Extraction of Algal Blooms in Dianchi Lake Based on Multi-Source Satellites Using Machine Learning Algorithms
Received date: 2022-06-20
Revised date: 2022-08-29
Online published: 2022-11-16
Supported by
the Natural Science Special Project of the Education Department of Shaanxi Province “The smart detection of harmful algal blooms in lakes based on the deep convolutional network”(21JK0928);The Kunming Dianchi Plateau Lake Research Institute “Algal bloom monitoring and warning platform in Dianchi”(YNYG2020-0611)
Algal blooms caused by lake eutrophication severely affect ecosystem diversity and water security. Satellite data with low spatial resolution such as MODIS is limited to the monitoring of large lakes. However, single medium or high spatial resolution data sources such as Landsat-8 cannot meet the high-frequency monitoring requirements of algal blooms in practice, owing to the relatively longer revisiting period. This study, taking Dianchi Lake in 2019 as an example, combined six medium- or high-spatial-resolution satellite images to monitor variations in algal blooms. Three machine learning algorithms [Random Forest (RF), Extreme Gradient Boosting Tree (XGBoost), Artificial Neural Network (ANN), and Normalized Difference Vegetation Index (NDVI)] were tested in the study. The model accuracy was compared and analyzed using the visually interpreted ground truth. The results show that:
Yimin LI , Zhenyu TAN , Chen YANG , Feng HE , Di MENG , Juhua LUO , Hongtao DUAN . Extraction of Algal Blooms in Dianchi Lake Based on Multi-Source Satellites Using Machine Learning Algorithms[J]. Advances in Earth Science, 2022 , 37(11) : 1141 -1156 . DOI: 10.11867/j.issn.1001-8166.2022.064
1 | HUO Da, GAN Nanqin, GENG Ruozhen, et al. Cyanobacterial blooms in China: diversity, distribution, and cyanotoxins[J]. Harmful Algae, 2021, 109: 102106. |
2 | QI Guohua, MA Xiaoshuang, HE Shiyu, et al. Long-term spatiotemporal variation analysis and probability prediction of algal blooms in Lake Chaohu (2009-2018) based on multi-source remote sensing data[J]. Journal of Lake Sciences, 2021, 33(2): 414-427. |
2 | 祁国华, 马晓双, 何诗瑜, 等. 基于多源遥感数据的巢湖水华长时序时空变化(2009—2018年)分析与发生概率预测[J]. 湖泊科学, 2021, 33(2): 414-427. |
3 | THOMAS M K, LITCHMAN E. Effects of temperature and nitrogen availability on the growth of invasive and native cyanobacteria[J]. Hydrobiologia, 2016, 763(1):357-369. |
4 | WU Tingfeng, QIN Boqiang, BROOKES J D, et al. The influence of changes in wind patterns on the areal extension of surface cyanobacterial blooms in a large shallow lake in China[J]. Science of the Total Environment, 2015, 518/519: 24-30. |
5 | DING Wenhao, QIN Boqiang, WU Tingfeng, et al. Study on Taihu Lake’s wind field and flow field under summer monsoon [J]. Journal of Hohai University (Natural Sciences), 2020, 48(2): 102-108. |
5 | 丁文浩, 秦伯强, 吴挺峰, 等. 夏季风下的太湖风场—流场野外观测研究[J]. 河海大学学报(自然科学版), 2020, 48(2): 102-108. |
