Distribution and Biotransformation of Ethane and Propane in Marine Environments
Received date: 2021-09-15
Revised date: 2021-11-10
Online published: 2022-04-28
Supported by
the National Natural Science Foundation of China "Metabolic pathways of methane and other low molecular weight compounds in hydrothermally altered subseafloor sediments from the Guaymas Basin"(42076031);The Taishan Scholar Project of Shandong Province(tsqn201909057)
Marine sediments contain large amounts of alkanes, mainly consisting of methane (CH4), ethane (C2H6), and propane (C3H6). Similar to methane, ethane and propane are also important greenhouse gases. The decomposition of hydrates and oil/gas seeps can cause the release of ethane and propane into seawater and the atmosphere, significantly impacting the marine ecosystems and global climate change. The microbial oxidation of alkanes, in marine environments, effectively reduces the emission flux of these gases. The latest research progresses on the distribution and biotransformation of ethane and propane in marine environment were reviewed with the following highlights:
Key words: Ethane; Propane; Microorganism; Biogeochemical cycle; Marine sediment
Yuan YUAN , Guangchao ZHUANG , Shihai MAO , Jiarui LIU , Xiting LIU , Guipeng YANG . Distribution and Biotransformation of Ethane and Propane in Marine Environments[J]. Advances in Earth Science, 2022 , 37(4) : 370 -381 . DOI: 10.11867/j.issn.1001-8166.2021.110
1 | GILBERT A, SHERWOOD LOLLAR B, MUSAT F, et al. Intramolecular isotopic evidence for bacterial oxidation of propane in subsurface natural gas reservoirs[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(14): 6 653-6 658. |
2 | KOPPMANN R. Chemistry of volatile organic compounds in the atmosphere[M]// Handbook of hydrocarbon and lipid microbiology. Berlin, Heidelberg: Springer, 2010: 267-277. |
3 | KANAKIDOU M, SINGH H B, VALENTIN K M, et al. A two-dimensional study of ethane and propane oxidation in the troposphere[J]. Journal of Geophysical Research: Atmospheres, 1991, 96 (D8): 15 395-15 413. |
4 | AIKIN A C, HERMAN J R, MAIER E J, et al. Atmospheric chemistry of ethane and ethylene[J]. Journal of Geophysical Research: Oceans, 1982, 87(C4): 3 105-3 118. |
5 | EDWARDS P M, BROWN S S, ROBERTS J M, et al. High winter ozone pollution from carbonyl photolysis in an oil and gas basin[J]. Nature, 2014, 514(7 522): 351-354. |
6 | LAL S, SAHU L K, VENKATARAMANI S. Impact of transport from the surrounding continental regions on the distributions of ozone and related trace gases over the Bay of Bengal during February 2003[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D14): D14302. |
7 | MCKAIN K, DOWN A, RACITI S M, et al. Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(7): 1 941-1 946. |
8 | KATZENSTEIN A S, DOEZEMA L A, SIMPSON I J, et al. Extensive regional atmospheric hydrocarbon pollution in the southwestern United States[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(21): 11 975-11 979. |
9 | POZZER A, POLLMANN J, TARABORRELLI D, et al. Observed and simulated global distribution and budget of atmospheric C2-C5 alkanes[J]. Atmospheric Chemistry and Physics (ACP) & Discussions, 2010, 10(195): 4 403-4 422. |
10 | ETIOPE G, CICCIOLI P. Earth's degassing: a missing ethane and propane source[J]. Science, 2009, 323(5 913): 478. |
11 | RUDOLPH J, EHHALT D H. Measurements of C2-C5 hydrocarbons over the North Atlantic[J]. Journal of Geophysical Research: Oceans, 1981, 86(C12): 11 959-11 964. |
