The Surface and Three-dimensional Characteristics of Mesoscale Eddies: A Review
Received date: 2020-04-21
Revised date: 2020-05-22
Online published: 2020-07-06
Supported by
the National Key Research and Development Program of China “The development of parameterization of key physical processes in high-resolution ocean models”(2017YFA0604100);The National Natural Science Foundation of China ”Relationship between the reverse trend of sea level change in the western and eastern subtropical North Pacific and climate modes”(41406003)
Mesoscale eddies, which are widely found in the oceans, play a vital role in momentum, energy, heat and mass transport. The Euler method for identifying mesoscale eddies using satellite altimeter data was presented in detail, including closed SLA contours, OW numbers, Winding-Angle and flow vector methods. The results show that mesoscale eddies are almost nonlinear and solid-body rotation. The long-lived eddies with lifetimes ≥16 weeks have an average lifetime of 32 weeks and an average propagation distance of 550 km. Their mean amplitude and a speed-based radius scale as defined by the automated procedure are 8 cm and 90 km, respectively. The method combining with SLA and Argo profiles to composite the three-dimensional structure were addressed. Due to the different temperature and salt structure in the various oceans of the world, the eddies in different oceans show different three-dimensional structures, which are influenced by both the generation and local temperature and salinity. Two special types of eddies were introduced from the perspective of generation, evolution and dissipation processes, namely the Loop Current Ring in the Gulf of Mexico and Mediterranean eddy in the Atlantic Ocean. Finally, issues including submesoscale processes, dissipation of eddies and subthermocline eddies were discussed, and some future research directions were proposed.
Yongchui Zhang , Ning Wang , Lin Zhou , Kefeng Liu , Haodi Wang . The Surface and Three-dimensional Characteristics of Mesoscale Eddies: A Review[J]. Advances in Earth Science, 2020 , 35(6) : 568 -580 . DOI: 10.11867/j.issn.1001-8166.2020.050
1 | Feng Shizuo, Li Fengqi, Li Shaoqing. An Inctroduction to Marine Science [M]. Beijing: Higher Education Press, 1999. |
1 | 冯士筰, 李凤岐, 李少菁. 海洋科学导论 [M]. 北京: 高等教育出版社, 1999. |
2 | Rhines P B. Mesoscale eddies [M]// Cochran J K, Bokuniewicz H, Yager P. Encyclopedia of Ocean Sciences(3rd Edition). London:Academic Press,2019. |
3 | Swallow J C. Some further deep current measurements using neutrally-buoyant floats [J]. Deep Sea Research, 1957, 4: 93-104. |
4 | Crease J. Velocity measurements in the deep water of the western North Atlantic: Summary [J]. Journal of Geophysical Research, 1962, 67(8): 3 173-3 176. |
5 | Group M. The mid-ocean dynamics experiment [J]. Deep Sea Research, 1978, 25(10): 859-910. |
6 | Brekhovskikh L, Fedorov K, Fomin L, et al. Large-scale multi-buoy experiment in the tropical Atlantic [C]//Proceedings of the Deep Sea Research and Oceanographic Abstracts. Elsevier, 1971. |
7 | Mcgillicuddy Jr D J. Mechanisms of physical-biological-biogeochemical interaction at the oceanic mesoscale [J]. Annual Review of Marine Science, 2016, 8:125-159. |
