Review on Subaqueous Sediment Gravity Flow and Submarine Fan

  • Hanpu Fu ,
  • Qun Liu ,
  • Xiumian Hu
Expand
  • School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
Fu Hanpu (1993-), male, Jinhua City, Zhejiang Province, Ph.D student. Research areas include sedimentary tectonics. E-mail: hanpufunju@163.com

Received date: 2019-12-05

  Revised date: 2020-01-14

  Online published: 2020-03-24

Supported by

the National Natural Science Foundation of China "Sedimentology"(41525007)

Abstract

Subaqueous sediment gravity flow is the volumetrically most important process transporting sediment across our planet, which forms its largest sediment accumulations (submarine fan). Based on the previous studies, we tried to clear up the concept, classification and identification of subaqueous sediment gravity flow, and introduced the progress of modern direct observation and submarine fan model. Turbidity current and debris flow are two of the most important parts of the gravity flow, the former deposits layer by layer with normal gradation while the latter is en masse settling with chaotic disorder. The turbidity current transformed into the debris flow during the transportation is called hybrid flow. The hyperpycnal flow is the turbidity current formed by flood discharges into the ocean/lake. Modern direct observations show that the turbidity current can contain dense basal layers and last for a week. The structure of turbidity current can be different from those surge-like turbidity current observed in laboratory. Submarine fans are mainly composed of channel, levee, lobe, background deposits and mass transport deposits, which should be studied by architecture analysis and hierarchical classification. The channel deposits extend narrowly with abundant erosion structures; levee deposits are composed of thin layer mud-silty turbidites, wedge thinning laterally; the lobe deposits extend well laterally with narrow range of grain size. The hierarchy of channel deposits is channel unit, channel complex and channel complex system. The hierarchy of lobe deposits is bed, lobe element, lobe and lobe complex.

Cite this article

Hanpu Fu , Qun Liu , Xiumian Hu . Review on Subaqueous Sediment Gravity Flow and Submarine Fan[J]. Advances in Earth Science, 2020 , 35(2) : 124 -136 . DOI: 10.11867/j.issn.1001-8166.2020.015

