianwen, et al. CO2 sequestration based dissolution study of extremely poor vanado-titanomagnetite deposit tailings[J]. Geological Journal of China Universities, 2017, 23(2): 244-251.
93 季馨婷, 赵良, 刘连文, 等. 基于CO2封存的盐酸浸取超贫钒钛磁铁矿尾矿实验研究[J]. 高校地质学报, 2017, 23(2): 244-251.
94 PAN S Y, CHEN Y H, FAN L S, et al. CO2 mineralization and utilization by alkaline solid wastes for potential carbon reduction [J]. Nature Sustainability, 2020, 3(5): 399-405.
95 GUO J L, BAO Y P, WANG M. Steel slag in China: treatment, recycling, and management[J]. Waste Management, 2018, 78: 318-330.
96 SANDALOW D, AINES R, FRIEDMANN J, et al. Carbon mineralization roadmap draft october 2021[R]. Livermore, California (United States): Lawrence Livermore National Laboratory (LLNL), 2021.
97 STREFLER J, BAUER N, HUMPEN?DER F, et al. Carbon dioxide removal technologies are not born equalr [J]. Environmental Research Letters, 2021, 16(7). DOI:10.1088/1748-9326/ac0a11 .
98 HARTMANN J, WEST A J, RENFORTH P, et al. Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification [J]. Reviews of Geophysics, 2013, 51(2): 113-149.
99 PIDGEON N F, SPENCE E. Perceptions of enhanced weathering as a biological negative emissions optionr [J]. Biology Letters, 2017, 13(4). DOI: 10.1098/rsbl.2017.0024 .
100 CARLISLE D P, FEETHAM P M, WRIGHT M J, et al. The public remain uninformed and wary of climate engineeringr [J]. Climatic Change, 2020, 160(2): 303-322.
101 WOLSKE K S, RAIMI K T, CAMPBELL-ARVAI V, et al. Public support for carbon dioxide removal strategies: the role of tampering with nature perceptions[J]. Climatic Change, 2019, 152(3/4): 345-361.
102 CAMPBELL-ARVAI V, HART P S, RAIMI K T, et al. The influence of learning about Carbon Dioxide Removal (CDR) on support for mitigation policies[J]. Climatic Change, 2017, 143(3/4): 321-336.
103 WEBB R. The law of enhanced weathering for carbon dioxide removal [D].New York: Sabin Center for Climate Change Law, Columbia Law School, 2020.
104 MANNING D A C, THEODORO S H. Enabling food security through use of local rocks and minerals [J]. The Extractive Industries and Society, 2020, 7(2): 480-487.
105 NUNES J M G, KAUTZMANN R M, OLIVEIRA C. Evaluation of the natural fertilizing potential of basalt dust wastes from the mining district of Nova Prata (Brazil) [J]. Journal of Cleaner Production, 2014, 84: 649-656.
Outlines

/