6 | WANG Hua, CHEN Huaxin, XU Zhaoan, et al. Variation trend of total phosphorus and its controlling factors in Lake Taihu,2010-2017[J]. Journal of Lake Sciences, 2019, 31(4):919-929. |
6 | 王华, 陈华鑫, 徐兆安, 等. 2010—2017年太湖总磷浓度变化趋势分析及成因探讨[J]. 湖泊科学, 2019, 31(4): 919-929. |
7 | DAI Xiuli, QIAN Peiqi, YE Liang, et al. Changes in nitrogen and phosphorus concentrations in Lake Taihu, 1985-2015[J]. Journal of Lake Sciences, 2016, 28(5): 935-943. |
7 | 戴秀丽, 钱佩琪, 叶凉, 等. 太湖水体氮、磷浓度演变趋势(1985—2015年)[J]. 湖泊科学, 2016, 28(5): 935-943. |
8 | KONG Fanxiang, GAO Guang. Hypothesis on cyanobacteria bloom-forming mechanism in large shallow eutrophic lakes[J]. Acta Ecologica Sinica, 2005, 25(3): 589-595. |
8 | 孔繁翔, 高光. 大型浅水富营养化湖泊中蓝藻水华形成机理的思考[J]. 生态学报, 2005, 25(3): 589-595. |
9 | YANG Min, YU Jianwei, LI Zonglai, et al. Taihu Lake not to blame for Wuxi’s woes[J]. Science, 2008, 319(5 860): 158. |
10 | DUAN Hongtao, CAO Zhigang, SHEN Ming, et al. Review of lake remote sensing research[J]. National Remote Sensing Bulletin, 2022, 26(1): 3-18. |
10 | 段洪涛, 曹志刚, 沈明, 等. 湖泊遥感研究进展与展望[J]. 遥感学报, 2022, 26(1): 3-18. |
11 | LINIGER G, STRUTTON P G, LANNUZEL D, et al. Calving event led to changes in phytoplankton bloom phenology in the mertz polynya, Antarctica[J]. Journal of Geophysical Research: Oceans, 2020, 125(11). DOI:10.1029/2020JC016387 . |
12 | HUANG Changchun, ZHANG Yunlin, HUANG Tao, et al. Long-term variation of phytoplankton biomass and physiology in Taihu Lake as observed via MODIS satellite[J]. Water Research, 2019, 153: 187-199. |
13 | HU Chuanmin. A novel ocean color index to detect floating algae in the global oceans[J]. Remote Sensing of Environment, 2009, 113(10): 2 118-2 129. |
14 | LI Shengming, LIU Jiping, SONG Kaishan, et al. Analysis on spatial and temporal character of algae bloom in lake Chaohu and its driving factors based on landsat imagery[J]. Resources and Environment in the Yangtze Basin, 2019, 28(5): 1 205-1 213. |
14 | 李晟铭, 刘吉平, 宋开山, 等. 基于Landsat影像巢湖蓝藻水华暴发时空变化特征及其驱动因素分析[J]. 长江流域资源与环境, 2019, 28(5): 1 205-1 213. |
15 | LI Xuwen, NIU Zhichun, JIANG Sheng, et al. Design of intensity index and build-up degree classification algorithm development for cyanobacterica blooms in lake Taihu based on satellite remote sensing[J]. The Administration and Technique of Environmental Monitoring, 2011, 23(5): 23-30. |
15 | 李旭文, 牛志春, 姜晟, 等. 基于卫星影像的太湖蓝藻水华遥感强度指数和等级划分算法设计[J]. 环境监测管理与技术, 2011, 23(5): 23-30. |
16 | LI Xiaojun, MA Zezhong, ZHOU Zhiyue. Scale analysis of cyanobacteria bloom from MODIS and HJ-1A/1B observations[J]. Remote Sensing Information, 2016, 31(5): 108-113. |
16 | 李晓俊, 马泽忠, 周志跃. 一种蓝藻水华提取空间尺度效应分析[J]. 遥感信息, 2016, 31(5): 108-113. |
17 | TONG Yuhua, ZHOU Hongliang, HUANG Zhefeng, et al. Time series prediction of the concentration of chlorophyll-a based on RBF neural network with parameters self-optimizing[J]. Acta Ecologica Sinica, 2011, 31(22): 6 788-6 795. |
17 | 仝玉华, 周洪亮, 黄浙丰, 等. 一种自优化RBF神经网络的叶绿素a浓度时序预测模型[J]. 生态学报, 2011, 31(22): 6 788-6 795. |
