Progress and Prospect of Marine Heatwave Study

  • Shijian HU ,
  • Shihan LI
Expand
  • 1.CAS Key Laboratory of Ocean Circulation and Waves,Institute of Oceanology,Chinese Academy of Sciences,Qingdao 266071,China
    2.Center for Ocean Mega-Science,Chinese Academy of Sciences,Qingdao 266071,China
    3.Pilot National Laboratory for Marine Science and Technology (Qingdao),Qingdao 266237,China
    4.University of Chinese Academy of Sciences,Beijing 100049,China
HU Shijian (1984-), male, Xintian County, Hunan Province, Professor. Research areas include ocean dynamics and climate change. E-mail: sjhu@qdio.ac.cn

Received date: 2021-10-28

  Revised date: 2021-12-15

  Online published: 2022-01-29

Supported by

the Strategic Priority Research Program of Chinese Academy of Sciences "Evolution process and mechanism of warm pool in the Indo-Pacific convergence zone since the Industrial Revolution"(XDB42010403);The Youth Innovation Promotion Association of Chinese Academy of Sciences(2018240)

Abstract

Marine Heatwaves (MHWs) have very important impacts on marine environment, ecosystem and economic life. Global warming has exacerbated MHWs in recent years. The research on MHWs has developed rapidly and gradually become an important research frontier. This paper reviews the scientific background and research progress on MHWs both at home and abroad. Various kinds of MHWs' definitions, spatiotemporal features, formation mechanisms, impacts on marine ecosystem, and possible changes in the context of future global warming are summarized. The remaining important scientific issues in the field of MHWs research are discussed and with this base, the possible development trend in future is prospected.

Cite this article

Shijian HU , Shihan LI . Progress and Prospect of Marine Heatwave Study[J]. Advances in Earth Science, 2022 , 37(1) : 51 -64 . DOI: 10.11867/j.issn.1001-8166.2021.121

