Pacific Ocean Deep Circulation and Global Carbon Cycle During the Middle Miocene Climate Transition

  • Zhi HE ,
  • Jun TIAN
Expand
  • State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
HE Zhi (1998-), male, Huanggang City, Hubei Province, Master student. Research areas include paleoceanography and paleoclimatology. E-mail: 2031689@tongji.edu.cn
TIAN Jun (1974-), male, Hanchuang City, Hubei Province, Professor. Research areas include paleoceanography and paleoclimatology. E-mail: tianjun@tongji.edu.cn

Received date: 2022-07-27

  Revised date: 2022-09-19

  Online published: 2023-02-02

Supported by

the National Natural Science Foundation of China “Probing the relationship of the Pacific Meridional overturning circulation with the glacial/interglacial variability of climate change during the late Cenozoic”(42030403)

Abstract

The Middle Miocene Climate Transition (MMCT, 14.2~13.9 Ma) was a global climate change event characterized by significant changes in ice sheets, ocean currents, and carbon cycles. Clarifying the driving mechanism is important for understanding the global cooling during the Cenozoic. Two hypotheses have been proposed to explain the mechanism of MMCT, one emphasizing the reorganization of ocean circulation and the other highlighting the importance of the carbon cycle. However, neither hypothesis can explain the various phenomena of the MMCT. The ice sheets, ocean circulation, and carbon cycle are crucial in the mechanism of the MMCT, and form a coupled system that causes climate change on Earth. With the help of these three elements and combined with geological records, these two mechanisms lead to an increase in deep ocean carbon storage and a decrease in atmospheric pCO2, which further promotes climate cooling and ice sheet growth. In comparison with that on carbon cycle processes and ice sheet changes, existing research regarding ocean circulation, particularly in the deep Southern Ocean and Pacific Ocean, during the MMCT period is insufficient. Consequently, future research should focus on the changes in ocean circulation in these key regions to improve our understanding of the forcing mechanism of MMCT.

Cite this article

Zhi HE , Jun TIAN . Pacific Ocean Deep Circulation and Global Carbon Cycle During the Middle Miocene Climate Transition[J]. Advances in Earth Science, 2023 , 38(1) : 17 -31 . DOI: 10.11867/j.issn.1001-8166.2022.076