18 | LIU Shuoru, YANG Min, ZHANG Fanghui, et al. Research on early warning of dinoflagellate bloom in Caojie Reservoir base on support vector machine classification[J]. Journal of Lake Sciences, 2015, 27(1): 38-43. |
18 | 刘朔孺, 杨敏, 张方辉, 等. 基于支持向量机分类的嘉陵江草街水库甲藻水华预警[J]. 湖泊科学, 2015, 27(1): 38-43. |
19 | ZHANG Yanhui, XU Zhaoan, CHEN Qiuwen, et al. Integration of bp artificial neural network and fuzzy theory on evaluating cyanobacteria-dominant bloom occurrence risk of Lake Taihu[J]. Resources and Environment in the Yangtze Basin, 2011, 20(9): 1 092-1 097. |
19 | 张艳会, 徐兆安, 陈求稳, 等. 基于BP人工神经网络和模糊理论的太湖蓝藻水华发生风险评价[J]. 长江流域资源与环境, 2011, 20(9): 1 092-1 097. |
20 | WU Juan, ZHU Yuelong, JIN Song, et al. Area prediction of cyanobacterial blooms based on three machine learning methods in Taihu Lake[J]. Journal of Hohai University (Natural Sciences), 2020, 48(6): 542-551. |
20 | 吴娟, 朱跃龙, 金松, 等. 三种机器学习模型在太湖藻华面积预测中的应用[J]. 河海大学学报(自然科学版), 2020, 48(6): 542-551. |
21 | QIU Zhongfeng, LI Zhaoxin, Muhammad Bilal, et al. Automatic method to monitor floating macroalgae blooms based on multilayer perceptron: case study of Yellow Sea using GOCI images[J]. Optics Express, 2018, 26(21): 26 810-26 829. |
22 | HILL P R, KUMAR A, TEMIMI M, et al. HABNet: machine learning, remote sensing-based detection of harmful algal blooms[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13: 3 229-3 239. |
23 | JIANG Dalin. Research on temporal and spatial variation of algae blooms and its driving factors in Lake Dianchi based on GIS/RS[D]. Chongqing: Southwest University, 2015. |
23 | 蒋大林. 基于GIS/RS的滇池藻类水华时空变化及驱动因子分析[D]. 重庆: 西南大学, 2015. |
24 | WANG Jinghan, HE Lüqishu, YANG Cheng, et al. Comparison of algal bloom related meteorological and water quality factors and algal bloom conditions among Lakes Taihu, Chaohu, and Dianchi(1981-2015)[J]. Journal of Lake Sciences, 2018, 30(4): 897-906. |
24 | 王菁晗, 何吕奇姝, 杨成, 等. 太湖、巢湖、滇池水华与相关气象、水质因子及其响应的比较(1981—2015年)[J]. 湖泊科学, 2018, 30(4): 897-906. |
25 | HE Yunling, XIONG Qiaoli, LUO Xian, et al. Study on spatio-temporal changes of water bloom in Dianchi Lake based on NDVI[J]. Ecology and Environmental Sciences, 2019, 28(3): 555-563. |
25 | 何云玲, 熊巧利, 罗贤, 等. 基于NDVI滇池水华特征的时空变化研究[J]. 生态环境学报, 2019, 28(3): 555-563. |
26 | HU Lin, GAN Shu, YUAN Xiping, et al. Study on the spatial distribution characteristics of cyanobacteria bloom in Dianchi Lake based on GF-5[J]. Laser & Infrared, 2021, 51(2): 237-243. |
26 | 胡琳, 甘淑, 袁希平, 等. 基于GF-5的滇池蓝藻水华空间分布特征研究[J]. 激光与红外, 2021, 51(2): 237-243. |
27 | LU Weikun, YU Lingxiang, Xiaokun OU, et al. Relationship between occurrence frequency of cyanobacteria bloom and meteorological factors in Lake Dianchi[J]. Journal of Lake Sciences, 2017, 29(3): 534-545. |
27 | 鲁韦坤, 余凌翔, 欧晓昆, 等. 滇池蓝藻水华发生频率与气象因子的关系[J]. 湖泊科学, 2017, 29(3): 534-545. |
28 | HU Lin, GAN Shu, FEI Lianjun, et al. Remote sensing analysis of surface coverage of typical urban areas around Dianchi Lake[J]. GNSS World of China, 2018, 43(5): 48-52. |
28 | 胡琳, 甘淑, 费联君, 等. 滇池周边典型城镇地表覆盖分类遥感分析研究[J]. 全球定位系统, 2018, 43(5): 48-52. |
