Progress of Last Glacial Maximum and Mid-Holocene Climate Modeling Analyses
Received date: 2021-07-07
Revised date: 2021-10-09
Online published: 2022-01-29
Supported by
the National Natural Science Foundation of China Key Project "Holocene GSSP-typical, abrupt climate events: records from lakes in the monsoon region of China"(41931181);The National Key R&D Program of China "Driving mechanisms for monsoon variabilities and drought evolutions"(2017YFA0603404)
Climate modeling analyses for the Last Glacial Maximum (LGM) and mid-Holocene undertaken by the authors in recent years were systematically reviewed, including changes in climate over China, East Asian and global monsoons, as well as the associated major atmospheric circulation systems. Based on multi-model simulation data, the recent results showed that during the LGM, the simulated cooling and annual net precipitation change over China were qualitatively consistent with geological records, with a weaker magnitude for the simulation. The LGM permafrost area expanded and the active layer thickness was thinner in China, while the glacier equilibrium line altitude in western China were lower than the preindustrial levels. Although the LGM changes in the East Asian monsoon intensity differed among the models, the monsoon area and monsoon precipitation over China were consistently decreased; the land monsoon region moved southward in the Northern Hemisphere, and both decreases in global monsoon area and monsoon precipitation intensity led to deficient global monsoon precipitation. The magnitude of global mean terrestrial moisture change was overall small due to both decreases in global mean precipitation and potential evapotranspiration. The LGM northern westerlies shifted poleward in the upper level but equatorward in the lower level, the tropical belt width changes were dependent on the selection of metrics, and the El Ni?o-Southern Oscillation (ENSO) impacts and the tropical Pacific Walker circulation were revealed to weaken and shift eastward. During the mid-Holocene, the simulated annual and winter cooling over China was still opposite to the warming reconstructed by most geological records. The East Asian winter monsoon was consistently strengthened, while there were spatially inhomogeneous changes in the East Asian summer monsoon precipitation; the monsoon area and monsoon precipitation increased both over China and over the globe. The mid-Holocene permafrost area reduced in northeastern China but expanded to low-altitude regions in the Tibetan Plateau; in the Northern Hemisphere, the permafrost extent contracted, seasonally frozen ground expanded, frozen ground retreated northward, and the active layer thickness became larger. There was overall little change in the total area of global drylands. The summer East Asian westerly jet significantly weakened and shifted northward, the ENSO weakened, and the associated tropical Pacific Walker circulation strengthened and shifted westward during the mid-Holocene. The above changes were mainly responses to the LGM large presence of ice sheets and lower atmospheric greenhouse gas concentrations or the mid-Holocene orbital forcing, with the ocean feedback playing a certain modulation role and the vegetation feedback effect showing a level of uncertainty. The causes of model-data mismatch deserve to be further investigated.
Key words: Last Glacial Maximum; Mid-Holocene; Climate over China; Monsoon; Modeling.
