The Influencing Factors of Critical Transition in Shallow Lakes Revealed by Model

  • Wenwen DENG ,
  • Rong WANG ,
  • Zhengwen LIU ,
  • Wenxiu ZHENG ,
  • Chenxue ZHANG
Expand
  • 1.Department of Ecology and Institute of Hydrobiology,Jinan University,Guangzhou 510632,China
    2.Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences,Nanjing 210008,China
    3.Sino-Danish Center for Education and Research,Beijing 100190,China
    4.University of Chinese Academy of Sciences,Beijing 100049,China
    5.School of Geography and Tourism,Anhui Normal University,Wuhu Anhui 241003,China
DENG Wenwen (1995-), female, Huizhou City, Guangdong Province, Master student. Research areas include eutrophication process. E-mail: dww_running@163.com
WANG Rong (1982-), male, Maanshan City, Anhui Province, Associate professor. Research areas include ecosystem critical transition. E-mail: rwang@niglas.ac.cn

Received date: 2020-11-28

  Revised date: 2020-12-29

  Online published: 2021-03-19

Supported by

the Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences "One Three Five" Independent Deployment Project "The impact and mechanism of climate change on the resilience of typical shallow lake ecosystem"(NIGLAS2017GH01);The Youth Innovation Promotion Association, CAS(Award 2017364)

Abstract

Eutrophication can cause critical transitions in shallow lakes and severely impair ecosystem services. Phosphorus is one of important environmental factors that cause critical transitions in lake ecosystems. Exploring the mechanisms of phosphorus dynamics in lakes is a key to lake management. This paper simulated the phosphorus concentration variations in lakes using a phosphorus kinetic model, and discussed the specific impacts of main model parameters on simulation output. Based on literature reviews, we discussed in detail the effects of different types of climate change and human activities on the critical transition time, hysteresis length, and restoration rate of lakes. The paper indicated that changes in factors such as climate change induced temperature warming, weakened light intensity, increased wind/waves and human activities caused biological disturbances and water level fluctuations would not change the threshold of transition or the time of transition, but would significantly delay the recovery time, decrease the recovery threshold and extend the lag period and the steady state. For the management of lake ecosystems, we suggested that it be important to consider the different impacts from different external perturbations on the process of critical transitions to avoid harmful tipping point.

Cite this article

Wenwen DENG , Rong WANG , Zhengwen LIU , Wenxiu ZHENG , Chenxue ZHANG . The Influencing Factors of Critical Transition in Shallow Lakes Revealed by Model[J]. Advances in Earth Science, 2021 , 36(1) : 83 -94 . DOI: 10.11867/j.issn.1001-8166.2021.005