12 | ZHANG Fugui, ZHOU Yalong, SUN Zhongjun, et al. Research progress of geochemical exploration technology for natural gas hydrate in the permafrost area, China[J]. Advances in Earth Science, 2021, 36(3): 276-287. |
12 | 张富贵,周亚龙,孙忠军,等. 中国多年冻土区天然气水合物地球化学勘探技术研究进展[J]. 地球科学进展,2021,36(3):276-287. |
13 | RUDOLPH J. The tropospheric distribution and budget of ethane[J]. Journal of Geophysical Research: Atmospheres, 1995, 100(D6): 11 369-11 381. |
14 | REEBURGH W S. Oceanic methane biogeochemistry[J]. Chemical Reviews, 2007, 107(2):486-513. |
15 | FORSTER P. Climate change 2007: the physical science basis.Contribution of working group Ⅰ to the forth assessment report of the IPCC[M]. Cambrige, UK: Cambrige University Press, 2007. |
16 | SWINNERTON J W, LAMONTAGNE R A. Oceanic distribution of low-molecular-weight hydrocarbons. Baseline measurements[J]. Environmental Science & Technology, 1974, 8 (7): 657-663. |
17 | HUNT J M. Hydrocarbon geochemistry of Black Sea: geochemistry[J]. The Black Sea—Geology, Chemistry, and Biology, 1974, A145: 499-504. |
18 | PLASS-DüLMER C, KOPPMANN R, RATTE M, et al. Light nonmethane hydrocarbons in seawater[J]. Global Biogeochemical Cycles, 1995, 9: 79-100. |
19 | BROOKS J M, SACKETT W M. Sources, sinks, and concentrations of light hydrocarbons in the Gulf of Mexico[J]. Journal of Geophysical Research, 1973, 78(24): 5 248-5 258. |
20 | TSURUSHIMA N, WATANABE S, TSUNOGAI S. Determination of light hydrocarbons dissolved in seawater[J]. Talanta, 1999, 50(3): 577-583. |
21 | BROADGATE W J, MALIN G, KüEPPER F C, et al. Isoprene and other non-methane hydrocarbons from seaweeds: a source of reactive hydrocarbons to the atmosphere[J]. Marine Chemistry, 2004, 88(1/2):61-73. |
22 | BROADGATE W J, LISS P S, PENKETT S A. Seasonal emissions of isoprene and other reactive hydrocarbon gases from the ocean[J]. Geophysical Research Letters, 1997, 24(21): 2 675-2 678. |
23 | LI J L, ZHAI X, MA Z, et al. Spatial distributions and sea-to-air fluxes of non-methane hydrocarbons in the atmosphere and seawater of the Western Pacific Ocean[J]. Science of the Total Environment, 2019, 672: 491-501. |
24 | WU Y C, LI J L, WANG J, et al. Occurance, emission and environmental effects of non-methane hydrocarbons in the Yellow Sea and the East China Sea[J]. Environmental Pollution, 2021, 270: 116305. DOI: 10.1016/j.envpol.2020.116305 . |
25 | LAMONTAGNE R A, SWINNERTON J W, LINNENBOM V J. C1-C4 hydrocarbons in the North and South Pacific[J]. Tellus, 1974, 26(1/2): 71-77. |
26 | GREENBERG J P, ZIMMERMAN P R. Nonmethane hydrocarbons in remote tropical, continental, and marine atmospheres[J]. Journal of Geophysical Research Atmospheres, 1984, 89(D3): 4 767-4 778. |
27 | REED W E, KAPLAN I R. The chemistry of marine petroleum seeps[J]. Journal of Geochemical Exploration, 1977, 7: 255-293. |
28 | TYLER P A, YOUNG C M. Reproduction and dispersal at vents and cold seeps[J]. Journal of the Marine Biological Association of the United Kingdom, 1999, 79(2): 193-208. |
29 | RATTE M, PLASS-DüLMER C, KOPPMANN R, et al. Horizontal and vertical profiles of light hydrocarbons in sea water related to biological, chemical and physical parameters[J]. Tellus Series B—Chemical & Physical Meteorology, 1995, 47(5):607-623. |
30 | PLASS C, KOPPMANN R, RUDOLPH J. Light hydrocarbons in the surface water of the mid-Atlantic[J]. Journal of Atmospheric Chemistry, 1992, 15(3/4): 235-251. |