Dabang JIANG , Zhiping TIAN , Na WANG , Ran ZHANG . Progress of Last Glacial Maximum and Mid-Holocene Climate Modeling Analyses[J]. Advances in Earth Science, 2022 , 37(1) : 1 -13 . DOI: 10.11867/j.issn.1001-8166.2021.098
1 | JOUSSAUME S, TAYLOR K. Status of the Paleoclimate Modeling Intercomparison Project (PMIP)[M] // GATES W L. Proceedings of the First International AMIP Scientific Conference. Geneva: World Meteorological Organization, WCRP-92, WMO/TD-732, 1995. |
2 | MASSON-DELMOTTE V, SCHULZ M, ABE-OUCHI A, et al. Information from paleoclimate archives[M] // STOCKER T F, QIN D, PLATTNER G K, et al. Climate change2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013: 383-464. |
3 | BARTLEIN P J, HARRISON S P, BREWER S, et al. Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis[J]. Climate Dynamics, 2011, 37(3/4): 775-802. |
4 | BRACONNOT P, OTTO-BLIESNER B, HARRISON S, et al. Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum-part 1: experiments and large-scale features[J]. Climate of the Past, 2007, 3(2): 261-277. |
5 | TAYLOR K E, STOUFFER R J, MEEHL G A. An overview of CMIP5 and the experiment design[J]. Bulletin of the American Meteorological Society, 2012, 93(4): 485-498. |
6 | KAGEYAMA M, BRACONNOT P, HARRISON S P, et al. The PMIP4 contribution to CMIP6-Part 1: overview and over-arching analysis plan[J]. Geoscientific Model Development, 2018, 11(3): 1 033-1 057. |
7 | JOUSSAUME S, TAYLOR K E, BRACONNOT P, et al. Monsoon changes for 6 000 years ago: results of 18 simulations from the Paleoclimate Modeling Intercomparison Project (PMIP)[J]. Geophysical Research Letters, 1999, 26(7): 859-862. |
8 | BRACONNOT P, JOUSSAUME S, de NOBLET N, et al. Mid-Holocene and Last Glacial Maximum African monsoon changes as simulated within the Paleoclimate Modelling Intercomparison Project[J]. Global and Planetary Change, 2000, 26(1/3): 51-66. |
9 | ZHENG W, BRACONNOT P, GUILYARDI E, et al. ENSO at 6ka and 21ka from ocean-atmosphere coupled model simulations[J]. Climate Dynamics, 2008, 30(7/8): 745-762. |
10 | ZHANG Xiaojian, JIN Liya, YU Fei, et al. Mid-Holocene NAO: based on PMIP2 model simulations[J]. Acta Oceanologica Sinica, 2010, 32(4): 41-50. |
10 | 张肖剑, 靳立亚, 俞飞, 等. 基于PMIP2气候模式模拟的中全新世北大西洋涛动[J]. 海洋学报, 2010, 32(4): 41-50. |
11 | ZHOU B, ZHAO P. Modeling variations of summer upper tropospheric temperature and associated climate over the Asian Pacific region during the mid-Holocene[J]. Journal of Geophysical Research, 2010, 115: D20109. |
12 | DINEZIO P N, CLEMENT A, VECCHI G A, et al. The response of the Walker circulation to Last Glacial Maximum forcing: implications for detection in proxies[J]. Paleoceanography, 2011, 26: PA3217. |
13 | ZHAO Y, HARRISON S P. Mid-Holocene monsoons: a multi-model analysis of the inter-hemispheric differences in the responses to orbital forcing and ocean feedbacks[J]. Climate Dynamics, 2012, 39(6): 1 457-1 487. |
14 | ZHOU B, ZHAO P. Simulating changes of spring Asian-Pacific oscillation and associated atmospheric circulation in the mid-Holocene[J]. International Journal of Climatology, 2013, 33(3): 529-538. |
15 | AN S I, CHOI J. Mid-Holocene tropical Pacific climate state, annual cycle, and ENSO in PMIP2 and PMIP3[J]. Climate Dynamics, 2014, 43(3/4): 957-970. |
16 | BRIERLEY C M, ZHAO A, HARRISON S P, et al. Large-scale features and evaluation of the PMIP4-CMIP6 mid-Holocene simulations[J]. Climate of the Past, 2020, 16(5): 1 847-1 872. |