References

1 Talling P J, Paull C K, Piper D J. How are subaqueous sediment density flows triggered, what is their internal structure and how does it evolve? Direct observations from monitoring of active flows [J]. Earth-Science Reviews, 2013, 125: 244-287.
2 Paull C K, Talling P J, Maier K L, et al. Powerful turbidity currents driven by dense basal layers [J]. Nature Communications, 2018, 9(1): 4 114.
3 Talling P J, Masson D G, Sumner E J, et al. Subaqueous sediment density flows: Depositional processes and deposit types [J]. Sedimentology, 2012, 59(7): 1 937-2 003.
4 Sun Shu, Li Jiliang. Researches on turbidity and other gravity flow sedimentation in China [J]. Acta Sedimentologica Sinica, 1984, 2(4): 1-7.
4 孙枢, 李继亮. 我国浊流与其他重力流沉积研究进展概况和发展方向问题刍议 [J]. 沉积学报, 1984, 2(4): 1-7.
5 Fang Aimin, Li Jiliang, Hou Quanlin. Sedimentation of turbidity currents and relative gravity flows: A review [J]. Geological Review, 1998, 44(3): 270-280.
5 方爱民, 李继亮, 侯泉林. 浊流及相关重力流沉积研究综述 [J]. 地质论评, 1998, 44(3): 270-280.
6 Li Xianghui, Wang Chengshan, Jin Wei, et al. A review on deep-sea sedimentation theory: Significances to oil-gas exploration [J]. Acta Sedimentologica Sinica, 2009, 27(1): 77-86.
6 李祥辉, 王成善, 金玮, 等. 深海沉积理论发展及其在油气勘探中的意义 [J]. 沉积学报, 2009, 27(1): 77-86.
7 Li Xiangdong, Chen Haiyan, Chen Hongda. Deep-water combined-flow deposits of the upper ordovician lashenzhong formation in Zhuozishan area, western margin of Ordos Basin[J]. Advances in Earth Science, 2019, 34(12): 1 301-1 315.
7 李向东,陈海燕,陈洪达. 鄂尔多斯盆地西缘桌子山地区上奥陶统拉什仲组深水复合流沉积[J]. 地球科学进展, 2019, 34(12): 1 301-1 315.
8 Li Lin, Qu Yongqiang, Meng Qingren, et al. Gravity flow sedimentation: Theoretical studies and field identification [J]. Acta Sedimentologica Sinica, 2011, 29(4): 677-688.
8 李林, 曲永强, 孟庆任, 等. 重力流沉积:理论研究与野外识别 [J]. 沉积学报, 2011, 29(4): 677-688.
9 Li Yun, Zheng Rongcai, Zhu Guojin, et al. Reviews on sediment gravity flow [J]. Advances in Earth Science, 2011, 26(2): 157-165.
9 李云, 郑荣才, 朱国金, 等. 沉积物重力流研究进展综述 [J]. 地球科学进展, 2011, 26(2): 157-165.
10 Gao Hongcan, Zheng Rongcai, Wei Qinlian, et al. Reviews on fluid properties and sedimentary characteristics of debris flows and turbidity currents [J]. Advances in Earth Science, 2012, 27(8): 815-827.
10 高红灿, 郑荣才, 魏钦廉, 等. 碎屑流与浊流的流体性质及沉积特征研究进展 [J]. 地球科学进展, 2012, 27(8): 815-827.
11 Li Xiangbo, Wei Pingsheng, Liu Huaqing, et al. Discussion on the classification of sediment gravity flow and the deep-water sedimentary model [J]. Geological Review, 2013, 59(4): 607-614.
11 李相博, 卫平生, 刘化清, 等. 浅谈沉积物重力流分类与深水沉积模式 [J]. 地质论评, 2013, 59(4): 607-614.
12 Yang Tian, Cao Yingchang, Wang Yanzhong, et al. Types, sedimentary characteristics and genetic mechanisms of deep-water gravity flows: A case study of the middle submenber in Member 3 of Shahejie Formation in Jiyang depression [J]. Acta Petrolei Sinica, 2015, 36(9): 1 048-1 059.
12 杨田, 操应长, 王艳忠, 等. 深水重力流类型,沉积特征及成因机制——以济阳坳陷沙河街组三段中亚段为例 [J]. 石油学报, 2015, 36(9): 1 048-1 059.
13 Pei Yu, He Youbin, Li Hua, et al. Discuss about relationship between high-density turbidity current and sandy debris flow [J]. Geological Review, 2015, 61(6): 1 281-1 292.
13 裴羽, 何幼斌, 李华, 等. 高密度浊流和砂质碎屑流关系的探讨 [J]. 地质论评, 2015, 61(6): 1 281-1 292.
14 Sun Guotong. A review of deep-water gravity-flow deposition research [J]. Geological Science and Technology Information, 2015, 34(3): 30-36.
14 孙国桐. 深水重力流沉积研究进展 [J]. 地质科技情报, 2015, 34(3): 30-36.
15 Wang Dawei, Bai Hongxin, Wu Shiguo. The research progress of turbidity currents and related deep-water bedforms[J]. Advances in Earth Science, 2018, 33(1): 52-65.
15 王大伟, 白宏新, 吴时国. 浊流及其相关的深水底形研究进展[J]. 地球科学进展, 2018, 33(1): 52-65.
16 Li Liyang. Current advances in the research of turbidity current deposits: Reinterpretation of the Bouma sequence and submarine fan deposits [J]. Sedimentary Geology and Tethyan Geology, 2015, 35(4): 106-112.
16 李利阳. 浊流沉积研究的新进展: 鲍马序列, 海底扇的重新审视 [J]. 沉积与特提斯地质, 2015, 35(4): 106-112.
17 Wang Pinxian. Deep sea sediments and earth system [J]. Marine Geology and Quaternary Geology, 2009, 29(4): 1-11.
17 汪品先. 深海沉积与地球系统 [J]. 海洋地质与第四纪地质, 2009, 29(4): 1-11.
18 Xu J P. Normalized velocity profiles of field-measured turbidity currents [J]. Geology, 2010, 38(6): 563-566.
19 Xu J P, Barry J P, Paull C K. Small-scale turbidity currents in a big submarine canyon [J]. Geology, 2013, 41(2): 143-146.
20 Migeon S, Mulder T, Savoye B, et al. Hydrodynamic processes, velocity structure and stratification in natural turbidity currents: Results inferred from field data in the Var Turbidite System [J]. Sedimentary Geology, 2012, 245: 48-62.