8 | Wolfe C L, Cessi P, Mcclean J L, et al. Vertical heat transport in eddying ocean models [J]. Geophysical Research Letters, 2008, 35: L23605. DOI:10.1029/2008GL036138. |
9 | Fu L-L, Chelton D B, Le Traon P-Y, et al. Eddy dynamics from satellite altimetry [J]. Oceanography, 2010, 23(4): 14-25. |
10 | Chelton D B, Schlax M G, Samelson R M. Global observations of nonlinear mesoscale eddies [J]. Progress in Oceanography, 2011, 91(2): 167-216. |
11 | Mason E, Pascual A, Mcwilliams J C. A new sea surface height-Based code for oceanic mesoscale eddy tracking [J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(5): 1 181-1 188. |
12 | Isern-Fontanet J, García-Ladona E, Font J. Identification of marine eddies from altimetric maps [J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(5): 772-778. |
13 | Okubo A. Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences [C]// Proceedings of the Deep Sea Research and Oceanographic Abstracts. Elsevier, 1970. |
14 | Weiss L A. Bankruptcy resolution: Direct costs and violation of priority of claims [J]. Journal of Financial Economics, 1990, 27(2): 285-314. |
15 | Chelton D B, Schlax M G, Samelson R M, et al. Global observations of large oceanic eddies [J]. Geophysical Research Letters, 2007, 34: L15606. DOI:10.1029/2007GL030812. |
16 | Robinson S K. Coherent motions in the turbulent boundary layer [J]. Annual Review of Fluid Mechanics, 1991, 23(1): 601-639. |
17 | Chaigneau A, Gizolme A, Grados C. Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns [J]. Progress in Oceanography, 2008, 79(2/4): 106-119. |
18 | Nencioli F, Dong C, Dickey T, et al. A vector geometry-based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight [J]. Journal of Atmospheric and Oceanic Technology, 2010, 27(3): 564-579. |
19 | Dong Changming, Jiang Xingliang, Xu Guangjun, et al. Automated eddy detection using geometric approach, eddy datasets and their application [J]. Advances in Marine Science, 2017, 35(4): 439-453. |
19 | 董昌明, 蒋星亮, 徐广珺, 等. 海洋涡旋自动探测几何方法, 涡旋数据库及其应用 [J]. 海洋科学进展, 2017, 35(4): 439-453. |
20 | Lumpkin R, Pazos M. Measuring surface currents with Surface Velocity Program drifters: The instrument, its data, and some recent results [M]// Griffa A, Kirwan A D, Mariano A, et al. Lagrangian Analysis and Prediction of Coastal and Ocean Dynamics, Chapter: 2. Cambridge:Cambridge University Press, 2007. |
21 | Dong C, Liu Y, Lumpkin R, et al. A scheme to identify loops from trajectories of oceanic surface drifters: An application in the Kuroshio extension region [J]. Journal of Atmospheric and Oceanic Technology, 2011, 28(9): 1 167-1 176. |
22 | Dong Changming. Oceanic Eddy Detection and Analysis [M]. Beijing: Science Press, 2015. |
22 | 董昌明. 海洋涡旋探测与分析 [M]. 北京: 科学出版社, 2015. |
23 | Chelton D B, Schlax M G. Global observations of oceanic Rossby waves [J]. Science, 1996, 272(5 259): 234. |
24 | Zhang Yongchui, Zhang Lifeng. Rossby waves in the North Pacific Ocean: A review [J]. Advances in Earth Science, 2009, 24(11): 1 219-1 228. |
24 | 张永垂, 张立凤. 北太平洋 Rossby 波研究进展 [J]. 地球科学进展, 2009, 24(11): 1 219-1 228. |
25 | Mcgillicuddy Jr D J, Robinson A, Siegel D, et al. Influence of mesoscale eddies on new production in the Sargasso Sea [J]. Nature, 1998, 394(6 690): 263. |