17 | BROWN J R, BRIERLEY C M, AN S I, et al. Comparison of past and future simulations of ENSO in CMIP5/PMIP3 and CMIP6/PMIP4 models[J]. Climate of the Past, 2020, 16(5): 1 777-1 805. |
18 | G?INU??-BOGDAN A, SWINGEDOUW D, YIOU P, et al. AMOC and summer sea ice as key drivers of the spread in mid-Holocene winter temperature patterns over Europe in PMIP3 models[J]. Global and Planetary Change, 2020, 184: 103055. |
19 | WANG Huijun, ZENG Qingcun. Numerical simulation of the climate9 000 years ago[J]. Chinese Journal of Atmospheric Sciences, 1992, 16(3): 313-321. |
19 | 王会军, 曾庆存. 9 000年前古气候的数值模拟研究[J]. 大气科学, 1992, 16(3): 313-321. |
20 | WANG Huijun, ZENG Qingcun. The numerical simulation of the ice age climate[J]. Acta Meteorologica Sinica, 1992, 50(3): 279-289. |
20 | 王会军, 曾庆存. 冰期气候的数值模拟[J]. 气象学报, 1992, 50(3): 279-289. |
21 | QIAN Yun, QIAN Yongfu, ZHANG Yaocun. Study on scenarios and mechanism of the regional climate change of East Asia in the Last Ice-age[J]. Chinese Journal of Atmospheric Sciences, 1998, 22(3): 283-293. |
21 | 钱云, 钱永甫, 张耀存. 末次冰期东亚区域气候变化的情景和机制研究[J]. 大气科学, 1998, 22(3): 282-293. |
22 | WANG H J. Role of vegetation and soil in the Holocene megathermal climate over China[J]. Journal of Geophysical Research, 1999, 104(D8): 9 361-9 367. |
23 | CHEN Xing, YU Ge, LIU Jian. A preliminary simulation of climate at 21 ka BP in China[J]. Journal of Lake Sciences, 2000, 12(2): 154-164. |
23 | 陈星, 于革, 刘健. 中国21 ka BP气候模拟的初步试验[J]. 湖泊科学, 2000, 12(2): 154-164. |
24 | WANG H J. The seasonal climate and low frequency oscillation in the simulated mid-Holocene megathermal climate[J]. Advances in Atmospheric Sciences, 2000, 17(3): 445-457. |
25 | CHEN Xing, YU Ge, LIU Jian. Mid-Holocene climate simulation and discussion on the mechanism of temperature changes in eastern Asia[J]. Science in China Series D:Earth Science, 2002, 32(4): 335-345. |
25 | 陈星, 于革, 刘健. 东亚中全新世的气候模拟及其温度变化机制探讨[J]. 中国科学D辑:地球科学, 2002, 32(4): 335-345. |
26 | JIANG D, WANG H J, DRANGE H, et al. Last glacial maximum over China: sensitivities of climate to paleovegetation and Tibetan ice sheet[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D3): 4102. |
27 | ZHENG Y, YU G, WANG S, et al. Simulation of paleoclimate over East Asia at 6 ka BP and 21 ka BP by a regional climate model[J]. Climate Dynamics, 2004, 23(5): 513-529. |
28 | JU L, WANG H J, JIANG D. Simulation of the Last Glacial Maximum climate over East Asia with a regional climate model nested in a general circulation model[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 248: 376-390. |
29 | LIU Yu, HE Jinhai, LI Weiliang, et al. MM5 simulations of the China regional climate of the LGM I: influences of CO2 and Earth orbit changes[J]. Acta Meteorologica Sinica, 2007, 65(2): 139-150. |
29 | 刘煜, 何金海, 李维亮, 等. MM5对末次盛冰期中国气候的模拟研究Ⅰ: CO2和地球轨道参数的影响[J]. 气象学报, 2007, 65(2): 139-150. |
30 | LIU Yu, HE Jinhai, LI Weiliang, et al. MM5 simulations of the China regional climate of the LGM II: influences of changes of land area, vegetation, and large-scale circulation background[J]. Acta Meteorologica Sinica, 2007, 65(2): 151-159. |
30 | 刘煜, 何金海, 李维亮, 等. MM5对末次盛冰期中国气候的模拟研究Ⅱ: 海陆分布、植被和大尺度环流背景变化的影响[J]. 气象学报, 2007, 65(2): 151-159. |
31 | JIANG D. Vegetation and soil feedbacks at the Last Glacial Maximum[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 268(1/2): 39-46. |
32 | ZHOU Botao, ZHAO Ping. Inverse correlation between ancient winter and summer monsoons in East Asia?[J]. Chinese Science Bulletin, 2009, 54(20): 3 760-3 767. |