References

1 ZACHOS J, PAGANI M, SLOAN L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5 517): 686-693.
2 WESTERHOLD T, MARWAN N, DRURY A J, et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years[J]. Science, 2020, 369(6 509): 1 383-1 387.
3 DECONTO R M, POLLARD D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2 [J]. Nature, 2003, 421(6 920): 245-249.
4 SHEVENELL A E, KENNETT J P, LEA D W. Middle Miocene Southern Ocean cooling and Antarctic cryosphere expansion[J]. Science, 2004, 305(5 691): 1 766-1 770.
5 BARTOLI G, H?NISCH B, ZEEBE R E. Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations[J]. Paleoceanography, 2011, 26(4). DOI:10.1029/2010PA002055 .
6 O’DEA A, LESSIOS H A, COATES A G, et al. Formation of the isthmus of Panama[J]. Science Advances, 2016, 2(8).DOI: 10.1126/sciadv.1600883 .
7 TIAN J, SHEVENELL A, WANG P X, et al. Reorganization of Pacific Deep Waters linked to middle Miocene Antarctic cryosphere expansion: a perspective from the South China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 284(3/4): 375-382.
8 HOLBOURN A, KUHNT W, SCHULZ M, et al. Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion[J]. Nature, 2005, 438(7 067): 483-487.
9 HOLBOURN A, KUHNT W, SCHULZ M, et al. Orbitally-paced climate evolution during the middle Miocene “Monterey” carbon-isotope excursion[J]. Earth and Planetary Science Letters, 2007, 261(3/4): 534-550.
10 LEVY R, HARWOOD D, FLORINDO F, et al. Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(13): 3 453-3 458.
11 GASSON E, DECONTO R M, POLLARD D, et al. Dynamic Antarctic ice sheet during the early to mid-Miocene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(13): 3 459-3 464.
12 MILLER K G, KOMINZ M A, BROWNING J V, et al. The Phanerozoic record of global sea-level change[J]. Science, 2005, 310(5 752): 1 293-1 298.
13 LANGEBROEK P M, PAUL A, SCHULZ M. Simulating the sea level imprint on marine oxygen isotope records during the middle Miocene using an ice sheet-climate model[J]. Paleoceanography, 2010, 25(4). DOI:10.1029/2008PA001704 .
14 JOHN C M, KARNER G D, BROWNING E, et al. Timing and magnitude of Miocene eustasy derived from the mixed siliciclastic-carbonate stratigraphic record of the northeastern Australian margin[J]. Earth and Planetary Science Letters, 2011, 304(3/4): 455-467.
15 MA W T, TIAN J, LI Q Y, et al. Simulation of long eccentricity (400-kyr) cycle in ocean carbon reservoir during Miocene Climate Optimum: weathering and nutrient response to orbital change[J]. Geophysical Research Letters, 2011, 38(10). DOI:10.1029/2011GL047680 .
16 SOSDIAN S M, BABILA T L, GREENOP R, et al. Ocean carbon storage across the middle Miocene: a new interpretation for the Monterey Event[J]. Nature Communications, 2020, 11. DOI:10.1038/s41467-019-13792-0 .
17 FOSTER G L, LEAR C H, RAE J W B. The evolution of pCO2, ice volume and climate during the middle Miocene[J]. Earth and Planetary Science Letters, 2012, 341/342/343/344: 243-254.
18 GREENOP R, FOSTER G L, WILSON P A, et al. Middle Miocene climate instability associated with high-amplitude CO2 variability[J]. Paleoceanography, 2014, 29(9): 845-853.
19 RAITZSCH M, BIJMA J, BICKERT T, et al. Atmospheric carbon dioxide variations across the middle Miocene climate transition[J]. Climate of the Past, 2021, 17(2): 703-719.
20 BADGER M, LEAR C, PANCOST R, et al. CO2 drawdown following the middle Miocene expansion of the Antarctic Ice Sheet[J]. Paleoceanography, 2013, 28: 42-53.