21 Azpiroz-Zabala M, Cartigny M J, Talling P J, et al. Newly recognized turbidity current structure can explain prolonged flushing of submarine canyons [J]. Science Advances, 2017, 3(10): e1700200.
22 Symons W O, Sumner E J, Paull C K, et al. A new model for turbidity current behavior based on integration of flow monitoring and precision coring in a submarine canyon [J]. Geology, 2017, 45(4): 367-370.
23 Weimer P, Slatt R M. Petroleum Systems of Deepwater Settings [M]. Tulsa: Society of Exploration Geophysicists and European Association of Geoscientists and Engineers, 2004.
24 Pickering K, Hiscott R. Deep Marine Systems: Processes, Deposits, Environments, Tectonic and Sedimentation [M]. Oxford: American Geophysical Union and Wiley, 2015.
25 Johnson D W. The Origin of Submarine Canyons: A Critical Review of Hypotheses [M]. New York: Columbia University Press, 1939.
26 Kuenen P H, Migliorini C. Turbidity currents as a cause of graded bedding [J]. The Journal of Geology, 1950, 58(2): 91-127.
27 Middleton G V, Hampton M A. Sediment gravity flows: Mechanics of flow and deposition [M]//SEPM Pacific Section, Short Course Lecture Notes, 1973: 1-38.
28 Lowe D R. Sediment gravity flows: II Depositional models with special reference to the deposits of high-density turbidity currents [J]. Journal of Sedimentary Research, 1982, 52(1):279-297.
29 Shanmugam G. High-density turbidity currents: Are they sandy debris flows?[J]. Journal of Sedimentary Research, 1996, 66(1): 2-10.
30 Mulder T, Alexander J. The physical character of subaqueous sedimentary density flows and their deposits [J]. Sedimentology, 2001, 48(2): 269-299.
31 Dott Jr R. Dynamics of subaqueous gravity depositional processes [J]. AAPG Bulletin, 1963, 47(1): 104-128.
32 Kuenen P H. Matrix of turbidites: Experimental approach [J]. Sedimentology, 1966, 7(4): 267-297.
33 Middleton G V. Experiments on density and turbidity currents: III. Deposition of sediment [J]. Canadian Journal of Earth Sciences, 1967, 4(3): 475-505.
34 Haughton P, Davis C, Mccaffrey W, et al. Hybrid sediment gravity flow deposits-classification, origin and significance [J]. Marine and Petroleum Geology, 2009, 26(10): 1 900-1 918.
35 Mulder T, Syvitski J P M, Migeon S, et al. Marine hyperpycnal flows: Initiation, behavior and related deposits. A review [J]. Marine And Petroleum Geology, 2003, 20(6/8): 861-882.
36 Grundv?g S A, Johannessen E P, Helland‐Hansen W, et al. Depositional architecture and evolution of progradationally stacked lobe complexes in the Eocene Central Basin of Spitsbergen [J]. Sedimentology, 2014, 61(2): 535-569.
37 Haughton P D, Barker S P, Mccaffrey W D. ‘Linked’ debrites in sand-rich turbidite systems-origin and significance [J]. Sedimentology, 2003, 50(3): 459-482.
38 Hodgson D M. Distribution and origin of hybrid beds in sand-rich submarine fans of the Tanqua depocentre, Karoo Basin, South Africa [J]. Marine and Petroleum Geology, 2009, 26(10): 1 940-1 956.
39 Davis C, Haughton P, Mccaffrey W, et al. Character and distribution of hybrid sediment gravity flow deposits from the outer Forties Fan, Palaeocene Central North Sea, UKCS [J]. Marine and Petroleum Geology, 2009, 26(10): 1 919-1 939.
40 Pouderoux H, J-N Proust, Lamarche G, et al. Postglacial (after 18ka) deep-sea sedimentation along the Hikurangi subduction margin (New Zealand): Characterisation, timing and origin of turbidites [J]. Marine Geology, 2012, 295: 51-76.
41 Nakajima T. Hyperpycnites deposited 700 km away from river mouths in the Central Japan Sea [J]. Journal of Sedimentary Research, 2006, 76(1): 60-73.
42 Zavala C, Arcuri M. Intrabasinal and extrabasinal turbidites: Origin and distinctive characteristics [J]. Sedimentary Geology, 2016, 337: 36-54.
43 Richards M, Bowman M, Reading H. Submarine-fan systems I: Characterization and stratigraphic prediction [J]. Marine and Petroleum Geology, 1998, 15(7): 689-717.
44 Barnes N E, Normark W R. Diagnostic parameters for comparing modern submarine fans and ancient turbidite systems [M]//Submarine Fans and Related Turbidite Systems. New York, NY:Springer, 1985: 13-14.
45 Shanmugam G, Moiola R. Submarine fans: Characteristics, models, classification, and reservoir potential [J]. Earth-Science Reviews, 1988, 24(6): 383-428.
46 Menard Jr H W. Deep-sea channels, topography, and sedimentation [J]. AAPG Bulletin, 1955, 39(2): 236-255.
47 Enos P. Anatomy of a flysch [J]. Journal of Sedimentary Research, 1969, 39(2): 680-723.
48 Walker J, Massingill J. Slump features on the Mississippi Fan, northeastern Gulf of Mexico [J]. Geological Society of America Bulletin, 1970, 81(10): 3 101-3 108.