32 | 周波涛, 赵平. 古东亚冬季风和夏季风反位相变化吗?[J]. 科学通报, 2009, 54(20): 3 136-3 143. |
33 | JIANG D, LANG X. Last Glacial Maximum East Asian monsoon: results of PMIP simulations[J]. Journal of Climate, 2010, 23(18): 5 030-5 038. |
34 | LIU Y, HE J, LI W, et al. MM5 simulations of the China regional climate during the mid-Holocene[J]. Acta Meteorologica Sinica, 2010, 24(4): 468-483. |
35 | JIANG D, LANG X, TIAN Z, et al. Last Glacial Maximum climate over China from PMIP simulations[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 309(3/4): 347-357. |
36 | WANG Zhiyuan, JIN Liya, YU Fei, et al. The impact of vegetation feedback on mid-Holocene climate in central and East Asia: results of 6 coupled simulations from the Paleoclimate Modeling Intercomparison Project (PMIP)[J]. Quaternary Sciences, 2011, 31(1): 36-47. |
36 | 王志远, 靳立亚, 俞飞, 等. 中东亚中全新世气候与植被反馈作用: PMIP2多模式结果分析[J]. 第四纪研究, 2011, 31(1): 36-47. |
37 | JIANG D, LANG X, TIAN Z, et al. Considerable model-data mismatch in temperature over China during the mid-Holocene: results of PMIP simulations[J]. Journal of Climate, 2012, 25(12): 4 135-4 153. |
38 | JIANG D, LANG X, TIAN Z, et al. Mid-Holocene East Asian summer monsoon strengthening: insights from Paleoclimate Modeling Intercomparison Project (PMIP) simulations[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 369: 422-429. |
39 | JIANG D, TIAN Z, LANG X. Mid-Holocene net precipitation changes over China: model-data comparison[J]. Quaternary Science Reviews, 2013, 82: 104-120. |
40 | TIAN Z, JIANG D. Mid-Holocene ocean and vegetation feedbacks over East Asia[J]. Climate of the Past, 2013, 9(5): 2 153-2 171. |
41 | JIN L, SCHNEIDER B, PARK W, et al. The spatial-temporal patterns of Asian summer monsoon precipitation in response to Holocene insolation change: a model-data synthesis[J]. Quaternary Science Reviews, 2014, 85: 47-62. |
42 | JIANG D, YU G, ZHAO P, et al. Paleoclimate modeling in China: a review[J]. Advances in Atmospheric Sciences, 2015, 32(2): 250-275. |
43 | BERGER A L. Long-term variations of daily insolation and Quaternary climatic changes[J]. Journal of the Atmospheric Sciences, 1978, 35(12): 2 362-2 367. |
44 | CLIMAP Project Members. Seasonal reconstructions of the Earth's surface at the Last Glacial Maximum[M]. Colorado: Geological Society of America, Map and Chart Series, MC-36, 1981. |
45 | TIAN Z, JIANG D. Revisiting Last Glacial Maximum climate over China and East Asian monsoon using PMIP3 simulations[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 453: 115-126. |
46 | JIANG Dabang, TIAN Zhiping. Last Glacial Maximum and mid-Holocene water vapor transport over East Asia: a modeling study[J]. Quaternary Sciences, 2017, 37(5): 999-1 008. |
46 | 姜大膀, 田芝平. 末次冰盛期和全新世中期东亚地区水汽输送的模拟研究[J]. 第四纪研究, 2017, 37(5): 999-1 008. |
47 | JIANG D, TIAN Z, LANG X, et al. The concept of global monsoon applied to the Last Glacial Maximum: a multi-model analysis[J]. Quaternary Science Reviews, 2015, 126: 126-139. |
48 | BOOS W R. Thermodynamic scaling of the hydrological cycle of the Last Glacial Maximum[J]. Journal of Climate, 2012, 25(3): 992-1 006. |
49 | ALLEN R G, PEREIRA L S, RAES D, et al. Crop evapotranspiration: guidelines for computing crop water requirements[M]. Rome: FAO Irrigation and Drainage Paper 56, Food and Agricultural Organization of the United Nations, 1998. |
50 | MIDDLETON N J, THOMAS D S G. World Atlas of desertification[M]. 2nd ed. London: Arnold-a member of the Hodder Headline Group, 1997. |