References

1 IPCC. Climate change 2021: the physical science basis [M/OL]. 2021. [2021-08-10]. .
2 HU S, SPRINTALL J, GUAN C, et al. Deep-reaching acceleration of global mean ocean circulation over the past two decades[J]. Science Advances, 2020, 6(6): eaax7727.
3 HU Shijian, LU Xi, LI Shihan, et al. Multi-decadal trends in the tropical Pacific western boundary currents retrieved from historical hydrological observations[J]. Science China: Earth Sciences, 2021, 64(4): 600-610.
3 胡石建,卢锡,李诗翰,等. 历史水文观测数据反演的热带太平洋西边界流多年代变化趋势[J]. 中国科学: 地球科学, 2021, 64(4): 598-609.
4 SHI J R, TALLEY L, XIE S P, et al. Ocean warming and accelerating Southern Ocean zonal flow[J]. Nature Climate Change, 2021, 11: 1 090-1 097.
5 BALAGURU K, FOLTZ G, LEUNG R, et al. Global warming-induced upper-ocean freshening and the intensificati on of super typhoons[J]. Nature Communications, 2016, 7: 13670.
6 MARTíNEZ-MORENO J, HOGG A M, ENGLAND M H, et al. Global changes in oceanic mesoscale currents over the satellite altimetry record[J]. Nature Climate Change, 2021, 11(5): 397-403.
7 ROBINSON A, LEHMANN J, BARRIOPEDRO D, et al. Increasing heat and rainfall extremes now far outside the historical climate[J]. NPJ Climate and Atmospheric Science, 2021, 4(1): 45.
8 PEARCE A, LENANTON R, JACKSON G, et al. The "marine heat wave" off Western Australia during the summer of 2010/11[R]. Fisheries Research Report No. 222, Department of Fisheries, AustraliaWestern, 2011:40.
9 OLIVER E C J, BENTHUYSEN J A, DARMARAKI S, et al. Marine heatwaves[J]. Annual Review of Marine Science, 2021, 13(1): 313-342.
10 QI Qinghua, CAI Rongshuo. Analysis on climate characteristics of sea surface temperature extremes in coastal China seas[J]. Acta Oceanologica Sinica, 2019, 41(7): 36-51.
10 齐庆华, 蔡榕硕. 中国近海海表温度变化的极端特性及其气候特征研究[J].海洋学报,2019,41(7): 36-51.
11 SORTE C J B, FULLER A, BRACKEN M E S. Impacts of a simulated heat wave on composition of a marine community[J]. Oikos, 2010, 119(12): 1 909-1 918.
12 WERNBERG T, SMALE D A, TUYA F, et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot[J]. Nature Climate Change, 2013, 3: 78-82.
13 MARBà N, JORDà G, AGUSTíS, et al. Footprints of climate change on Mediterranean Sea biota[J]. Frontiers in Marine Science, 2015, 2(56). DOI:10.3389/fmars.2015.00056.
14 HOBDAY A J, ALEXANDER L V, PERKINS S E, et al. A hierarchical approach to defining marine heatwaves[J]. Progress in Oceanography, 2016, 141(652): 227-238.
15 JACOX M G. Marine heatwaves in a changing climate[J]. Nature, 2019, 571: 485-487.
16 HOBDAY A J, OLIVER E C J, GUPTA A S, et al. Categorizing and naming marine heatwaves[J]. Oceanography, 2018, 31(2): 162-173.
17 HOLBROOK N J, SCANNELL H A, GUPTA A S, et al. A global assessment of marine heatwaves and their drivers[J]. Nature Communications, 2019, 10: 2624.
18 OLIVER E C J, DONAT M G, BURROWS M T, et al. Longer and more frequent marine heatwaves over the past century[J]. Nature Communications, 2018, 9: 1324.
19 SCANNELL H A, PERSHING A J, ALEXANDER M A, et al. Frequency of marine heatwaves in the North Atlantic and North Pacific since 1950[J]. Geophysical Research Letters, 2016, 43: 2 069-2 076.
20 HAYASHIDA H, MATEAR R J, STRUTTON P G, et al. Insights into projected changes in marine heatwaves from a high-resolution ocean circulation model[J]. Nature Communications, 2020, 11: 4352.
21 WANG Aimei, WANG Hui, FAN Wenjing, et al. Study on characteristics of marine heatwave in the China offshore in 2019[J]. Acta Oceanologica Sinica, 2021, 43(6): 35-44.
21 王爱梅,王慧,范文静,等.2019年中国近海海洋热浪特征研究[J].海洋学报,2021,43(6):35-44.
22 HU S, LI S, ZHANG Y, et al. Observed strong subsurface marine heatwaves in the tropical western Pacific Ocean[J]. Environmental Research Letters, 2021, 16(10): 104024.
23 KURODA H, SETOU T. Extensive marine heatwaves at the sea surface in the northwestern Pacific Ocean in summer 2021[J]. Remote Sensing, 2021, 13(19): 3989.
24 MIAO Yuqing, XU Haiming, LIU Jiawei, et al. Variation of summer marine heatwaves in the Northwest Pacific and associated air-sea interaction[J]. Journal of Tropical Oceanography, 2021, 40(1): 31-43.
24 缪予晴,徐海明,刘佳伟,等.西北太平洋夏季海洋热浪的变化特征及海气关系[J].热带海洋学报,2021,40(1):31-43.
25 HOLBROOK N J, GUPTA A S, OLIVER E, et al. Keeping pace with marine heatwaves[J]. Nature Reviews Earth & Environment, 2020, 1(9): 482-493.
26 SCHAEFFER A, ROUGHAN M. Subsurface intensification of marine heatwaves off southeastern Australia: the role of stratification and local winds[J]. Geophysical Research Letters, 2017, 44: 5 025-5 033.
27 SCANNELL H A, JOHNSON G C, THOMPSON L, et al. Subsurface evolution and persistence of marine heatwaves in the Northeast Pacific[J]. Geophysical Research Letters, 2020, 47: e2020GL090548.