31 | RATTE M, BUJOK O, SPITZY A, et al. Photochemical alkene formation in seawater from dissolved organic carbon: results from laboratory experiments[J]. Journal of Geophysical Research Atmospheres, 1998, 103(D5): 5 707-5 717. |
32 | OREMLAND R S, WHITICAR M J, STROHMAIER F E, et al. Bacterial ethane formation from reduced, ethylated sulfur compounds in anoxic sediments[J]. Geochimica et Cosmochimica Acta, 1988, 52(7): 1 895-1 904. |
33 | VOGEL T M, OREMLAND R S, KVENVOLDEN K A. Low-temperature formation of hydrocarbon gases in San Francisco Bay sediment (California, U.S.A.)[J]. Chemical Geology, 1982, 37(3/4): 289-298. |
34 | KVENVOLDEN K A, REDDEN G D. Hydrocarbon gas in sediment from the shelf, slope, and basin of the Bering Sea[J]. Geochimica et Cosmochimica Acta, 1980, 44 (8): 1 145-1 150. |
35 | KVENVOLDEN K A. Hydrocarbon gas in sediment of the southern Pacific Ocean[J]. Geo-Marine Letters, 1988, 8(3): 179-187. |
36 | HINRICHS K U, HAYES J M, BACH W, et al. Biological formation of ethane and propane in the deep marine subsurface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(40): 14 684-14 689. |
37 | MILKOV A V. Global estimates of hydrate-bound gas in marine sediments: how much is really out there?[J]. Earth-Science Reviews, 2004, 66(3/4): 183-197. |
38 | SASSEN R, CURIALE J A. Microbial methane and ethane from gas hydrate nodules of the Makassar Strait, Indonesia[J].Organic Geochemistry, 2006, 37(8): 977-980. |
39 | MILKOV A V. Molecular and stable isotope compositions of natural gas hydrates: a revised global dataset and basic interpretations in the context of geological settings[J]. Organic Geochemistry, 2005, 36(5): 681-702. |
40 | BERNARD B B, BROOKS J M, SACKETT W M. Light hydrocarbons in recent Texas continental shelf and slope sediments[J]. Journal of Geophysical Research Oceans, 1978, 83(C8): 4 053-4 061. |
41 | MCKAY W A, TURNER M F, JONES B M R, et al. Emissions of hydrocarbons from marine phytoplankton—some results from controlled laboratory experiments[J]. Atmospheric Environment, 1996, 30(14): 2 583-2 593. |
42 | RONTANI J F. Identification by GC/MS of acidic compounds produced during the photosensitized oxidation of normal and isoprenoid alkanes in seawater[J]. International Journal of Environmental Analytical Chemistry, 1991, 45(1): 1-9. |
43 | LEE R F, BAKER J. Ethylene and ethane production in an estuarine river: formation from the decomposition of polyunsaturated fatty acids[J]. Marine Chemistry, 1992, 38(1/2): 25-36. |
44 | PSZENNY A A P, PRINN R G, KLEIMAN G, et al. Nonmethane hydrocarbons in surface waters, their sea-air fluxes and impact on OH in the marine boundary layer during the First Aerosol Characterization Experiment (ACE 1)[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D17): 21 785-21 801. |
45 | BERNARD B B, BROOKS J M, SACKETT W M. Natural gas seepage in the Gulf of Mexico[J]. Earth and Planetary Science Letters, 1976, 31(1): 48-54. |
46 | VIETH A, WILKES H. Stable isotopes in understanding origin and degradation processes of petroleum[M]// Handbook of hydrocarbon and lipid microbiology. Berlin, Heidelberg: Springer, 2010. |
47 | CLAYPOOL G E, KVENVOLDEN K A. Methane and other hydrocarbon gases in marine sediment[J]. Annual Review of Earth and Planetary Sciences, 1983, 11(1): 299-327. |
48 | BELAY N, DANIELS L. Ethane production by methanosarcina barkeri during growth in ethanol supplemented medium[J]. Antonie van Leeuwenhoek, 1988, 54(2): 113-125. |
49 | KNIEMEYER O, MUSAT F, SIEVERT S M, et al. Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria[J]. Nature, 2007, 449(7 164): 898-901. |