51 | LIU S, JIANG D, LANG X. A multi-model analysis of moisture changes during the Last Glacial Maximum[J]. Quaternary Science Reviews, 2018, 191: 363-377. |
52 | JIANG D, SUI Y, LANG X, et al. Last glacial maximum and mid-Holocene thermal growing season simulations[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(20): 11 466-11 478. |
53 | LIU Y, JIANG D. Last Glacial Maximum permafrost in China from CMIP5 simulations[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 447: 12-21. |
54 | JIANG Dabang, LIU Yeyi, LANG Xianmei. A multi-model analysis of glacier equilibrium line altitudes in western China during the Last Glacial Maximum[J]. Science China: Earth Sciences, 2019, 62(8): 1 241-1 255. |
54 | 姜大膀, 刘叶一, 郎咸梅. 末次冰盛期中国西部冰川物质平衡线高度的模拟研究[J]. 中国科学: 地球科学, 2019, 49(8): 1 231-1 245. |
55 | HE F. Simulating transient climate evolution of the Last Deglaciation with CCSM3[D]. Wisconsin: University of Wisconsin-Madison, 2011. |
56 | LIU Shanshan, JIANG Dabang. A transient simulation analysis of terrestrial moisture changes over China during the past 21 000 years[J]. Quaternary Sciences, 2020, 40(6): 1 550- 1 561. |
56 | 刘珊珊, 姜大膀. 过去21 ka中国干湿变化的瞬变模拟分析[J]. 第四纪研究, 2020, 40(6): 1 550-1 561. |
57 | LIU S, LANG X, JIANG D. Time-varying responses of dryland aridity to external forcings over the last 21 ka[J]. Quaternary Science Reviews, 2021, 262: 106989. |
58 | YU G, HARRISON S P, XUE B. Lake status records from China: data base documentation[M]. Jona:Max-Planck-Institute for Biogeochemistry, 2001. |
59 | WU B, LANG X, JIANG D. K?ppen climate zones in China over the last 21,000 years[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(6): e2020JD034310. |
60 | LI Q, WU H, YU Y, et al. Quantifying regional vegetation changes in China during three contrasting temperature intervals since the Last Glacial Maximum[J]. Journal of Asian Earth Sciences, 2019, 174: 23-36. |
61 | WANG B, LIU J, KIM H J, et al. Recent change of the global monsoon precipitation (1979-2008)[J]. Climate Dynamics, 2012, 39(5): 1 123-1 135. |
62 | TIAN Zhiping, JIANG Dabang. Mid-Holocene and Last Glacial Maximum changes in monsoon area and precipitation over China[J]. Chinese Science Bulletin, 2015, 60(4): 400-410. |
62 | 田芝平, 姜大膀. 全新世中期和末次冰盛期中国季风区面积和季风降水变化[J]. 科学通报, 2015, 60(4): 400-410. |
63 | SHI Yafeng, ZHENG Benxing, YAO Tandong. Glaciers and environments during the Last Glacial Maximum (LGM) on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 1997, 19(2): 97-113. |
63 | 施雅风, 郑本兴, 姚檀栋. 青藏高原末次冰期最盛时的冰川与环境[J]. 冰川冻土, 1997, 19(2): 97-113. |
64 | QIN B, YU G. Implications of lake level variations at 6 ka and 18 ka in mainland Asia[J]. Global and Planetary Change, 1998, 18: 59-72. |
65 | YU G, CHEN X, NI J, et al. Palaeovegetation of China: a pollen data-based synthesis for the mid-Holocene and Last Glacial Maximum[J]. Journal of Biogeography, 2000, 27(3): 635-664. |
66 | YU G, XUE B, LIU J, et al. LGM lake records from China and an analysis of climate dynamics using a modelling approach[J]. Global and Planetary Change, 2003, 38(3): 223-256. |
67 | TANG Lingyu, SHEN Caiming, LIAO Ganbiao, et al. Climatic changes in the southeastern Qinghai-Tibetan Plateau during the Last Glacial Maximum—pollen records from southeastern Tibet[J]. Science in China Series D: Earth Science, 2004, 34(5): 436-442. |
67 | 唐领余, 沈才明, 廖淦标, 等. 末次盛冰期以来西藏东南部的气候变化——西藏东南部的花粉记录[J]. 中国科学D辑:地球科学, 2004, 34(5): 436-442. |