28 DI LORENZO E, MANTUA N. Multi-year persistence of the 2014/15 North Pacific marine heatwave[J]. Nature Climate Change, 2016, 6: 1 042-1 047.
29 BEHRENS E, FERNANDEZ D, SUTTON P. Meridional oceanic heat transport influences marine heatwaves in the Tasman Sea on interannual to decadal timescales[J]. Frontiers in Marine Science, 2019, 6: 228.
30 OLIVER E C J, BENTHUYSEN J A, BINDOFF N L, et al. The unprecedented 2015/16 Tasman Sea marine heatwave[J]. Nature Communications, 2017, 8: 16101.
31 CAI W, ZHANG L, NAKAMURA H, et al. Enhanced warming over the global subtropical western boundary currents[J]. Nature Climate Change, 2012, 2: 161-166.
32 YANG H, GERRIT L, WEI W, et al. Intensification and poleward shift of subtropical western boundary currents in a warming climate[J]. Journal of Geophysical Research, 2016, 121: 4 928-4 945.
33 XU J, LOWE R J, IVEY G N, et al. Contrasting heat budget dynamics during two La Ni?a marine heat wave events along northwestern Australia[J]. Journal of Geophysical Research: Oceans, 2018, 123: 1 563-1 581.
34 FENG M, MCPHADEN M J, XIE S P, et al. La Ni?a forces unprecedented Leeuw in Current warming in 2011[J]. Scientific Reports, 2013, 3: 1277.
35 ALEXANDER M A, SCOTT J D. Surface flux variability over the North Pacific and North Atlantic oceans[J]. Journal of Climate, 1997, 10: 2 963-2 978.
36 HARTMANN D L. Pacific sea surface temperature and the winter of 2014[J]. Geophysical Research Letters, 2015, 42: 1 894-1 902.
37 HU Z, KUMAR A, JHA B, et al. Persistence and predictions of the remarkable warm anomaly in the northeastern Pacific ocean during 2014-16[J]. Journal of Climte, 2017, 30: 689-702.
38 AMAYA D J, MILLER A J, XIE S, et al. Physical drivers of the summer 2019 North Pacific marine heatwave[J]. Nature Communications, 2020, 11(1): 1903.
39 BOND N A, CRONIN M F, FREELAND H, et al. Causes and impacts of the 2014 warm anomaly in the NE Pacific[J]. Geophysical Research Letters, 2015, 42: 3 414-3 420.
40 CHEN K, GAWARKIEWICZ G, KWON Y O, et al. The role of atmospheric forcing versus ocean advection during the extreme warming of the Northeast U.S. continental shelf in 2012[J]. Journal of Geophysical Research: Oceans, 2015, 120: 4 324-4 339.
41 GARRABOU J, COMA R, BENSOUSSAN N, et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave[J]. Global Change Biology, 2009, 15: 1 090-1 103.
42 GAO G, MARIN M, FENG M, et al. Drivers of marine heatwaves in the East China Sea and the South Yellow Sea in three consecutive summers during 2016-2018[J]. Journal of Geophysical Research: Oceans, 2020, 125(8): e2020JC016518.
43 YAO Y, WANG C. Variations in summer marine heatwaves in the South China Sea[J]. Journal of Geophysical Research: Oceans, 2021, 126(10): e2021JC017792.
44 ZHANG Wenjing, ZHENG Zhaoyong, ZHANG Ting, et al. Strengthened marine heatwaves over the Beibu Gulf coral reef regions from 1960 to 2017[J]. Acta Oceanologica Sinica, 2020, 42(5): 41-49.
44 张文静,郑兆勇,张婷, 等.1960—2017年北部湾珊瑚礁区海洋热浪增强原因分析[J].海洋学报,2020,42(5):41-49.
45 TAN H, CAI R. What caused the record-breaking warming in East China Seas during August 2016?[J]. Atmospheric Science Letters, 2018, 19(16): e853.
46 BENNETT S, WERNBERG T, CONNELL S D, et al. The 'Great Southern Reef': socio-ecological and economic value of Australia's neglected natural wonder[J]. Marine and Freshwater Research, 2015. DOI:10.1071/MF15232.
47 DE'ATH G, FABRICIUS K E, SWEATMAN H, et al. The 27-year decline of coral cover on the Great Barrier Reef and its causes[J]. Proceedings of the National Academy of Sciences, 2012, 109: 17 995-17 999.
48 FIRTH L B, KNIGHTS A M, BELL S S. Air temperature and winter mortality: implications for the persistence of the invasive mussel, Perna viridis in the intertidal zone of the south-eastern United States[J]. Journal of Experimental Marine Biology and Ecology, 2011, 400: 250-256.
49 JENTSCH A, KREYLING J, BEIERKUHNLEIN C. A new generation of climate-change experiments: events, not trends[J]. Frontiers in Ecology and Environment, 2007, 5: 365-374.
50 PEARCE A F, FENG M. The rise and fall of the "marine heat wave" off Western Australia during the summer of 2010/2011[J]. Journal of Marine Systems, 2013, 111/112: 139-156.
51 BENTHUYSEN J A, OLIVER E C J, FENG M, et al. Extreme marine warming across tropical Australia during austral summer 2015-2016[J]. Journal of Geophysical Research: Oceans, 2018. DOI:10.1002/2017JC013326.
52 LEWIS S C, MALLELA J. A multifactor risk analysis of the record 2016 great barrier reef bleaching[J]. Bulletin of the American Meteorological Society, 2018, 99: S144-S149.