21 SUPER J R, THOMAS E, PAGANI M, et al. North Atlantic temperature and pCO2 coupling in the early-middle Miocene[J]. Geology, 2018, 46(6): 519-522.
22 KüRSCHNER W M, KVACEK Z, DILCHER D L. The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(2): 449-453.
23 LEUTERT T J, SEVASTI M, BERNASCONI S M, et al. Southern Ocean bottom-water cooling and ice sheet expansion during the middle Miocene climate transition[J]. Climate of the Past, 2021, 17(5): 2 255-2 271.
24 LEAR C H, COXALL H K, FOSTER G L, et al. Neogene ice volume and ocean temperatures: insights from infaunal foraminiferal Mg/Ca paleothermometry[J]. Paleoceanography, 2015, 30(11): 1 437-1 454.
25 LEUTERT T J, AUDERSET A, MARTíNEZ-GARCíA A, et al. Coupled Southern Ocean cooling and Antarctic ice sheet expansion during the middle Miocene[J]. Nature Geoscience, 2020, 13(9): 634-639.
26 DIESTER-HAASS L, BILLUPS K, GR?CKE D R, et al. Mid-Miocene paleoproductivity in the Atlantic Ocean and implications for the global carbon cycle[J]. Paleoceanography, 2009, 24(1). DOI:10.1029/2008PA001605 .
27 VINCENT E, BERGER W H. Carbon dioxide and polar cooling in the Miocene: the Monterey hypothesis[M]//The carbon cycle and atmospheric CO2: natural variations archean to present. Washington, D.C.: American Geophysical Union, 2013: 455-468.
28 MA X L, TIAN J, MA W T, et al. Changes of deep Pacific overturning circulation and carbonate chemistry during middle Miocene East Antarctic ice sheet expansion[J]. Earth and Planetary Science Letters, 2018, 484: 253-263.
29 KRAPP M, JUNGCLAUS J H. The Middle Miocene climate as modelled in an atmosphere-ocean-biosphere model[J]. Climate of the Past, 2011, 7(4): 1 169-1 188.
30 STEINTHORSDOTTIR M, COXALL H K, de BOER A M, et al. The Miocene: the future of the past[J]. Paleoceanography and Paleoclimatology, 2021, 36(4). DOI:10.1029/2020PA004037 .
31 MARSHALL J, SPEER K. Closure of the meridional overturning circulation through Southern Ocean upwelling[J]. Nature Geoscience, 2012, 5(3): 171-180.
32 TALLEY L. Closure of the global overturning circulation through the Indian, Pacific, and southern oceans: schematics and transports[J]. Oceanography, 2013, 26(1): 80-97.
33 KAWABE M, FUJIO S. Pacific Ocean circulation based on observation[J]. Journal of Oceanography, 2010, 66(3): 389-403.
34 SCHLITZER R. Ocean data view[Z]. 2007.
35 WANG Jianing, MA Qiang, WANG Fan, et al. Advances in research of the deep western boundary current in the western Pacific Ocean[J]. Advances in Earth Science, 2022, 37(1): 26-36.
35 汪嘉宁, 马强, 王凡, 等. 西太平洋深层西边界流研究进展[J]. 地球科学进展, 2022, 37(1): 26-36.
36 WANG J N, WANG F, LU Y Y, et al. Pathways, volume transport, and seasonal variability of the lower deep limb of the Pacific meridional overturning circulation at the Yap-Mariana junction[J]. Frontiers in Marine Science, 2021, 8. DOI:10.3389/fmars.2021.672199 .
37 RUDNICK D L. Direct velocity measurements in the Samoan Passage[J]. Journal of Geophysical Research: Oceans, 1997, 102(C2): 3 293-3 302.
38 VOET G, GIRTON J B, ALFORD M H, et al. Pathways, volume transport, and mixing of abyssal water in the Samoan passage[J]. Journal of Physical Oceanography, 2015, 45(2): 562-588.
39 SIGMAN D M, BOYLE E A. Glacial/interglacial variations in atmospheric carbon dioxide[J]. Nature, 2000, 407(6 806): 859-869.
40 LEA D W, PAK D K, SPERO H J. Climate impact of late quaternary equatorial Pacific Sea surface temperature variations[J]. Science, 2000, 289(5 485): 1 719-1 724.
41 HERBERT T D, LAWRENCE K T, TZANOVA A, et al. Late Miocene global cooling and the rise of modern ecosystems[J]. Nature Geoscience, 2016, 9(11): 843-847.