26 | Chelton D B, Gaube P, Schlax M G, et al. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll [J]. Science, 2011, 334(6 054): 328-332. |
27 | Zhang Z, Wang W, Qiu B. Oceanic mass transport by mesoscale eddies [J]. Science, 2014, 345(6 194): 322-324. |
28 | Dong C M, Mcwilliams J C, Liu Y, et al. Global heat and salt transports by eddy movement [J]. Nature Communications, 2014, 5:3294. |
29 | Nof D. On the β-induced movement of isolated baroclinic eddies [J]. Journal of Physical Oceanography, 1981, 11(12): 1 662-1 672. |
30 | Cushman-Roisin B, Tang B, Chassignet E P. Westward motion of mesoscale eddies [J]. Journal of Physical Oceanography, 1990, 20(5): 758-768. |
31 | Bretherton F. Reminiscences of MODE [M]// Physical Oceanography. New York: Springer, 2006: 15-27. |
32 | Robinson A R, Leslie W G. Estimation and prediction of oceanic eddy fields [J]. Progress in Oceanography, 1985, 14: 485-510. |
33 | Steinberg D K, Carlson C A, Bates N R, et al. Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): A decade-scale look at ocean biology and biogeochemistry [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2001, 48(8/9): 1 405-1 447. |
34 | Flierl G, Mcgillicuddy D J. Mesoscale and submesoscale physical-biological interactions [J]. The Sea, 2002, 12: 113-185. |
35 | Mcgillicuddy D J, Anderson L A, Bates N R, et al. Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms [J]. Science, 2007, 316(5 827): 1 021-1 026. |
36 | Dong C, Lin X, Liu Y, et al. Three‐dimensional oceanic eddy analysis in the Southern California Bight from a numerical product [J]. Journal of Geophysical Research: Oceans, 2012, 117(C7): C00H14. DOI:10.1029/2011JC007354. |
37 | Hu J, Gan J, Sun Z, et al. Observed three‐dimensional structure of a cold eddy in the southwestern South China Sea [J]. Journal of Geophysical Research: Oceans, 2011, 116: C05016. DOI:10.1029/2010JC006810. |
38 | Holte J, Straneo F, Moffat C, et al. Structure and surface properties of eddies in the southeast Pacific Ocean [J]. Journal of Geophysical Research: Oceans, 2013, 118(5): 2 295-2 309. |
39 | Kurczyn J, Beier E, Lavín M, et al. Anatomy and evolution of a cyclonic mesoscale eddy observed in the northeastern Pacific tropical‐subtropical transition zone [J]. Journal of Geophysical Research: Oceans, 2013, 118(11): 5 931-5 950. |
40 | Mao H, Feng M, Phillips H E, et al. Mesoscale eddy characteristics in the interior subtropical southeast Indian Ocean, tracked from the Leeuwin Current system [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2019, 161: 52-62. |
41 | Zhang Y, Chen X, Dong C. Anatomy of a cyclonic eddy in the kuroshio extension based on high-resolution observations [J]. Atmosphere, 2019, 10(9): 553. |
42 | Roemmich D, Johnson G C, Riser S, et al. The Argo program: Observing the global ocean with profiling floats [J]. Oceanography, 2009, 22(2): 34-43. |
43 | Sun Wenjin. Oceanic Eddies in the Kuroshio Extension Region and Eddy Induced Dual Mixing [D]. Nanjing: Hohai University, 2017. |
43 | 孙文金. 黑潮延续体区域伴随涡旋的垂向分布及涡致双重混合[D]. 南京:河海大学,2017. |
44 | Sun W, Dong C, Wang R, et al. Vertical structure anomalies of oceanic eddies in the Kuroshio Extension region [J]. Journal of Geophysical Research: Oceans, 2017, 122(2): 1 476-1 496. |