References

1 SCHEFFER M, CARPENTER S R, LENTON T M, et al. Anticipating critical transitions[J]. Science, 2012,338(6 105): 344-348.
2 QIU Guoyu, ZHANG Xiaonan. China's urbanization and its ecological environment challenges in the 21st century[J]. Advances in Earth Science,2019,34(6):640-649.
2 邱国玉,张晓楠. 21世纪中国的城市化特点及其生态环境挑战[J]. 地球科学进展,2019,34(6):640-649.
3 ZHANG Hucai, CHANG Fengqin, DUAN Lizeng, et al. Water quality characteristics and variations of Lake Dian[J]. Advances in Earth Science,2017,32(6):651-659.
3 张虎才,常凤琴,段立曾,等. 滇池水质特征及变化[J]. 地球科学进展,2017,32(6):651-659.
4 QIN B Q, ZHU G W, GAO G, et al. A drinking water crisis in Lake Taihu, China: Linkage to climatic variability and lake management[J]. Environmental Management,2010,45(1):105-112.
5 HAVENS K E, FUKUSHIMA T, XIE P, et al. Nutrient dynamics and the eutrophication of shallow lakes Kasumigaura (Japan), Donghu (PR China), and Okeechobee(USA)[J]. Environmental Pollution,2001,111(2):263-272.
6 SCHINDER D W. Recent advances in the understanding and management of eutrophication[J]. Limnology and Oceanography,2006,51(1, part 2): 356-363.
7 XUE Qingju, TANG Xiangming, GONG Zhijun, et al. Succession of macrozoobenthic communities and implications for ecological restoration in an urban Lake Wuli,Jiangsu Province[J]. Journal of Lake Sciences, 2020,32(3):762-771.
7 薛庆举,汤祥明,龚志军,等.典型城市湖泊五里湖底栖动物群落演变特征及其生态修复应用建议[J]. 湖泊科学,2020,32(3):762-771.
8 CARPENTER S R. Phosphorus control is critical to mitigating eutrophication[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(32): 11 039-11 040.
9 KALFF J. Limnology: Inland water ecosystems[M]. GU Binhe, LIU Zhengwen,LI Kuanyi, et al, translanted. Beijing: Higher Education Press, 2011: 122-126.
9 Kalff J.湖沼学:内陆水生态系统[M]. 古滨河,刘正文,李宽意,等,译.北京:高等教育出版社,2011:122-126.
10 ZHAI Shuhua, HAN Tao, CHEN Fang. Self-purification capacity of nitrogen and phosphorus of Lake Taihu on the basis of mass balance[J]. Journal of Lake Sciences, 2014,26(2):185-190.
10 翟淑华,韩涛,陈方.基于质量平衡的太湖氮、磷自净能力计算[J]. 湖泊科学,2014,26(2):185-190.
11 ZHU Guangwei, QIN Boqiang, GAO Guang. Direct evidence of the explosive release of endogenous phosphorus in large shallow lakes caused by wind wave disturbance[J]. Scientific Bulletin, 2005, 50(1): 66-71.
11 朱广伟,秦伯强,高光.风浪扰动引起大型浅水湖泊内源磷暴发性释放的直接证据[J]. 科学通报,2005, 50(1): 66-71.
12 WEBER M J, BROWN M L. Effects of common carp on aquatic ecosystems 80 years after "Carp as a Dominant": Ecological insights for fisheries management[J]. Reviews in Fisheries Science, 2009, 17(4): 524-537.
13 ZHANG Lei, GU Xiaozhi, WANG Zhaode, et al. The influence of Tubificid worms bioturbation on the exchange of phosphorus across sediment-water interface in lakes[J]. Journal of Lake Sciences, 2010,22(5):666-674.
13 张雷,古小治,王兆德,等.水丝蚓(Tubificid worms)扰动对磷在湖泊沉积物—水界面迁移的影响[J]. 湖泊科学, 2010,22(5):666-674.
14 WANG Hua, CHEN Huaxin, XU Zhaoan, et al. Variation trend of total phosphorus and its controlling factors in Lake Taihu, 2010-2017[J]. Journal of Lake Sciences, 2019, 31(4):919-929.
14 王华, 陈华鑫, 徐兆安, 等. 2010—2017年太湖总磷浓度变化趋势分析及成因探讨[J]. 湖泊科学, 2019,31(4):919-929.
15 LIU Zhengwen, ZHANG Xiufeng, CHEN Feizhou, et al. The responses of the benthic-pelagic coupling to eutrophication and regime shifts in shallow lakes: Implication for lake restoration[J]. Journal of Lake Sciences, 2020,32(1):1-10.