68 | WAN Hewen, TANG Lingyu, ZHANG Hucai, et al. Pollen record reflects climate changes in eastern Qaidam Basin during 36~18 ka B.P.[J]. Quaternary Sciences, 2008, 28(1): 112-121. |
68 | 万和文, 唐领余, 张虎才, 等. 柴达木盆地东部36~ 18 ka B.P.期间的孢粉记录及其气候环境[J]. 第四纪研究, 2008, 28(1): 112-121. |
69 | NI J, YU G, HARRISON S P, et al. Palaeovegetation in China during the late Quaternary: biome reconstructions based on a global scheme of plant functional types[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 289(1/4): 44-61. |
70 | LI Y, MORRILL C. Lake levels in Asia at the Last Glacial Maximum as indicators of hydrologic sensitivity to greenhouse gas concentrations[J]. Quaternary Science Reviews, 2013, 60: 1-12. |
71 | WU B, LANG X, JIANG D. Migration of the northern boundary of the East Asian summer monsoon over the last 21,000 years[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(17): e2021JD035078. |
72 | YAN M, WANG B, LIU J. Global monsoon change during the Last Glacial Maximum: a multi-model study[J]. Climate Dynamics, 2016, 47(1/2): 359-374. |
73 | CAO J, WANG B, MA L. Attribution of global monsoon response to the Last Glacial Maximum forcings[J]. Journal of Climate, 2019, 32(19): 6 589-6 605. |
74 | WANG N, JIANG D, LANG X. Northern westerlies during the Last Glacial Maximum: results from CMIP5 simulations[J]. Journal of Climate, 2018, 31(3): 1 135-1 153. |
75 | HARRISON S P, YU G, TARASOV P E. Late Quaternary lake-level record from Northern Eurasia[J]. Quaternary Research, 1996, 45(2): 138-159. |
76 | THOMPSON R S, ANDERSON K H. Biomes of western North America at 18,000, 6000 and 0 14C yr BP reconstructed from pollen and packrat midden data[J]. Journal of Biogeography, 2000, 27(3): 555-584. |
77 | COHMAP M. Climatic changes of the last 18,000 years: observations and model simulations[J]. Science, 1988, 241 (4 869): 1 043-1 052. |
78 | OSTER J L, IBARRA D E, WINNICK M J, et al. Steering of westerly storms over western North America at the Last Glacial Maximum[J]. Nature Geoscience, 2015, 8(3): 201-205. |
79 | COSTAS S, NAUGHTON F, GOBLE R, et al. Windiness spells in SW Europe since the Last Glacial Maximum[J]. Earth and Planetary Science Letters, 2016, 436: 82-92. |
80 | WANG N, JIANG D, LANG X. Metric-dependent tendency of tropical belt width changes during the Last Glacial Maximum[J]. Journal of Climate, 2018, 31(20): 8 527-8 540. |
81 | LIU S, JIANG D, LANG X. The weakening and eastward movement of ENSO impacts during the Last Glacial Maximum[J]. Journal of Climate, 2020, 33(13): 5 507-5 526. |
82 | TIAN Z, JIANG D. Weakening and eastward shift of the tropical Pacific Walker circulation during the Last Glacial Maximum[J]. Boreas, 2020, 49: 200-210. |
83 | KITOH A, MURAKAMI S. Tropical Pacific climate at the mid-Holocene and the Last Glacial Maximum simulated by a coupled ocean-atmosphere general circulation model[J]. Paleoceanography, 2002, 17(3): 1047. |
84 | LIU Y, WU Y, LIN Z, et al. Simulated impact of the Tibetan glacier expansion on the Eurasian climate and glacial surface mass balance during the Last Glacial Maximum[J]. Journal of Climate, 2020, 33(15): 6 491-6 509. |
85 | SHEN J, XIE X, CHENG X, et al. Effects of dust-in-snow forcing over the Tibetan Plateau on the East Asian dust cycle during the Last Glacial Maximum[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 542: 109442. |
86 | TIAN Z,JIANG D. Revisiting mid-Holocene temperature over China using PMIP3 simulations[J]. Atmospheric and Oceanic Science Letters,2015,8(6):358-364. |