45 | Dong D, Brandt P, Chang P, et al. Mesoscale eddies in the Northwestern Pacific Ocean: Three‐dimensional eddy structures and heat/salt transports [J]. Journal of Geophysical Research: Oceans, 2017, 122. DOI: 10.1002/2017JC013303. |
46 | Yang G, Wang F, Li Y, et al. Mesoscale eddies in the northwestern subtropical Pacific Ocean: Statistical characteristics and three‐dimensional structures [J]. Journal of Geophysical Research: Oceans, 2013, 118(4): 1 906-1 925. |
47 | Wang Ru, Li Haiyan, Meng Lei. Mesoscale eddies energy characteristic in the Kuroshio Extension and north Pacific subtropical countercurrent region [J]. Acta Oceanologica Sinica, 2019, 41(11): 1-14. |
47 | 王茹, 李海艳, 孟雷. 北太平洋黑潮延伸体区域和副热带逆流区域中尺度涡能量特征研究[J]. 海洋学报, 2019, 41(11): 1-14. |
48 | Keppler L, Cravatte S, Chaigneau A, et al. Observed characteristics and vertical structure of mesoscale eddies in the Southwest Tropical Pacific [J]. Journal of Geophysical Research: Oceans, 2018, 123(4): 2 731-2 756. |
49 | Chaigneau A, Le Texier M, Eldin G, et al. Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: A composite analysis from altimetry and Argo profiling floats [J]. Journal of Geophysical Research, 2011, 116(C11): C11025. DOI:10.1029/2011JC007134. |
50 | Castelao R M. Mesoscale eddies in the South Atlantic Bight and the Gulf Stream recirculation region: Vertical structure [J]. Journal of Geophysical Research: Oceans, 2014, 119(3): 2 048-2 065. |
51 | Mason E, Pascual A, Gaube P, et al. Subregional characterization of mesoscale eddies across the Brazil‐Malvinas Confluence [J]. Journal of Geophysical Research: Oceans, 2017, 122(4): 3 329-3 357. |
52 | Amores A, Melnichenko O, Maximenko N. Coherent mesoscale eddies in the North Atlantic subtropical gyre: 3‐D structure and transport with application to the salinity maximum [J]. Journal of Geophysical Research: Oceans, 2017, 122(1): 23-41. |
53 | Dilmahamod A, Aguiar‐González B, Penven P, et al. SIDDIES Corridor: A major east‐west pathway of long‐lived surface and subsurface eddies crossing the subtropical south Indian Ocean [J]. Journal of Geophysical Research: Oceans, 2018, 123(8): 5 406-5 425. |
54 | Yang G, Yu W, Yuan Y, et al. Characteristics, vertical structures, and heat/salt transports of mesoscale eddies in the southeastern tropical Indian Ocean [J]. Journal of Geophysical Research: Oceans, 2015, 120(10): 6 733-6 750. |
55 | Frenger I, Münnich M, Gruber N, et al. Southern Ocean eddy phenomenology [J]. Journal of Geophysical Research: Oceans, 2015, 120(11): 7 413-7 449. |
56 | Zhen Quanan, Xie Lingling, Zheng Zhiwen, et al. Progress in research of mesoscale eddies in the South China Sea [J]. Advances in Marine Science, 2017, 35(2): 131-158. |
56 | 郑全安, 谢玲玲, 郑志文, 等. 南海中尺度涡研究进展[J]. 海洋科学进展, 2017, 35(2): 131-158. |
57 | He Q, Zhan H, Cai S, et al. A new assessment of mesoscale eddies in the South China Sea: Surface features, three‐dimensional structures, and thermohaline transports [J]. Journal of Geophysical Research: Oceans, 2018, 123(7): 4 906-4 929. |
58 | Xie Xudan, Wang Jing, Chu Xiaoqing, et al. Three-dimensional thermohaline anomaly structures of mesoscale eddies in the South China Sea [J]. Haiyang Xuebao, 2018, 40(4): 1-14. |