50 | CHEN S C, MUSAT N, LECHTENFELD O J, et al. Anaerobic oxidation of ethane by archaea from a marine hydrocarbon seep[J]. Nature, 2019, 568(7 750): 108-111. |
51 | FU Xiancai. Physical chemistry [M]. 5th Edition. Beijing: Higher Education Press, 2005: 483-492. |
51 | 傅献彩. 物理化学[M]. 第五版. 北京:高等教育出版社, 2005: 483-492. |
52 | HAYNES W. CRC handbook of chemistry and physics, 95th ed[M]. Boca Raton, FL, USA: CRC Press, 2014: 1 364-1 366. |
53 | DAVIS J B, SQUIRES R M. Detection of microbially produced gaseous hydrocarbons other than methane[J]. Science, 1954, 119(3 090): 381-382. |
54 | EMERY K O, HOGGAN D. Gases in marine sediments[J]. AAPG Bulletin, 1958, 42: 2 174-2 188. |
55 | XIE S T, LAZAR C S, LIN Y S, et al. Ethane- and propane- producing potential and molecular characterization of an ethanogenic enrichment in an anoxic estuarine sediment[J]. Organic Geochemistry, 2013, 59: 37-48. |
56 | TAYLOR C D, WOLFE R S. Structure and methylation of Coenzyme M (HSCH2CH2SO3)[J]. Journal of Biological Chemistry, 1974, 249(15): 4 879-4 885. |
57 | BALCH W E, WOLFE R S. Transport of coenzyme M (2-mercaptoethanesulfonic acid) in methanobacterium ruminantium[J]. Journal of Bacteriology, 1979, 137(1): 264-273. |
58 | FERRY J G. The chemical biology of methanogenesis[J]. Planetary & Space Science, 2010, 58(14/15):1 775-1 783. |
59 | GUNSALUS R P, ROMESSER J A, WOLFE R S. Preparation of coenzyme M analogs and their activity in the methyl coenzyme M reductase system of methanobacterium thermoautotrophicum[J]. Biochemistry, 1978, 17(12): 2 374-2 377. |
60 | OREMLAND R S. Microbial formation of ethane in anoxic estuarine sediments[J]. Applied and Environmental Microbiology, 1981, 42(1):122-129. |
61 | BELAY N, DANIELS L. Production of ethane, ethylene, and acetylene from halogenated hydrocarbons by methanogenic bacteria[J]. Applied and Environmental Microbiology, 1987, 53(7): 1 604-1 610. |
62 | KOENE C F H M, SCHRAA G. Anaerobic reduction of ethene to ethane in an enrichment culture[J]. FEMS Microbiology Ecology, 1998, 25(3): 251-256. |
63 | BALCH W E, WOLFE R S. Specificity and biological distribution of coenzyme M (2-mercaptoethanesulfonic acid)[J]. Journal of Bacteriology, 1979, 137(1): 256-263. |
64 | MCINERNEY M J, STRUCHTEMEYER C G, SIEBER J, et al. Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism[J]. Annals of the New York Academy of Sciences, 2008, 1 125(1): 58-72. |
65 | CLAYPOOL G. Biogenic ethane-where does it come from[Z]. American Association of Petroleum Geologists Hedberg Conference Abstracts, Natural Gas Formation and Occurrence, June 6-10, 1999 , Durango, Colorado, 1999: 27-29. |
66 | CONRAD R, KLOSE M. Anaerobic conversion of carbon dioxide to methane, acetate and propionate on washed rice roots[J]. FEMS Microbiology Ecology, 1999, 30(2): 147-155. |
67 | ROJO F. Enzymes for Aerobic Degradation of Alkanes[M]//Handbook of hydrocarbon and lipid microbiology. Berlin, Heidelberg: Springer, 2010: 781-797. |
68 | LABINGER J A, BERCAW J E. Understanding and exploiting C-H bond activation[J]. Nature, 2002, 417(6 888): 507-514. |
69 | BEILEN J B VAN, LI Z, DUETZ W A, et al. Diversity of alkane hydroxylase systems in the environment[J]. Oil & Gas Science & Technology, 2003, 58(4): 427-440. |
70 | WENTZEL A, ELLINGSEN T E, KOTLAR H K, et al. Bacterial metabolism of long-chain n-alkanes[J]. Applied Microbiology and Biotechnology, 2007, 76(6): 1 209-1 221. |