15 刘正文,张修峰,陈非洲,等.浅水湖泊底栖—敞水生境耦合对富营养化的响应与稳态转换机理:对湖泊修复的启示[J]. 湖泊科学,2020,32(1):1-10.
16 SCHEFFER M. Ecology of shallow lakes[M]. Netherlands:Springer, 1998.
17 KALFF J, KNOECHEL R. Phytoplankton and their dynamics in oligotrophic and eutrophic lakes[J]. Annual Review of Ecology and Systematics,1978,9(1):475-495.
18 DIOVISALVI N,BOHN V Y,PICCOLO M C, et al. Shallow lakes from the central plains of argentina: An overview and worldwide comparative analysis of their basic limnological features[J]. Hydrobiologia, 2015,752(1):419-432.
19 JEPPESEN E, SONDERGAARD M, KRONVANG B, et al. Lake and catchment management in Denmark[J]. Hydrobiologia, 1999, 395/396: 419-432.
20 SCHEFFER M, BASCOMPTE J, BROCK W A, et al. Early-warning signals for critical transitions[J]. Nature, 2009, 461(7 260): 53-59.
21 SCHEFFER M, CARPENTER S R. Catastrophic regime shifts in ecosystems: Linking theory to observation[J]. Trends in Ecology & Evolution, 2003, 18(12): 648-656.
22 WANG R, DEARING J A, LANGDON P G, et al. Flickering gives early warning signals of a critical transition to a eutrophic lake state[J]. Nature, 2012, 492(7 429): 419-422.
23 XU M, WANG R, DONG X H, et al. A palaeolimnological perspective to understand regime-shift dynamics in two Yangtze-basin lakes[J]. Biology Letters,2019, 15(11). DOI:10.1098/rsbl.2019.0447.
24 DAI L, VORSELEN D, KOROLEV K S, et al. Generic indicators for loss of resilience before a tipping point leading to population collapse[J]. Science, 2012,336(6 085):1 175-1 177.
25 VERAART A J, FAASSEN E J, DAKOS V, et al. Recovery rates reflect distance to a tipping point in a living system[J]. Nature,2012,481(7 381): 357-359.
26 ANDERSEN T K, NIELSEN A, JEPPESEN E, et al. Predicting ecosystem state changes in shallow lakes using an aquatic ecosystem model: Lake Hinge, Denmark, an example[J]. Ecological Applications,2020,30(7):e02160.
27 JAMES R T, MARTIN J, WOOL T, et al. A sediment resuspension and water quality model of lake Okeechobee[J]. Journal of the American Water Resources Association,1997,33(3): 661-678.
28 REN Xiaoqian, SUN Shufen, CHEN Wen, et al. A review of researches on the lake numerical modeling[J]. Advances in Earth Science,2013,28(3): 347-356.
28 任晓倩,孙菽芬,陈文,等. 湖泊数值模拟研究现状综述[J]. 地球科学进展, 2013,28(3):347-356.
29 CARPENTER S R. Regime shifts in lake ecosystems: Pattern and variation[M]. Oldendorf/Luhe, Germany: International Ecology Institute,2003.
30 CARSTENSEN J, TELFORD R J, BIRKS H J B. Diatom flickering prior to regime shift[J]. Nature, 2013,498(7 455): E11-E12.
31 ZHAO L, WANG M G, LIANG Z Y, et al. Identification of regime shifts and their potential drivers in the shallow eutrophic Lake Yilong, Southwest China[J]. Sustainability,2020,12(9). DOI:10.3390/su12093704.
32 ZHAO Yanjie, WANG Rong, YANG Xiangdong, et al. Regime shifts revealed by paleoecological records in Lake Taibai's ecosystem in the middle and lower Yangtze River Basin during the last century[J]. Journal of Lake Sciences, 2016,28(6):1 381-1 390.
32 赵雁捷,王荣,羊向东,等. 古生态记录揭示的长江中下游太白湖生态系统稳态转换过程[J]. 湖泊科学,2016,28(6):1 381-1 390.