58 | 谢旭丹, 王静, 储小青, 等.南海中尺度涡温盐异常三维结构[J]. 海洋学报, 2018, 40(4): 1-14. |
59 | De Marez C, L’Hégaret P, Morvan M, et al. On the 3D structure of eddies in the Arabian Sea [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2019, 150. DOI: 10.1016/j.dsr.2019.06.003. |
60 | Hassanzadeh P, Marcus P S, Le Gal P. The universal aspect ratio of vortices in rotating stratified flows: Theory and simulation [J]. Journal of Fluid Mechanics, 2012, 706: 46-57. |
61 | Liu Z, Liao G, Hu X, et al. Aspect ratio of eddies inferred from Argo floats and satellite altimeter data in the ocean [J]. Journal of Geophysical Research: Oceans, 2019: e2019JC015555. DOI: 10.1029/2019JC015555. |
62 | Zheng Congcong, Yin Zhonghui, Liang Yongchun, et al. Analysis of the eddy vertical structure in different areas in the North Pacific [J]. Marine Forecasts, 2017, 34(3): 10-16. |
62 | 郑聪聪, 訚忠辉, 梁永春, 等.北太平洋中尺度涡温度垂直结构区域差别分析[J]. 海洋预报, 2017, 34(3): 10-16. |
63 | Zhang Z, Tian J, Qiu B, et al. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea [J]. Scientific Reports, 2016, 6(1): 24349. |
64 | Smith K S. The geography of linear baroclinic instability in Earth's oceans [J]. Journal of Marine Research, 2007, 65(5): 655-683. |
65 | Early J J, Samelson R, Chelton D B. The evolution and propagation of quasigeostrophic ocean eddies [J]. Journal of Physical Oceanography, 2011, 41(8): 1 535-1 555. |
66 | Zhai X, Johnson H L, Marshall D P. Significant sink of ocean-eddy energy near western boundaries [J]. Nature Geoscience, 2010, 3(9): 608-612. |
67 | Renault L, Marchesiello P, Masson S, et al. Remarkable control of western boundary currents by eddy killing, a mechanical air‐sea coupling process [J]. Geophysical Research Letters, 2019, 46(5): 2 743-2 751. |
68 | Von Storch J-S, Badin G, Oliver M. The interior energy pathway: Inertia-gravity wave emission by oceanic flows [M]// Energy Transfers in Atmosphere and Ocean. Chambridge:Springer, 2019: 53-85. |
69 | Danilov S, Juricke S, Kutsenko A, et al. Toward consistent subgrid momentum closures in ocean models [M]// Energy Transfers in Atmosphere and Ocean. Chambridge:Springer, 2019: 145-192. |
70 | Wang Meng, Zhang Yanwei, Liu Zhifei, et al. Temporal and spatial characteristics of mesoscale eddies in the Northern South China Sea: Statistics analysis based on altimeter data[J]. Advances in Earth Science, 2019, 34(10): 1 069-1 080. |
70 | 王萌,张艳伟,刘志飞,等. 南海北部中尺度涡的时空分布特征:基于卫星高度计资料的统计分析[J]. 地球科学进展, 2019, 34(10): 1 069-1 080. |
71 | Lutjeharms J, Gordon A. Shedding of an Agulhas ring observed at sea [J]. Nature, 1987, 325(6 100): 138. |
72 | Zhang Z, Zhao W, Qiu B, et al. Anticyclonic eddy sheddings from Kuroshio loop and the accompanying cyclonic eddy in the northeastern South China Sea [J]. Journal of Physical Oceanography, 2017, 47(6): 1 243-1 259. |
73 | Bower A S, Rossby H T. Meddies and Sub-Surface Eddies [M]// Encyclopedia of Ocean Sciences. London UK: Academic Press,2018:107-114. |
74 | Price J F, Baringer M O N, Lueck R G, et al. Mediterranean outflow mixing and dynamics [J]. Science, 1993, 259(5 099): 1 277-1 282. |
75 | Garfield N, Collins C A, Paquette R G, et al. Lagrangian exploration of the California Undercurrent, 1992-95 [J]. Journal of Physical Oceanography, 1999, 29(4): 560-583. |