71 | KNIEF C, LIPSKI A, DUNFIELD P F. Diversity and activity of methanotrophic bacteria in different upland soils[J]. Applied and Environmental Microbiology, 2003, 69(11):6 703-6 714. |
72 | KNIEF C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker[J]. Frontiers in Microbiology, 2015, 6: 1346. |
73 | CONRAD R. The global methane cycle: recent advances in understanding the microbial processes involved[J]. Environmental Microbiology Reports, 2009, 1(5): 285-292. |
74 | KNITTEL K, BOETIUS A. The anaerobic oxidation of methane-progress with an unknown process[J]. Annual Reviews of Microbiology, 2009, 63: 311-334. |
75 | JAMES A T, BURNS B J. Microbial alteration of subsurface natural gas accumulations1[J]. AAPG Bulletin, 1984, 68(8): 957-960. |
76 | HIGGINS I J, QUAYLE J R. Oxygenation of methane by methane-grown pseudomonas methanica and methanomonas methanooxidans[J]. The Biochemical Journal, 1970, 118(2): 201-208. |
77 | S?HNGEN N L. Uber bakterien welche methan ab kohlenstoffnahrung und energiequelle gebrauchen[J]. Zentrabl Bakteriol Parasitenk Infektionskr, 1906, 15: 513-517. |
78 | S?HNGEN N L. Benzin, Petroleum, Paraffin?l und Paraffin als Kohlenstoff- und Energiequelle für Mikroben[J]. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt, 1913, 37: 595-609. |
79 | DAVIS J B, CHASE H H, RAYMOND R L. Mycobacterium paraffinicum n. sp., a bacterium isolated from soil[J]. Applied Microbiology, 1956, 4(6): 310-315. |
80 | DWORKIN M, FOSTER J W. Experiments with some microorganisms which utilize ethane and hydrogen[J]. Journal of Bacteriology, 1958, 75(5): 592-603. |
81 | BERTHE CORTI L, FETZNER S. Bacterial metabolism of n-alkanes and ammonia under oxic, suboxic and anoxic conditions[J]. Acta Biotechnologica, 2002, 22(3/4): 299-336. |
82 | ASHRAF W, MIHDHIR A, MURRELL J C. Bacterial oxidation of propane[J]. FEMS Microbiology Letters, 1994, 122(1/2): 1-6. |
83 | DANIEL J A. Butane metabolism by butane-grown "Pseudomonas butanovora"[J]. Microbiology, 1999, 145(5): 1 173-1 180. |
84 | PERRY J J. Propane utilization by microorganisms[J]. Advances in Applied Microbiology, 1980, 26:89-115. |
85 | REDMOND M C, VALENTINE D L, SESSIONS A L. Identification of Novel Methane-, Ethane-, and Propane-oxidizing bacteria at marine hydrocarbon seeps by stable isotope probing[J]. Applied and Environmental Microbiology, 2010, 76(19): 6 412-6 422. |
86 | MUKHERJEE J, MENGE M, HOISCHEN D, et al. Bacterial metabolism of n-alkanes and ammonia under oxic, suboxic and anoxic conditions[J]. Acta Biotechnologica, 2002, 22(3/4): 299-336. |
87 | SMITH D D S, DALTON H. Solubilisation of methane monooxygenase from Methylococcus capsulatus (Bath)[J]. European Journal of Biochemistry, 1989, 182(3): 667-671. |
88 | LIPSCOMB J D. Biochemistry of the soluble methane monooxygenase[J]. Annual Review of Microbiology, 1994, 48: 371-399. |
89 | SHENNAN J L. Utilisation of C2-C4 gaseous hydrocarbons and isoprene by microorganisms[J]. Journal of Chemical Technology & Biotechnology, 2006, 81(3): 237-256. |
90 | DALTON H. Structure and mechanism of action of the Enzyme(s) involved in Methane Oxidation[M]// Applications of enzyme biotechnology. Boston, MA: Springer, 1991: 55-68. |
91 | VESTAL J R. The metabolism of gaseous hydrocarbons by microorganisms[M]// Petroleum microbiology. New York: Macmillan Publishing Co., 1984: 129-151. |
92 | KOTANI T, YAMAMOTO T, YURIMOTO H, et al. Propane monooxygenase and NAD+-dependent secondary alcohol dehydrogenase in propane metabolism by Gordonia sp. Strain TY-5[J]. Journal of Bacteriology, 2003, 185(24): 7 120-7 128. |