33 ZHANG Chuming, NI Zhenyu, TANG Hongqu. Tracking ecosystem regime shifts in Lake Xijiu(Taihu Basin) based on chironomid sub-fossil assemblages[J]. Journal of Lake Sciences, 2020,32(2):587-595.
33 张楚明,倪振宇,唐红渠. 太湖流域西氿摇蚊亚化石群落对湖泊生态系统稳态转换的响应[J]. 湖泊科学,2020,32(2):587-595.
34 HU Yu, CHEN Jianhui, WANG Haipeng, et al. Recent progress and perspectives in paleoenvironmental and paleoclimatic research based on chironomidae (Diptera)[J]. Advances in Earth Science,2016,31(8): 870-884.
34 胡玉,陈建徽,王海鹏,等. 基于摇蚊的古环境和古气候国内外研究进展与展望[J]. 地球科学进展, 2016,31(8):870-884.
35 ZHANG Chenxue, XU Min, DONG Yifan, et al. Sedimentary diatom records reveal the succession of ecosystem in Lake Xihu,Dali over the past 50 years[J]. Environmental Science, 2020,41(10):4 572-4 580.
35 张晨雪,徐敏,董一凡, 等. 硅藻群落指示的近50年来大理西湖湖泊生态系统演变规律[J]. 环境科学,2020,41(10):4 572-4 580.
36 CHEN Jie, XU Hai, ZHAN Xu, et al. Mechanisms and research methods of phosphorus migration and transformation across sediment-water interface[J]. Journal of Lake Sciences, 2019,31(4):907-918.
36 陈洁,许海,詹旭,等. 湖泊沉积物—水界面磷的迁移转化机制与定量研究方法[J]. 湖泊科学,2019,31(4):907-918.
37 ZOU Rui, WU Zhen, ZHAO Lei, et al. Nutrient cycling flux of Lake Dianchi: A three-dimensional water quality modelling approach[J]. Journal of Lake Sciences, 2017,29(4):819-826.
37 邹锐, 吴桢,赵磊,等. 湖泊营养盐通量平衡的三维数值模拟[J]. 湖泊科学,2017,29(4):819-826.
38 CARPENTER S R, LUDWIG D, BROCK W A. Management of eutrophication for lakes subject to potentially irreversible change[J]. Ecological Applications,1999,9(3):751-771.
39 ZOU R, WU Z, ZHAO L, et al. Seasonal algal blooms support sediment release of phosphorus via positive feedback in a eutrophic lake: Insights from a nutrient flux tracking modeling[J]. Ecological Modelling,2020,416. DOI:10.1016/j.ecolmodel.2019.108881.
40 SUN T A, HILKER F M. Analyzing the mutual feedbacks between lake pollution and human behaviour in a mathematical social-ecological model[J]. Ecological Complexity,2020,43:100834.
41 ZHANG Yanliang, ZHAO Shuangyue, LI Xiaozhe. Analysis of telemedicine promotion strategy based on Vensim simulation [J]. Chinese Health Service Management, 2020,37(3):161-165,179.
41 张炎亮,赵双月,李小哲.基于Vensim仿真的远程医疗推广策略分析[J].中国卫生事业管理,2020,37(3):161-165,179.
42 WEI Xianpeng, CHAO Lu. Development of green transportation based on Vensim simulation [J]. China Transportation Review, 2016,38(8):57-61.
42 魏贤鹏,朝鲁. 基于Vensim仿真的城市绿色交通发展问题研究[J]. 综合运输,2016,38(8):57-61.
43 SCHEFFER M, CARPENTER S R, FOLEY J A, et al. Catastrophic shifts in ecosystems[J]. Nature, 2001, 413(6 856): 591-596.
44 Xiaotian Lü, Yonglong Lü, SONG Shuai, et al. Eutrophication in cold-water lakes driven by combined effects of climate change and human activities[J]. Acta Ecologica Sinica, 2017,37(22):7 375-7 386.
44 吕笑天,吕永龙,宋帅,等.气候变化与人类活动双重驱动的冷水湖泊富营养化[J].生态学报,2017,37(22):7 375-7 386.
45 PAERL H W. Assessing and managing nutrient-enhanced eutrophication in estuarine and coastal waters: Interactive effects of human and climatic perturbations[J]. Ecological Engineering,2006,26(1): 40-54.
46 JEPPESEN E, MOSS B, BENNION H, et al. Interaction of climate change and eutrophication[M]//KERNAN M,BATTARBEE R W,MOSS B. Climate change impacts on freshwater cosystems. Chichester,UK:Blackwell Publishing Ltd,2010.