29 | CHEN Wenqian, DING Jianli, LI Yanhua, et al. Extraction of water information based on China-made GF-1 remote sense image[J]. Resources Science, 2015, 37(6): 1 166-1 172. |
29 | 陈文倩, 丁建丽, 李艳华, 等. 基于国产GF-1遥感影像的水体提取方法[J]. 资源科学, 2015, 37(6): 1 166-1 172. |
30 | LIU Baokang, WANG Renjun, YOU Xiaoni, et al. Extraction of winter wheat area based on GF6-WFV remote sensing image[J]. Geomatics & Spatial Information Technology, 2021, 44(1): 1-4. |
30 | 刘宝康, 王仁军, 尤晓妮, 等. 基于高分六号WFV数据的冬小麦种植面积提取[J]. 测绘与空间地理信息, 2021, 44(1): 1-4. |
31 | WANG Zhongting, LI Qing, TAO Jinhua, et al. Monitoring of aerosol optical depth over land surface using CCD camera on HJ-1 satellite[J]. China Environmental Science, 2009, 29(9): 902-907. |
31 | 王中挺, 厉青, 陶金花, 等. 环境一号卫星CCD相机应用于陆地气溶胶的监测[J]. 中国环境科学, 2009, 29(9): 902-907. |
32 | CAO Zhigang, MA Ronghua, Liu Jianqiang, et al. Improved radiometric and spatial capabilities of the coastal zone imager onboard Chinese HY-1C satellite for inland lakes[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 18(2): 193-197. |
33 | LIU Miao, LING Hong, WU Dan, et al. Sentinel-2 and Landsat-8 observations for harmful algae blooms in a small eutrophic lake[J]. Remote Sensing, 2021, 13(21): 4479. |
34 | CAO Mengmeng, QING Song, JIN Eerdemutu, et al. A spectral index for the detection of algal blooms using Sentinel-2 Multispectral Instrument (MSI) imagery: a case study of Hulun Lake, China[J]. International Journal of Remote Sensing, 2021, 42(12): 4 514-4 535. |
35 | NOVOA S, DOXARAN D, ODY A, et al. Atmospheric corrections and multi-conditional algorithm for multi-sensor remote sensing of suspended particulate matter in low-to-high turbidity levels coastal waters[J]. Remote Sensing, 2017, 9: 61. |
36 | SU Wei, ZHANG Mingzheng, JIANG Kunping, et al. Atmospheric correction method for sentinel-2 satellite imagery[J]. Acta Optica Sinica, 2018, 38(1): 322-331. |
36 | 苏伟, 张明政, 蒋坤萍, 等. Sentinel-2卫星影像的大气校正方法[J]. 光学学报, 2018, 38(1): 322-331. |
37 | ZHANG Jiao, CHEN Liqiong, CHEN Xiaoling, et al. Evaluation of monitoring ability of cyanobacterial blooms by HJ-1B and Landsat: a case study of Erhai Lake[J]. Journal of Water Resources and Water Engineering, 2016, 27(4): 38-43. |
37 | 张娇, 陈莉琼, 陈晓玲, 等. HJ-1B和Landsat卫星蓝藻水华监测能力评估: 以洱海为例[J]. 水资源与水工程学报, 2016, 27(4): 38-43. |
38 | XING Qianguo, HU Chuanmin. Mapping macroalgal blooms in the Yellow Sea and East China Sea using HJ-1 and Landsat data: application of a virtual baseline reflectance height technique[J]. Remote Sensing of Environment, 2016, 178: 113-126. |
39 | NAI Zhaojun, DUAN Hongtao, ZHU Li, et al. A novel algorithm to monitor cyanobacterial blooms in Lake Taihu from HJ-CCD imagery[J]. Journal of Lake Sciences, 2016, 28(3): 624-634. |
39 | 佴兆骏, 段洪涛, 朱利, 等. 基于环境卫星CCD数据的太湖蓝藻水华监测算法研究[J]. 湖泊科学, 2016, 28(3): 624-634. |
40 | ZHANG Jiao, CHEN Liqiong, CHEN Xiaoling. Monitoring the cyanobacterial blooms based on remote sensing in Lake Erhai by FAI[J]. Journal of Lake Sciences, 2016, 28(4): 718-725. |
40 | 张娇, 陈莉琼, 陈晓玲. 基于FAI方法的洱海蓝藻水华遥感监测[J]. 湖泊科学, 2016, 28(4): 718-725. |