42 LüTHI D, le FLOCH M, BEREITER B, et al. High-resolution carbon dioxide concentration record 650, 000-800, 000 years before present[J]. Nature, 2008, 453(7 193): 379-382.
43 SIGMAN D M, HAIN M P, HAUG G H. The polar ocean and glacial cycles in atmospheric CO2 concentration[J]. Nature, 2010, 466(7 302): 47-55.
44 SIGMAN D M, FRIPIAT F, STUDER A S, et al. The Southern Ocean during the ice ages: a review of the Antarctic surface isolation hypothesis, with comparison to the North Pacific[J]. Quaternary Science Reviews, 2021, 254. DOI:10.1016/j.quascirev.2020.106732 .
45 YU J M, ANDERSON R F, JIN Z D, et al. Responses of the deep ocean carbonate system to carbon reorganization during the last Glacial-Interglacial cycle[J]. Quaternary Science Reviews, 2013, 76: 39-52.
46 YU J, MENVIEL L, JIN Z D, et al. Last glacial atmospheric CO2 decline due to widespread Pacific deep-water expansion[J]. Nature Geoscience, 2020, 13(9): 628-633.
47 MARZOCCHI A, JANSEN M F. Connecting Antarctic Sea ice to deep-ocean circulation in modern and glacial climate simulations[J]. Geophysical Research Letters, 2017, 44(12): 6 286-6 295.
48 MARZOCCHI A, JANSEN M F. Global cooling linked to increased glacial carbon storage via changes in Antarctic Sea ice[J]. Nature Geoscience, 2019, 12(12): 1 001-1 005.
49 HAIN M P, SIGMAN D M, HAUG G H. Carbon dioxide effects of Antarctic stratification, North Atlantic Intermediate Water formation, and subantarctic nutrient drawdown during the last ice age: diagnosis and synthesis in a geochemical box model[J]. Global Biogeochemical Cycles, 2010, 24(4). DOI:10.1029/2010GB003790 .
50 KARAS C, NüRNBERG D, GUPTA A K, et al. Mid-Pliocene climate change amplified by a switch in Indonesian subsurface throughflow[J]. Nature Geoscience, 2009, 2(6): 434-438.
51 KNUDSON K P, RAVELO A C. North Pacific intermediate water circulation enhanced by the closure of the Bering Strait[J]. Paleoceanography, 2015, 30(10): 1 287-1 304.
52 CRAMER B S, TOGGWEILER J R, WRIGHT J D, et al. Ocean overturning since the late Cretaceous: inferences from a new benthic foraminiferal isotope compilation[J]. Paleoceanography, 2009, 24(4). DOI:10.1029/2008PA001683 .
53 POORE H R, SAMWORTH R, WHITE N J, et al. Neogene overflow of northern component water at the Greenland-Scotland ridge[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(6). DOI:10.1029/2005GC001085 .
54 ARSOUZE T, DUTAY J C, LACAN F, et al. Modeling the neodymium isotopic composition with a global ocean circulation model[J]. Chemical Geology, 2007, 239(1/2): 165-177.
55 ARSOUZE T, DUTAY J C, LACAN F, et al. Reconstructing the Nd oceanic cycle using a coupled dynamical-biogeochemical model[J]. Biogeosciences, 2009, 6(12): 2 829-2 846.
56 JEANDEL C, ARSOUZE T, LACAN F, et al. Isotopic Nd compositions and concentrations of the lithogenic inputs into the ocean: a compilation, with an emphasis on the margins[J]. Chemical Geology, 2007, 239(1/2): 156-164.
57 LACAN F, JEANDEL C. Neodymium isotopes as a new tool for quantifying exchange fluxes at the continent-ocean interface[J]. Earth and Planetary Science Letters, 2005, 232(3/4): 245-257.
58 LACAN F, TACHIKAWA K, JEANDEL C. Neodymium isotopic composition of the oceans: a compilation of seawater data[J]. Chemical Geology, 2012, 300/301: 177-184.
59 ROBINSON S, IVANOVIC R, van de FLIERDT T, et al. Global continental and marine detrital εNd: an updated compilation for use in understanding marine Nd cycling[J]. Chemical Geology, 2021, 567. DOI:10.1016/j.chemgeo.2021.120119 .