47 MOSS B, KOSTEN S, MEERHOFF M, et al. Allied attack: Climate change and eutrophication[J]. Inland Waters, 2011, 1(2): 101-105.
48 LUETTICH R A, HARLEMAN D R, SOMLYODY L, et al. Dynamic behavior of suspended sediment concentrations in a shallow lake perturbed by episodic wind events[J]. Limnology and Oceanography, 1990, 35(5):1 050-1 067.
49 QIN Boqiang, HU Weiping, GAO Guang, et al. The dynamic mechanism of sediment suspension in Taihu Lake and the conceptual model of endogenous release[J]. Chinese Science Bulletin, 2003,48(17):1 822-1 831.
49 秦伯强, 胡维平, 高光, 等. 太湖沉积物悬浮的动力机制及内源释放的概念性模式[J]. 科学通报, 2003,48(17):1 822-1 831.
50 WU Y, WEN Y, ZHOU J, et al. Phosphorus release from lake sediments: Effects of pH, temperature and dissolved oxygen[J]. KSCE Journal of Civil Engineering, 2013,18(1): 323-329.
51 CORNELISSEN G, VAN N P C, PARSONS J R, et al. Temperature dependence of slow adsorption and desorption kinetics of organic compounds in sediments[J]. Environmental Science & Technology, 1997, 31(2): 454-460.
52 GACHTER R, MEYER J S. The role of microorganisms in mobilization and fixation of phosphorus in sediments[J]. Hydrobiologia, 1993, 253(1): 103-121.
53 SEN S, HAGGARD B E, CHAUBEY I, et al. Sediment phosphorus release at beaver reservoir, Northwest Arkansas, USA, 2002-2003: A preliminary investigation[J]. Water Air and Soil Pollution, 2007, 179(1): 67-77.
54 WANG Jiaquan, SUN Yamin, QIAN Jiazhong, et al. Simulated study on phosphorus release of Chao Lake sediment[J]. Acta Scientiae Circumstantiae, 2002, 22(6):738-742.
54 汪家权,孙亚敏,钱家忠,等. 巢湖底泥磷的释放模拟实验研究[J]. 环境科学学报, 2002, 22(6):738-742.
55 YAO Yang, JIN Xiangcan, JIANG Xia, et al. Study on effects of light on phosphorus release and phosphorus form change in lake sediments[J]. Research of Environmental Sciences, 2004(17):30-33.
55 姚扬,金相灿,姜霞,等.光照对湖泊沉积物磷释放及磷形态变化的影响研究[J]. 环境科学研究,2004(17):30-33.
56 AN Min, WEN Wei, SUN Shujuan, et al. Effects of pH and salinity on phosphorus sorption and desorption in the surface sediments of the main stream of the Haihe River[J]. Acta Scientiae Circumstantiae, 2009, 29(12): 2 616-2 622.
56 安敏,文威,孙淑娟,等. pH和盐度对海河干流表层沉积物吸附解吸磷(P)的影响[J]. 环境科学学报, 2009,29(12): 2 616-2 622.
57 JIN X, WANG S, PANG Y, et al. Phosphorus fractions and the effect of pH on the phosphorus release of the sediments from different trophic areas in Taihu Lake, China[J]. Environmental Pollution, 2006, 139(2): 288-295.
58 KRALCHEVSKA R P, PRUCEK R, KOLA?IK J, et al. Remarkable efficiency of phosphate removal: Ferrate(VI)-induced in situ sorption on core-shell nanoparticles[J]. Water Research, 2016, 103:83-91.
59 DRENNER R W, DAY D J, BASHAM S J, et al. Ecological water treatment system for removal of phosphorus and nitrogen from polluted water biological application[J]. Ecological Applications, 1997, 7(2): 381-390.
60 JENSEN M, LIU Z W, ZHANG X F, et al. The effect of biomanipulation on phosphorus exchange between sediment and water in shallow, tropical Huizhou West Lake, China[J]. Limnologica-Ecology and Management of Inland Waters, 2017, 63:65-73.
61 XIA Xinghui, WU Qiong, MOU Xinli, et al. Advances in impacts of climate change on surface water quality[J]. Advances in Water Science,2012,23(1):124-133.
61 夏星辉,吴琼,牟新利.全球气候变化对地表水环境质量影响研究进展[J]. 水科学进展, 2012, 23(1):124-133.