41 | ARYA S, CHUNG Y H. Artificial neural network estimation of data and channel characteristics in free-space ultraviolet communications[J]. Applied Optics, 2020, 59(13): 3 806-3 818. |
42 | CHON K H, COHEN R J. Linear and nonlinear ARMA model parameter estimation using an artificial neural network[J]. IEEE Transactions on Bio-Medical Engineering, 1997, 44(3): 168-174. |
43 | WANG Dong, CAO Shengle. State-of-art of application of artificial neural networks in hydrology, water resources and water environment[J]. Water Resources and Hydropower Engineering, 1999, 30(12): 4-7. |
43 | 王栋, 曹升乐. 人工神经网络在水文水资源水环境系统中的应用研究进展[J]. 水利水电技术, 1999, 30(12): 4-7. |
44 | QIN Miao, ZHANG Mingfeng, HONG Yi, et al. Study on the Calculus model of cyanobacterial bloom based on BP artificial neural network in Dongzhang Reservoir[J]. Journal of Fisheries Research, 2019, 41(1): 18-25. |
44 | 覃苗, 张明峰, 洪颐, 等. 东张水库蓝藻水华BP人工神经网络模型演算研究[J]. 渔业研究, 2019, 41(1): 18-25. |
45 | FANG Kuangnan, WU Jianbin, ZHU Jianping, et al. A review of technologies on random forests[J]. Statistics & Information Forum, 2011, 26(3): 32-38. |
45 | 方匡南, 吴见彬, 朱建平, 等. 随机森林方法研究综述[J]. 统计与信息论坛, 2011, 26(3): 32-38. |
46 | ZHANG Hongbin, QIU Diedie, WU Renzhong, et al. Image attribute annotation based on extreme gradient boosting algorithm[J]. Journal of Shandong University (Engineering Science), 2019, 49(2): 8-16. |
46 | 张红斌, 邱蝶蝶, 邬任重, 等. 基于极端梯度提升树算法的图像属性标注[J]. 山东大学学报(工学版), 2019, 49(2): 8-16. |
47 | ZHANG Yongmei, CHEN Huini, ZHANG Yi. Haze prediction method based on XGBoost[J]. Computer Engineering and Design, 2019, 40(12): 3 631-3 638. |
47 | 张永梅, 陈惠妮, 张奕. 基于XGBoost的雾霾预测方法[J]. 计算机工程与设计, 2019, 40(12): 3 631-3 638. |
48 | FREUND Y, SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997, 55(1): 119-139. |
49 | BREIMAN L. Bagging predictors[J]. Machine Learning, 1996, 24(2): 123-140. |
50 | TIAN Miao, WANG Pengxin, YAN Tailai, et al. Adjustment of Kappa coefficient and its application in precision and agreement evaluation of drought forecasting models[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(24): 1-7. |
50 | 田苗, 王鹏新, 严泰来, 等. Kappa系数的修正及在干旱预测精度及一致性评价中的应用[J]. 农业工程学报, 2012, 28(24): 1-7. |
51 | LANDIS J R, KOCH G G. The measurement of observer agreement for categorical data[J]. Biometrics, 1977, 33(1): 159-174. |
52 | ZHANG Dahai, QIAN Liyang, MAO Baijin, et al. A data-driven design for fault detection of wind turbines using random forests and XGboost[J]. IEEE Access, 2018, 6: 21 020-21 031. |
53 | ZHANG Hujun, SONG Ting, ZHU Bingchuan, et al. Annual forecast of the extent of cyanobacteria bloom in Taihu Lake[J]. Environmental Monitoring in China, 2022, 38(1): 157-164. |
53 | 张虎军, 宋挺, 朱冰川, 等. 太湖蓝藻水华暴发程度年度预测[J]. 中国环境监测, 2022, 38(1): 157-164. |
54 | YI Qi, CHEN Yushu. The interaction and problem between urban layout and feature of wind in Kunming City[J]. Yunnan Geographic Environment Research, 2000, 12(2): 51-58. |
54 | 易琦, 陈玉姝. 昆明城市布局与风象的关系及问题研究[J]. 云南地理环境研究, 2000, 12(2): 51-58. |
/
〈 |
|
〉 |