60 SCHER H D, MARTIN E E. Timing and climatic consequences of the opening of Drake Passage[J]. Science, 2006, 312(5 772): 428-430.
61 van de FLIERDT T, GRIFFITHS A M, LAMBELET M, et al. Neodymium in the oceans: a global database, a regional comparison and implications for palaeoceanographic research[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374(2 081). DOI:10.1098/rsta.2015.0293 .
62 TACHIKAWA K, ARSOUZE T, BAYON G, et al. The large-scale evolution of neodymium isotopic composition in the global modern and Holocene Ocean revealed from seawater and archive data[J]. Chemical Geology, 2017, 457: 131-148.
63 GOLDSTEIN S L, HEMMING S R. Long-lived isotopic tracers in oceanography, paleoceanography, and ice-sheet dynamics[M]// Treatise on geochemistry. Amsterdam: Elsevier, 2003: 453-489.
64 LISIECKI L E. Atlantic overturning responses to obliquity and precession over the last 3 Myr[J]. Paleoceanography, 2014, 29(2): 71-86.
65 RAVELO A C, HILLAIRE-MARCEL C. Chapter eighteen the use of oxygen and carbon isotopes of foraminifera in paleoceanography[M]//Developments in marine geology. Amsterdam: Elsevier, 2007: 735-764.
66 EILER J M. “Clumped-isotope” geochemistry—the study of naturally-occurring, multiply-substituted isotopologues[J]. Earth and Planetary Science Letters, 2007, 262(3/4): 309-327.
67 TACHIKAWA K. Neodymium budget in the modern ocean and paleo-oceanographic implications[J]. Journal of Geophysical Research, 2003, 108(C8). DOI:10.1029/1999JC000285 .
68 HODELL D A, VENZ-CURTIS K A. Late Neogene history of deepwater ventilation in the Southern Ocean[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(9). DOI:10.1029/2005GC001211 .
69 ABBOTT A N, HALEY B A, MCMANUS J. Bottoms up: sedimentary control of the deep North Pacific Ocean’s εNd signature[J]. Geology, 2015, 43(11): 1 035-1 038.
70 ABBOTT A N. A benthic flux from calcareous sediments results in non-conservative neodymium behavior during lateral transport: a study from the Tasman Sea[J]. Geology, 2019, 47(4): 363-366.
71 HALEY B A, DU J H, ABBOTT A N, et al. The impact of benthic processes on rare Earth element and neodymium isotope distributions in the oceans[J]. Frontiers in Marine Science, 2017, 4. DOI:10.3389/fmars.2017.00426 .
72 AMAKAWA H, SASAKI K, EBIHARA M. Nd isotopic composition in the central North Pacific[J]. Geochimica et Cosmochimica Acta, 2009, 73(16): 4 705-4 719.
73 YU J M, ELDERFIELD H. Benthic foraminiferal B/Ca ratios reflect deep water carbonate saturation state[J]. Earth and Planetary Science Letters, 2007, 258(1/2): 73-86.
74 LEA D W, MASHIOTTA T A, SPERO H J. Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing[J]. Geochimica et Cosmochimica Acta, 1999, 63(16): 2 369-2 379.
75 HUNTINGTON K W, EILER J M, AFFEK H P, et al. Methods and limitations of ‘clumped’ CO2 isotope (Delta47) analysis by gas-source isotope ratio mass spectrometry[J]. Journal of Mass Spectrometry, 2009, 44(9): 1 318-1 329.
76 HOLBOURN A, KUHNT W, FRANK M, et al. Changes in Pacific Ocean circulation following the Miocene onset of permanent Antarctic ice cover[J]. Earth and Planetary Science Letters, 2013, 365: 38-50.
77 TIAN J, MA X L, ZHOU J H, et al. Paleoceanography of the east equatorial Pacific over the past 16 Myr and Pacific-Atlantic comparison: high resolution benthic foraminiferal δ18O and δ13C records at IODP Site U1337[J]. Earth and Planetary Science Letters, 2018, 499: 185-196.
