Research Progress of Conodont U-Th/He Thermochronology

  • Chang'e Cai ,
  • Hong Chen ,
  • Wenliang Shang ,
  • Fengling Ni
Expand
  • 1.Chongqing Key Labrotary of Complex Oil and Gas Exploration and Development,Chongqing University of Science and Technology,Chongqing 401331,China
    2.School of Petroleum Engineering,Chongqing University of Science and Technology,Chongqing 401331,China
Cai Chang'e(1986-),female,Jingzhou City,Hubei Province,Lecturer. Research areas include low temperature thermochronology and petroleum geology. E-mail:ccecai@163.com

Received date: 2020-05-18

  Revised date: 2020-07-12

  Online published: 2020-10-28

Supported by

the National Natural Science Foundation of China "The initial track length of detrital zircon fission track obtained from natural evolution samples and its influence factors"(41802154);The Natural Science Foundation Project of Chongqing, Chongqing Science and Technology Commission "The study of annealing temperature of detrital zircon fission track in sedimentary basin"(cstc2019jcyj-msxmX0764)

Abstract

Given the lacking of effective geothermometer, it is difficult to reconstruct the complex thermal evolution history of marine carbonate rocks. It is considered that conodonts widely distributed in Paleozoic strata are suitable for the reconstruction of thermal history of carbonate strata. In this study, we mainly discussed the basic principle and experimental test method of conodont (U-Th)/He thermochronology, and the influencing factors of conodont (U-Th)/He ages. The thermal diffusion experiment reveals that the closure temperature of conodont (U-Th)/He is 60°~70°. Conodont samples have strong inverse relationship between effective uranium concentration and (U-Th)/He data. The main reasons for the open-system behavior in conodont (U-Th)/He are possible U loss during dissolution procedure using formic acid, the fluidity of U and Th elements during diagenesis, excessive initial He, and the non-uniform parent isotope distributions, etc. The higher CAI values the conodonts have, the more brittle the conodonts will become; the possibility of parent isotope loss will increase, and consistently they have older (U-Th)/He dates and substantially more scattered individual dates. Conodont tissue type also affects the parent isotope distribution and element migration of conodonts, and the change of its microstructure leads to the dispersion of conodont (U-Th)/He dates. Finally, we explored the existing problems and put forward the future hot research and development direction of conodont (U-Th)/He thermal dating system, so as to promote the deep development of relative theory and technology of conodont (U-Th)/He thermochronology.

Cite this article

Chang'e Cai , Hong Chen , Wenliang Shang , Fengling Ni . Research Progress of Conodont U-Th/He Thermochronology[J]. Advances in Earth Science, 2020 , 35(9) : 924 -932 . DOI: 10.11867/j.issn.1001-8166.2020.077