93 | LI J, LIU C L, HE X L, et al. Aerobic microbial oxidation of hydrocarbon gases: implications for oil and gas exploration[J]. Marine and Petroleum Geology, 2019, 103: 76-86. |
94 | KINNAMAN F S, VALENTINE D L, TYLER S C. Carbon and hydrogen isotope fractionation associated with the aerobic microbial oxidation of methane, ethane, propane and butane[J]. Geochimica et Cosmochimica Acta, 2007, 71(2):271-283. |
95 | CHEN X G, SCHMIDT M, CHEN C L, et al. Carbon and hydrogen isotope fractionation during aerobic oxidation of short-chain alkanes in experimental incubations of vent fluids[J]. Organic Geochemistry, 2021, 158: 104269. |
96 | HINRICHS K U, BOETIUS A. The Anaerobic Oxidation of Methane: new insights in microbial ecology and biogeochemistry[M]. Berlin, Heidelberg: Springer, 2003: 457-477. |
97 | ORCUTT B N, BOETIUS A, LUGO S K, et al. Life at the edge of methane ice: microbial cycling of carbon and sulfur in Gulf of Mexico gas hydrates-ScienceDirect[J]. Chemical Geology, 2004, 205(3/4): 239-251. |
98 | JOYE S B, BOETIUS A, ORCUTT B N, et al. The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps[J]. Chemical Geology, 2004, 205(3/4): 219-238. |
99 | MASTALERZ V, de LANGE G J, D?HLMANN A. Differential aerobic and anaerobic oxidation of hydrocarbon gases discharged at mud volcanoes in the Nile deep-sea fan[J]. Geochimica et Cosmochimica Acta, 2009, 73(13): 3 849-3 863. |
100 | JAEKEL U, MUSAT N, ADAM B, et al. Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps[J]. The ISME Journal, 2013, 7(5): 885-895. |
101 | SAVAGE K N, KRUMHOLZ L R, GIEG L M, et al. Biodegradation of low-molecular-weight alkanes under mesophilic, sulfate-reducing conditions: metabolic intermediates and community patterns[J]. FEMS Microbiology Ecology, 2010, 72(3): 485-495. |
102 | MUSAT F. The anaerobic degradation of gaseous, nonmethane alkanes-From in situ processes to microorganisms[J]. Computational and Structural Biotechnology Journal, 2015, 13: 222-228. |
103 | SINGH R, GUZMAN M S, BOSE A. Anaerobic oxidation of ethane, propane, and butane by marine microbes: a mini review[J]. Frontiers in Microbiology, 2017, 8: 2 056-2 056. |
104 | JAEKEL U, VOGT C, FISCHER A, et al. Carbon and hydrogen stable isotope fractionation associated with the anaerobic degradation of propane and butane by marine sulfate-reducing bacteria[J]. Environmental Microbiology, 2014, 16(1): 130-140. |
105 | GRUNDMANN O, BEHRENDS A, RABUS R, et al. Genes encoding the candidate enzyme for anaerobic activation of n-alkanes in the denitrifying bacterium, strain HxN1[J]. Environmental Microbiology, 2008, 10(2): 376-385. |
106 | BHARADWAJ V S, VYAS S, VILLANO S M, et al. Unravelling the impact of hydrocarbon structure on the fumarate addition mechanism-a gas-phase ab initio study[J]. Physical Chemistry Chemical Physics, 2015, 17(6): 4 054-4 066. |
107 | ADAMS M, HOARFROST A, BOSE A, et al. Anaerobic oxidation of short-chain alkanes in hydrothermal sediments: potential influences on sulfur cycling and microbial diversity[J]. Frontiers in Microbiology, 2013, 4:110. |
108 | BAO P, LI G X, SUN G X, et al. The role of sulfate-reducing prokaryotes in the coupling of element biogeochemical cycling[J]. The Science of the Total Environment, 2018, 613/614: 398-408. |
109 | HAHN C J, LASO-PéREZ R, VULCANO F, et al. Candidatus Ethanoperedens, a thermophilic genus of archaea mediating the anaerobic oxidation of ethane[J]. mBio, 2020, 11(2):e00600-20. DOI: 10.1101/2020.03.21.999862 . |
/
〈 |
|
〉 |