76 | Nof D, Paldor N, Van Gorder S. The reddy maker [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2002, 49(9): 1 531-1 549. |
77 | Mahadevan A. Submesoscale processes [M]// Encyclopedia of Ocean Sciences, 2018. DOI: 10.1016/B978-0-12-409548-9.10828-0. |
78 | Thomas L N, Tandon A, Mahadevan A. Submesoscale processes and dynamics [J]. Ocean modeling in an Eddying Regime, 2008, (17). DOI:10.1029/177GM04. |
79 | Mcwilliams J C. Submesoscale currents in the ocean [J]. Proceedings of the Royal Society A:Mathematical Physical and Engineering Sciences, 2016, 472(2 189). DOI:10.1098/rspa.2016.0117 |
80 | Morrow R, Fu L-L, Ardhuin F, et al. Global observations of fine-scale ocean surface topography with the Surface Water and Ocean Topography (SWOT) Mission [J]. Frontiers in Marine Science, 2019. DOI: 10.3389/fmars.2019.00232. |
81 | Zhang Y, Dong C, Chen X, et al. Observation of submesoscale turbulence in a cyclonic eddy [J]. Ocean Dynamics, 2020,70:513-520. |
82 | Whalen C, Mackinnon J, Talley L. Large-scale impacts of the mesoscale environment on mixing from wind-driven internal waves [J]. Nature Geoscience, 2018, 11(11): 842. |
83 | Kunze E. Near-inertial wave propagation in geostrophic shear [J]. Journal of Physical Oceanography, 1985, 15(5): 544-565. |
84 | Pegliasco C, Chaigneau A, Morrow R. Main eddy vertical structures observed in the four major Eastern Boundary Upwelling Systems [J]. Journal of Geophysical Research: Oceans, 2015, 120(9): 6 008-6 033. |
85 | Levin L A, Bett B J, Gates A R, et al. Global observing needs in the deep ocean [J]. Frontiers in Marine Science, 2019, 241. DOI: 10.3389/fmars.2019.00241. |
86 | Rudnick D L. Ocean research enabled by underwater gliders [J]. Annual Review of Marine Science, 2016, 8: 519-541. |
87 | Testor P, Deyoung B, Rudnick D L, et al. OceanGliders: A component of the integrated GOOS [J]. Frontiers in Marine Science, 2019, 6. DOI: 10.3389/fmars.2019.00422. |
88 | Shu Y, Chen J, Li S, et al. Field-observation for an anticyclonic mesoscale eddy consisted of twelve gliders and sixty-two expendable probes in the northern South China Sea during summer 2017 [J]. Science China Earth Sciences, 2019, 62(2): 451-458. |
89 | Shu Y, Xiu P, Xue H, et al. Glider-observed anticyclonic eddy in northern South China Sea [J]. Aquatic Ecosystem Health & Management, 2016, 19(3): 233-241. |
90 | Braun C D, Gaube P, Sinclair-Taylor T H, et al. Mesoscale eddies release pelagic sharks from thermal constraints to foraging in the ocean twilight zone [J]. Proceedings of the National Academy of Sciences, 2019, 116(35): 17 187-17 192. |
91 | Mahadevan A, D’Asaro E, Lee C, et al. Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms [J]. Science, 2012, 337(6 090): 54-58. |
92 | Li Weibiao, Liu Haoya, Fang Rong. Review of the atmospheric response to the ocean mesoscale eddies [J]. Advances in Earth Science, 2017, 32(10): 1 039-1 049. |
92 | 黎伟标, 刘昊亚, 方容. 大气对海洋中尺度涡响应的研究进展 [J]. 地球科学进展, 2017, 32(10): 1 039-1 049. |
93 | Zhong Chao, Xiao Wupeng, Huang Bangqin. The response of phytoplankton to mesoscale eddies in Western South China Sea [J]. Advances in Marine Science, 2013, 31(2): 213-220. |
93 | 钟超, 肖武鹏, 黄邦钦. 中国南海西部浮游植物对中尺度涡的响应 [J]. 海洋科学进展, 2013, 31(2): 213-220. |
/
〈 |
|
〉 |