References

1 Ehrenberg S N, Nadeau P H. Sandstone vs carbonate petroleum reservoirs: A global perspective on porosity-depth and porosity-permeability relationships [J]. AAPG Bulletin, 2005, 89(4): 435-445.
2 Yan Weipeng, Yang Tao, Li Xin, et al. Geological characteristics and exploration potential of lacustrine carbonate rocks in China [J]. China Petroleum Exploration, 2014, 19(4):11-17.
2 闫伟鹏,杨涛,李欣,等. 中国陆上湖相碳酸盐岩地质特征及勘探潜力[J]. 中国石油勘探, 2014, 19(4): 11-17.
3 Ma Xinhua, Yang Yu, Wen Long, et al. Distribution and exploration direction of large and medium-sized marine carbonate gas fields in Sichuan basin [J]. Petroleum Exploration and Development, 2019, 46(1): 1-13.
3 马新华,杨雨,文龙,等. 四川盆地海相碳酸盐岩大中型气田分布规律及勘探方向[J]. 石油勘探与开发, 2019, 46(1): 1-13.
4 Qiu Nansheng, Li Huili, Jin Zhijun, et al. Study on the geothermometer of free radicals in organic matter for the reconstruction of the thermal history of marine carbonate succession [J]. Acta Geologica Sinica, 2006, 80(3): 390-397.
4 邱楠生,李慧莉,金之钧,等.碳酸盐岩层系热历史恢复的有机质自由基古温标研究[J].地质学报,2006, 80(3): 390-397.
5 Powell J W, Schneider D A, Desrochers A, et al. Low-temperature thermochronology of Anticosti Island: A case study on the application of conodont (U-Th)/He thermochronology to carbonate basin analysis [J]. Marine & Petroleum Geology, 2018, 96: 441-456.
6 Alexandre C, Cecile G, Maurice P, et al. 4He behavior in calcite filling viewed by (U-Th)/He dating, 4He diffusion and crystallographic studies[J]. Geochimica et Cosmochimica Acta, 2014, 125: 414-432.
7 Copeland P, Cox K, Watson E B, et al. The potential of crinoids as (U-Th-Sm)/He thermochronometers [J]. Earth and Planetary Science Letters, 2015, 422: 1-10.
8 Peppe D J, Reiners P W. Conodont (U-Th)/He thermochronology: Initial results, potential, and problems [J]. Earth and Planetary Science Letters, 2007, 258(3/4): 569-580.
9 Landman R L, Flowers R M, Rosenau N A, et al. Conodont (U-Th)/He thermochronology: A case study from the Illinois Basin [J]. Earth and Planetary Science Letters, 2016, 456: 55-65.
10 Bidgoli T S, Tyrrell J P, M?ller A, et al. Conodont thermochronology of exhumed footwalls of low-angle normal faults: A pilot study in the Mormon Mountains, Tule Springs Hills, and Beaver Dam Mountains, southeastern Nevada and southwestern Utah [J]. Chemical Geology, 2018, 495: 1-17.
11 Sweet W C, Donoghue P C J. Condonts: Past, present, future [J]. Journal of Paleontology, 2001, 75(6): 1 174-1 184.
12 Epstein A G, Epstein J B, Harris L D. Incipient metamorphism, structural anomalies, and oil gas potential in the Applachian basin determined from conodont color [J]. Geological Society of America Abstrats with Programs, 1974, 6(1): 723-724.
13 Epstein A G, Epstein J B, Harris L D, et al. Conodont color alteration: An index to organic metamorphism [J]. USGS Professional Paper, 1977, 995: 1-27.
14 Rejebian V A, Harris A G, Huebner S. Conodont color and textural alteration: An index to regional metamorphism, contact metamorphism, and hydrothermal alteration[J]. Geological Society of America Bulletin, 1987, 99(4): 471-479.
15 Jiang Wu, Lu Tingqing, Luo Yuqiong. The application of conodont CAI in carbonate oil-gas fields exploration[J]. Petroleum Exploration and Development, 1999, 26(2): 46-48.
15 蒋武,陆廷清,罗玉琼.牙形石色变在碳酸盐岩油气田勘探中的应用[J].石油勘探与开发,1999, 26(2): 46-48.
16 Wernicke R S, Lippolt H J. Dating of vein specularite using internal (U-Th)/He isochrones [J]. Geophysical Research Letters, 1994, 21(5): 345-347.
17 Trueman C N, Orr P. Chemical taphonomy of biomineralized tissues [J]. Palaeontology, 2013, 56(3): 475-486.
18 Reynard B, Balter V. Trace elements and their isotopes in bones and teeth: Diet, environments, diagenesis, and dating of archeological and paleontological samples [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 416: 4-16.
19 Wright J. Conodont geochemistry: A key to the Paleozoic [J]. Courier Forschungsinstitut Senckenberg, 1990, 118: 277-305.