53 OLIVER E C J, PERKINS-KIRKPATRICK S E, HOLBROOK N J, et al. Anthropogenic influences on record 2016 marine heatwaves[J]. Bulletin of the American Meteorological Society, 2018, 99: S44-S48.
54 WALSH J E, THOMAN R L, BHATT U S, et al. The high latitude marine heat wave of 2016 and its impacts on Alaska[J]. Bulletin of the American Meteorological Society, 2018, 99: S39-S43.
55 JACOX M G, ALEXANDER M A, MANTUA N J, et al. Forcing of multiyear extreme ocean temperatures that impacted California current living marine resources in 2016[J]. Geological Society of America Bulletin, 2018, 99: S27-S33.
56 PERKINS-KIRKPATRICK S, KING A, COUGNON E, et al. The role of natural variability and anthropogenic climate change in the 2017/18 Tasman Sea marine heatwave[J]. Bulletin of the American Meteorological Society, 2019, 100: S105-S110.
57 LAUFK?TTER C, ZSCHEISCHLER J, FR?LICHER T L. High-impact marine heatwaves attributable to human-induced global warming[J]. Science, 2020, 369(6 511): 1 621-1 625.
58 SMALE D A, WERNBERG T, OLIVERE C J, et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services[J]. Nature Climate Change, 2019, 9: 306-312.
59 CAVOLE A L, DEMKO R, DINER A, et al. Biological impacts of the 2013-2015 warm-water anomaly in the Northeast Pacific: winners, losers, and the future[J]. Oceanography, 2016, 29: 273-285.
60 CHEUNG W W L, FR?LICHER T L. Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific[J]. Scientific Reports, 2020, 10: 6 678.
61 WHITNEY F A. Anomalous winter winds decrease 2014 transition zone productivity in the NE Pacific[J]. Geophysical Research Letters, 2015, 42: 428-431.
62 ARAFEH-DALMAU N, SCHOEMAN D S, MONTA?O-MOCTEZUMA G, et al. Marine heat waves threaten kelp forests[J]. Science, 2020, 367: 635.
63 MARBA N, DUARTE C M. Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality[J]. Global Change Biology, 2010, 16: 2 366-2 375.
64 LING S D, JOHNSON C R, RIDGWAY K, et al. Climate-driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics[J]. Global Change Biology, 2009, 15(3): 719-731.
65 HUGHES T P, KERRY J T, áLVAREZ-NORIEGA M, et al. Global warming and recurrent mass bleaching of corals[J]. Nature, 2017, 543: 373-377.
66 SMALE D A, WERNBERG T. Extreme climatic event drives range contraction of a habitat-forming species[J]. Proceedings of the Royal Society of London Series B: Biological Sciences, 2013, 280: 20122829.
67 LAST P R, WHITE W T, GLEDHILL D C, et al. Long-term shifts in abundance and distribution of a temperate fish fauna: a response to climate change and fishing practices[J]. Global Ecology and Biogeography, 2010, 20: 58-72.
68 STOTT P A,CHRISTIDIS N, OTTOF E, et al. Attribution of extreme weather and climate-related events[J]. Wiley Interdisciplinary Reviews Climate, 2016, 7: 23-41.
69 PERSHING A J, ALEXANDER M A, HERNANDEZC M, et al. Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery[J]. Science, 2015, 350: 809-812.
70 ARIAS-ORTIZ A, SERRANO O, MASQUé P, et al. A marine heatwave drives massive losses from the world's largest seagrass carbon stocks[J]. Nature Climate Change, 2018, 8: 338-344.
71 FR?LICHER T L, FISCHER E M, GRUBER N. Marine heatwaves under global warming[J]. Nature, 2018, 560: 360-364.
72 MILLS K E, PERSHING A J, BROWN C J, et al. Fisheries management in a changing climate lessons from the 2012 ocean heat wave in the Northwest Atlantic[J]. Oceanography, 2013, 26: 191-195.
73 CAVANAGH R D, BROSZEIT S, PILLING G M, et al. Valuing biodiversity and ecosystem services: a useful way to manage and conserve marine resources?[J]. Proceedings of the Royal Society of London Series B Biological Sciences, 2016. DOI:10.1098/rspb.2016.1635.
74 LIQUETE C, PIRODDI C, DRAKOU E G, et al. Current status and future prospects for the assessment of marine and coastal ecosystem services: a systematic review[J]. PLoS ONE, 2013, 8: e67737.
75 CAI W, WANG G, SANTOSO A, et al. Increased frequency of extreme La Nin?a events under greenhouse warming[J]. Nature Climate Change, 2015, 5: 132-137.
76 OLIVER E C J, BURROWS M T, DONAT M G, et al. Projected marine heatwaves in the 21st century and the potential for ecological impact[J]. Frontiers in Marine Science, 2019, 6: 734.
77 FR?LICHER T L, LAUFK?TTER C. Emerging risks from marine heat waves[J]. Nature Communications, 2018, 9: 650.
78 STRAUB S C, WERNBERG T, THOMSEN M S, et al. Resistance, extinction, and everything in between-the diverse responses of seaweeds to marine heatwaves[J]. Frontiers in Marine Science, 2019, 6: 763.
79 ZHANG Y, DU Y, FENG M, et al. Long-lasting marine heatwaves instigated by ocean planetary waves in the tropical indian Ocean during 2015-2016 and 2019-2020[J]. Geophysical Research Letters, 2021, 48(21): e2021GL095350.
Outlines

/