78 KENDER S, BOGUS K A, COBB T D, et al. Neodymium evidence for increased circumpolar deep water flow to the north Pacific during the middle Miocene climate transition[J]. Paleoceanography and Paleoclimatology, 2018, 33(7): 672-682.
79 le HOUEDEC S, MEYNADIER L, ALLèGRE C J. Seawater Nd isotope variation in the western Pacific Ocean since 80 Ma (ODP 807, Ontong Java Plateau)[J]. Marine Geology, 2016, 380: 138-147.
80 KENDER S, YU J M, PECK V L. Deep ocean carbonate ion increase during mid Miocene CO2 decline[J]. Scientific Reports, 2014, 4. DOI: 10.1038/srep04187 .
81 MONTES C, CARDONA A, JARAMILLO C, et al. Middle Miocene closure of the central American seaway[J]. Science, 2015, 348(6 231): 226-229.
82 HARZHAUSER M, PILLER W E. Benchmark data of a changing sea—palaeogeography, palaeobiogeography and events in the Central Paratethys during the Miocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 253(1/2): 8-31.
83 HAMON N, SEPULCHRE P, LEFEBVRE V, et al. The role of eastern Tethys seaway closure in the Middle Miocene Climatic Transition (ca. 14 Ma)[J]. Climate of the Past, 2013, 9(6): 2 687-2 702.
84 FLOWER B P, KENNETT J P. The middle Miocene climatic transition: east Antarctic ice sheet development, deep ocean circulation and global carbon cycling[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 108(3/4): 537-555.
85 WRIGHT J D, MILLER K G, FAIRBANKS R G. Early and middle Miocene stable isotopes: implications for deepwater circulation and climate[J]. Paleoceanography, 1992, 7(3): 357-389.
86 BUTZIN M, LOHMANN G, BICKERT T. Miocene ocean circulation inferred from marine carbon cycle modeling combined with benthic isotope records[J]. Paleoceanography, 2011, 26. DOI:10.1029/2009PA001901 .
87 THOMAS D J, VIA R K. Neogene evolution of Atlantic thermohaline circulation: perspective from Walvis Ridge, southeastern Atlantic Ocean[J]. Paleoceanography, 2007, 22(2).DOI:10.1029/2006PA001297 .
88 FRANK M. Radiogenic isotopes: tracers of past ocean circulation and erosional input[J]. Reviews of Geophysics, 2002, 40(1). DOI:10.1029/2000RG000094 .
89 KNORR G, LOHMANN G. Climate warming during Antarctic ice sheet expansion at the Middle Miocene transition[J]. Nature Geoscience, 2014, 7(5): 376-381.
90 GOLDNER A, HEROLD N, HUBER M. The challenge of simulating the warmth of the mid-Miocene climatic optimum in CESM1[J]. Climate of the Past, 2014, 10(2): 523-536.
91 HALL I R, MCCAVE I N, ZAHN R, et al. Paleocurrent reconstruction of the deep Pacific inflow during the middle Miocene: reflections of East Antarctic Ice Sheet growth[J]. Paleoceanography, 2003, 18(2). DOI:10.1029/2002PA000817 .
92 SHEVENELL A E, KENNETT J P, LEA D W. Middle Miocene ice sheet dynamics, deep-sea temperatures, and carbon cycling: a Southern Ocean perspective[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(2). DOI:10.1029/2007GC001736 .
93 HOLBOURN A, KUHNT W, LYLE M, et al. Middle Miocene climate cooling linked to intensification of eastern equatorial Pacific upwelling[J]. Geology, 2014, 42(1): 19-22.
94 KASBOHM J, SCHOENE B. Rapid eruption of the Columbia River flood basalt and correlation with the mid-Miocene climate optimum[J]. Science Advances, 2018, 4(9). DOI: 10.1126/sciadv.aat8223 .
95 COXALL H K, WILSON P A, P?LIKE H, et al. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean[J]. Nature, 2005, 433(7 021): 53-57.
96 TIAN J, MA W T, LYLE M W, et al. Synchronous mid-Miocene upper and deep oceanic δ13C changes in the east equatorial Pacific linked to ocean cooling and ice sheet expansion[J]. Earth and Planetary Science Letters, 2014, 406: 72-80.
Outlines

/