87 | GUIOT J, WU H, JIANG W, et al. East Asian Monsoon and paleoclimatic data analysis: a vegetation point of view[J]. Climate of the Past, 2008, 4(1): 137-145. |
88 | WU Haibin, LI Qin, YU Yanyan, et al. Quantitative climate reconstruction in China during the mid-Holocene[J]. Quaternary Sciences, 2017, 37(5): 982-998. |
88 | 吴海斌, 李琴, 于严严, 等. 全新世中期中国气候格局定量重建[J]. 第四纪研究, 2017, 37(5): 982-998. |
89 | WANG N, JIANG D, LANG X. Mechanisms for spatially inhomogeneous changes in East Asian summer monsoon precipitation during the mid-Holocene[J]. Journal of Climate, 2020, 33(8): 2 945-2 965. |
90 | ZHANG R, JIANG D, CHENG Z. Holocene precipitation changes in northeastern China from CCSM3 transient climate simulations[J]. The Holocene, 2021, 31(1): 66-72. |
91 | LIU S, JIANG D, LANG X. Mid-Holocene drylands: a multi-model analysis using Paleoclimate Modelling Intercomparison Project Phase III (PMIP3) simulations[J]. The Holocene, 2019, 29(9): 1 425-1 438. |
92 | LIU Y, JIANG D. Mid-Holocene frozen ground in China from PMIP3 simulations[J]. Boreas, 2018, 47: 498-509. |
93 | LIU Y, JIANG D. Mid-Holocene permafrost: results from CMIP5 simulations[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(1): 221-240. |
94 | SHI Y,KONG Z,Wang S,et al. Mid-Holocene climates and environments in China[J]. Global and Planetary Change,1993, 7 (1/3):219-233. |
95 | TIAN Z, JIANG D. Strengthening of the East Asian winter monsoon during the mid-Holocene[J]. The Holocene, 2018, 28(9): 1 443-1 451. |
96 | JIANG D,TIAN Z,LANG X. Mid-Holocene global monsoonarea and precipitation from PMIP simulations[J]. Climate Dynamics,2015,44(9/10):2 493-2 512. |
97 | WANG X, AULER A S, EDWARDS R L, et al. Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies[J]. Nature, 2004, 432(7 018): 740-743. |
98 | CHENG H, SINHA A, WANG X, et al. The global paleomonsoon as seen through speleothem records from Asia and the Americas[J]. Climate Dynamics, 2012, 39(5): 1 045-1 062. |
99 | TIAN Z, JIANG D. Mid-Holocene ocean feedback on global monsoon area and precipitation[J]. Atmospheric and Oceanic Science Letters, 2015, 8(1): 29-32. |
100 | WANG N,JIANG D,LANG X. Seasonality in the response of East Asian westerly jet to the mid-Holocene forcing[J]. Journal of Geophysical Research:Atmospheres, 2020, 125(19):e2020JD033003. |
101 | HERZSCHUH U, CAO X, LAEPPLE T, et al. Position and orientation of the westerly jet determined Holocene rainfall patterns in China[J]. Nature Communications, 2019, 10(1): 2 376-2 378. |
102 | XU B, WANG L, GU Z, et al. Decoupling of climatic drying and Asian dust export during the Holocene[J]. Journal of Geophysical Research: Atmospheres, 2018, 123: 915-928. |
103 | ROE G. On the interpretation of Chinese Loess as a paleoclimate indicator[J]. Quaternary Research, 2009, 71(2): 150-161. |
104 | ZHU L, Lü X, WANG J, et al. Climate change on the Tibetan Plateau in response to shifting atmospheric circulation since the LGM[J]. Scientific Reports, 2015, 5: 13318. |
105 | TIAN Z, LI T, JIANG D, et al. Causes of ENSO weakening during the mid-Holocene[J]. Journal of Climate, 2017, 30(17): 7 049-7 070. |
106 | TIAN Z, LI T, JIANG D. Strengthening and westward shift of the tropical Pacific Walker circulation during the mid-Holocene: PMIP simulation results[J]. Journal of Climate, 2018, 31(6): 2 283-2 298. |
107 | LIU Z, ZHU J, ROSENTHAL Y, et al. The Holocene temperature conundrum[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111: E3501-E3505. |
/
〈 |
|
〉 |