62 WU Zhaoshi, CAI Yongjiu, LIU Xia, et al. Temporal and spatial variability of phytoplankton in Lake Poyang: The largest freshwater lake in China[J]. Journal of Great Lakes Research, 2013, 39(3): 476-483.
63 S?NDERGAARD M, KRISTENSEN P, JEPPESEN E. Phosphorus release from resuspended sediment in the shallow and wind-exposed Lake Arres?, Denmark[J]. Hydrobiologia, 1992, 228(1): 91-99.
64 PLEW D R, KLEBERT P, ROSTEN T, et al. Changes to flow and turbulence caused by different concentrations of fish in a circular tank[J]. Journal of Hydraulic Research, 2015, 53(3): 364-383.
65 WEBER M J, BROWN M L. Effects of common carp on aquatic ecosystems 80 years after "Carp as a Dominant": Ecological insights for fisheries management[J]. Reviews in Fisheries Science, 2009, 17(4): 524-537.
66 ZHANG Lei, GU Xiaozhi, WANG Zhaode, et al. The influence of Tubificid worms bioturbation on the exchange of phosphorus across sediment-water interface in lakes[J]. Journal of Lake Sciences, 2010,22(5):666-674.
66 张雷,古小治,王兆德,等.水丝蚓(Tubificid worms)扰动对磷在湖泊沉积物—水界面迁移的影响[J]. 湖泊科学, 2010,22(5):666-674.
67 ZHANG Xiufeng, LIU Zhengwen, et al. Effects of deposit-feeding tubificid worms and filter-feeding bivalves on benthic-pelagic coupling: Implications for the restoration of eutrophic shallow lakes[J]. Water Research, 2014, 50:135-146.
68 YANG Liu,HE Hu,GUAN Baohua, et al. Mesocosm experiment reveals a strong positive effect of snail presence on macrophyte growth, resulting from control of epiphyton and nuisance filamentous algae: Implications for shallow lake management[J]. Science of the Total Environment, 2020, 705:135958.
69 LIU Yusheng, ZOU Lan, ZHENG Binghui, et al. Effects of light, temperature and algae on phosphorus release from sediment[J]. Research of Environmental Sciences, 1992,5(2):41-44.
69 刘玉生,邹兰,郑丙辉. 光照、温度和藻类对底泥释放磷的影响[J]. 环境科学研究,1992,5(2):41-44.
70 SUN Xiaohang, ZHANG Yu, ZHANG Binliang, et al. Simulation experiment study on the effect of microorganism on phosphorus release from Taihu Lake sediments[J]. Environmental Chemistry,2006,25(1):24-27.
70 孙晓杭,张昱,张斌亮,等.微生物作用对太湖沉积物磷释放影响的模拟实验研究[J]. 环境化学,2006,25(1):24-27.
71 DU Bingxue, XU Ligang, ZHANG Jie, et al. The spatial-temporal characteristics of eutrophication in Poyang Lake and its relationship with the water level[J]. Research of Environmental Sciences, 2019,32(5):795-801.
71 杜冰雪,徐力刚,张杰,等. 鄱阳湖富营养化时空变化特征及其与水位的关系[J]. 环境科学研究,2019,32(5):795-801.
72 ZHAO Dongsheng,GAO Xuan,WU Shaohong,et al. Study on the spatiotemporal evolution of temperature and precipitation in China from 1951 to 2018[J]. Advances in Earth Science,2020,35(7):750-760.
72 赵东升,高璇,吴绍洪,等. 基于自然分区的1960—2018年中国气候变化特征[J]. 地球科学进展,2020,35(7):750-760.
73 DENG Junhao, TAO Zhen, GAO Quanzhou, et al. Research advance of changing biogenic substance cycling in river systems by damming[J]. Advances in Earth Science,2018,33(12): 1 237-1 247.
73 邓俊浩, 陶贞, 高全洲, 等. 河流筑坝对生源物质循环的改变研究进展[J]. 地球科学进展, 2018,33(12): 1 237-1 247.
74 PROKOPKIN I G, MOOIJ W M, JANSE J H, et al. A general one-dimensional vertical ecosystem model of Lake Shira (Russia, Khakasia): Description, parametrization and analysis[J]. Aquatic Ecology,2010,44: 585-618.
Outlines

/