49 Normark W R. Growth patterns of deep-sea fans [J]. AAPG Bulletin, 1970, 54(11): 2 170-2 195.
50 Mutti E, Ricci Lucchi F. Turbidites of the northern Apennines: Introduction to facies analysis [J]. International Geology Review, 1972, 20(2): 125-166.
51 Walker R G. Deep-water sandstone facies and ancient submarine fans: Models for exploration for stratigraphic traps [J]. AAPG Bulletin, 1978, 62(6): 932-966.
52 Normark W R, Posamentier H, Mutti E. Turbidite systems: State of the art and future directions [J]. Reviews of Geophysics, 1993, 31(2): 91-116.
53 Mayall M, Jones E, Casey M. Turbidite channel reservoirs—Key elements in facies prediction and effective development [J]. Marine and Petroleum Geology, 2006, 23(8): 821-841.
54 Mchargue T, Pyrcz M J, Sullivan M D, et al. Architecture of turbidite channel systems on the continental slope: Patterns and predictions [J]. Marine and Petroleum Geology, 2011, 28(3): 728-743.
55 Miall A D. Architectural-element analysis: A new method of facies analysis applied to fluvial deposits [J]. Earth-Science Reviews, 1985, 22(4): 261-308
56 Clark J D, Pickering K T. Architectural elements and growth patterns of submarine channels: Application to hydrocarbon exploration [J]. AAPG Bulletin, 1996, 80(2): 194-220.
57 Reading H G, Richards M. Turbidite systems in deep-water basin margins classified by grain size and feeder system [J]. AAPG Bulletin, 1994, 78(5): 792-822.
58 Meiburg E, Kneller B. Turbidity currents and their deposits [J]. Annual Review of Fluid Mechanics,2010,42: 135-156.
59 Kneller B, Dykstra M, Fairweather L, et al. Mass-transport and slope accommodation: Implications for turbidite sandstone reservoirs [J]. AAPG Bulletin, 2016, 100(2): 213-235.
60 Mattern F. Ancient sand-rich submarine fans: Depositional systems, models, identification, and analysis [J]. Earth-Science Reviews, 2005, 70(3/4): 167-202.
61 Cullis S, Colombera L, Patacci M, et al. Hierarchical classifications of the sedimentary architecture of deep-marine depositional systems [J]. Earth-Science Reviews, 2018, 179: 38-71.
62 Clark J, Kenyon N, Pickering K. Quantitative analysis of the geometry of submarine channels: Implications for the classification of submarine fans [J]. Geology, 1992, 20(7): 633-636.
63 Mulder T. Gravity processes and deposits on continental slope, rise and abyssal plains [M]// Huneke H, Mulder T. Deep-sea Sediments, Developments in Sedimentology. Amsterdam: Elsevier, 2011: 25-148.
64 Nakajima T, Kneller B C. Quantitative analysis of the geometry of submarine external levées [J]. Sedimentology, 2013, 60(4): 877-910.
65 Mulder T, Etienne S. Lobes in deep-sea turbidite systems: State of the art [J]. Sedimentary Geology, 2010, 3(229): 75-80.
66 Liu Q, Kneller B, Fallgatter C, et al. Tabularity of individual turbidite beds controlled by flow efficiency and degree of confinement [J]. Sedimentology, 2018, 65(7): 2 368-2 387.
67 Jegou I, Savoye B, Pirmez C, et al. Channel-mouth lobe complex of the recent Amazon Fan: The missing piece [J]. Marine Geology, 2008, 252(1/2): 62-77.
68 S?mme T, Helland-Hansen W, Martinsen O, et al. Relationships between morphological and sedimentological parameters in source-to-sink systems: A basis for predicting semi-quantitative characteristics in subsurface systems [J]. Basin Research, 2009, 21(4): 361-387.
69 Prelat A, Hodgson D, Flint S. Evolution, architecture and hierarchy of distributary deep‐water deposits: A high‐resolution outcrop investigation from the Permian Karoo Basin, South Africa [J]. Sedimentology, 2009, 56(7): 2 132-2 154.
70 Prelat A, Covault J, Hodgson D, et al. Intrinsic controls on the range of volumes, morphologies, and dimensions of submarine lobes [J]. Sedimentary Geology, 2010, 232(1/2): 66-76.
71 T?kés L, Patacci M. Quantifying tabularity of turbidite beds and its relationship to the inferred degree of basin confinement [J]. Marine and Petroleum Geology, 2018, 97: 659-671.
72 Li Lei, Wang Yingmin, Zhang Lianmei, et al. Confined gravity flow sedimentary process and its impact on the lower continental slope, Niger Delta [J]. Science in China (Series D), 2010, 53: 1 169-1 175.
72 李磊, 王英民, 张莲美, 等. 尼日尔三角洲下陆坡限定性重力流沉积过程及响应 [J]. 中国科学: D辑, 2010, 40(11): 1 591-1 597.
73 Spychala Y T, Hodgson D M, Flint S, et al. Constraining the sedimentology and stratigraphy of submarine intraslope lobe deposits using exhumed examples from the Karoo Basin, South Africa [J]. Sedimentary Geology, 2015, 322: 67-81.
Outlines

/