20 Millard A R, Hedges R E M. A diffusion-adsorption model of uranium uptake by archaeological bone [J]. Geochimica et Cosmochimica Acta, 1996, 60(12): 2 139-2 152.
21 Pike A W G, Hedges R E M. Sample geometry and U uptake in archaeological teeth: Implications for U-series and ESR dating [J]. Quaternary Science Reviews, 2001, 20(5): 1 021-1 025.
22 Trotter J A, Eggins S M. Chemical systematics of conodont apatite determined by laser ablation ICPMS [J]. Chemical Geology, 2006, 233(3): 196-216.
23 Jeppsson L, Anehus R. A buffered formic acid technique for conodont extraction[J]. Journal of Paleontology, 1995, 69(4): 790-794.
24 Jeppsson L, Anehus R, Fredholm D. The optimal acetate buffered acetic acid technique for extracting phosphatic fossils [J]. Journal of Paleontology, 1999, 73(5): 964-972.
25 Evans N J, Mcinnes B I A, Squelch A P, et al. Application of X-ray micro-computed tomography in (U-Th)/He thermochronology [J]. Chemical Geology, 2008, 257(1/2): 101-113.
26 Farley K A, Wolf R A, Silver L T. The effects of long alpha stopping distances on (U-Th)/He age [J]. Geochimica et Cosmochimica Acta, 1996, 60(21): 4 223-4 229.
27 Farley K A. Helium diffusion from apatite: General behavior as illustrated by Durango fluorapatite[J]. Journal of Geophysical Research, 2000, 105(B2): 2 903-2 914.
28 Shuster D L , Farley K A, Sisterson M J, et al. Quantifying the diffusion kinetics and spatial distributions of radiogenic 4He in minerals containing proton-induced 3He [J]. Earth and Planetary Science Letters, 2004, 217(1): 19-32.
29 Shuster D L, Flowers R M, Farley K A. The influence of natural radiation damage on helium diffusion kinetics in apatite[J]. Earth and Planetary Science Letters, 2006, 249(3): 148-161.
30 Stockli D F. Regional Timing and Spatial Distribution of Miocene Extension in the Northern Basin and Range Province [D]. Stanford,Califoria: Stanford University, 1999.
31 Spiegel C, Kohn B, Belton D, et al. Apatite (U-Th-Sm)/He thermochronology of rapidly cooled samples: The effect of He implantation [J]. Earth and Planetary Science Letters, 2009, 285(1): 105-114.
32 Murray K E, Orme D A, Reiners P W. Effects of U-Th-rich grain boundary phases on apatite helium ages[J]. Chemical Geology, 2014, 390: 135-151.
33 Fuchs A. Determination of the burial temperature in the Ordovician of Thuringia and Scandinavia by means of conodont color[J]. Neues Jahrbuch für Geologie und Palaeontologie-Monatshefte, 1989, 7: 390-399.
34 Ebneth S, Diener A, Buhl D, et al. Strontium isotope systematics of conodonts: Middle Devonian, Eifel Mountains, Germany[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1997, 132(1): 79-96.
35 N?th S. Conodont color (CAI) versus microcrystalline and textural changes in Upper Triassic conodonts from Northwest Germany [J]. Facies, 1998, 38(1): 165-173.
36 K?nigshof P. Conodont deformation patterns and textural alteration in Paleozoic conodonts: Examples from Germany and France[J]. Palaeobiodiversity and Palaeoenvironments, 2003, 83(1): 149-156.
37 Sanz-López J, Blanco-Ferrera S. Overgrowths of large authigenic apatite crystals on the surface of conodonts from Cantabrian limestones (Spain) [J]. Facies, 2012, 58(4): 707-726.
38 Garcia-Lopez S, Brime C, Bastida F, et al. Simultaneous use of thermal indicators to analyse the transition from diagenesis to metamorphism: An example from the Variscan Belt of northwest Spain [J]. Geological Magazine, 1997, 134(3): 323-334.
39 Trotter J A, Fitz Gerald J D, Kokkonen H, et al. New insights into the ultrastructure, permeability, and integrity of conodont apatite determined by transmission electron microscopy [J]. Lethaia, 2007, 40(2): 97-110.
40 Trueman C N, Tuross N. Trace Elements in recent and fossil bone apatite [J]. Reviews in Mineralogy & Geochemistry, 2002, 48: 489-521.
Outlines

/