Overview of the UAV—Based Eddy Covariance Fluxes Measurements Technique
Received date: 2019-04-21
Revised date: 2019-06-26
Online published: 2019-10-11
Supported by
the National Key Research and Development Program of China "Ecological security assessment;risk prediction and early warning technology for the Yangtze Delta Urban Agglomeration"(2016YFC0502702);The Ecology and Environment Protection and Supervision Project of the Ministry of Ecology and Environment;China "The biodiversity survey and assessment"(2019HJ2096001006)
Airborne Eddy Covariance (EC) method is one of the most effective ways to measure the turbulent fluxes over regional scale directly. The turbulent fluxes from airborne EC method have the same spatial scale with the pixel scale of remote sensing image and the grid scale of land-surface models, which is very important for the simulation of regional or global land-surface fluxes. UAV-based eddy covariance method could achieve the observation of turbulent fluxes in a multi-period and multi-sorties way, and the observation result is reliable and the application is inexpensive. It is an important development direction for airborne flux observation technique. After the introduction of the main technical characteristics of the airborne EC method, this paper reviewed the worldwide progress in UAV-based fluxes measurements system from these aspects of the specifications of the UAVs, the integrated instruments, and the analysis of the application cases. Then, the main sources of uncertainty affecting the UAV-based fluxes measurements were discussed. At last, the shortcomings of the current UAV-based flux observation system were summarized. A brief outlook about UAV-based fluxes measurements technique was also given.
Yibo Sun , De Su , Zhanjun Quan , Haolü Shang , Bing Geng , Xingwen Lin , Pingping Jing , Yang Bao , Yanhua Zhao , Wei Yang . Overview of the UAV—Based Eddy Covariance Fluxes Measurements Technique[J]. Advances in Earth Science, 2019 , 34(8) : 842 -854 . DOI: 10.11867/j.issn.1001-8166.2019.08.0842
1 | Liu Shaomin , Li Xiaowen , Shi Shengjin , et al . Measurement, analysis and application of surface energy and water vapor fluxes at large scale[J]. Advances in Earth Science,2010, 25(11): 1 113-1 127. |
1 | 刘绍民,李小文,施生锦,等 . 大尺度地表水热通量的观测、分析与应用[J]. 地球科学进展, 2010, 25(11): 1 113-1 127. |
2 | Bai J , Jia L , Liu S , et al . Characterizing the footprint of eddy covariance system and large aperture scintillometer measurements to validate satellite-based surface fluxes[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(5): 943-947. |
3 | Ma Y , Menenti M , Feddes R , et al . Analysis of the land surface heterogeneity and its impact on atmospheric variables and the aerodynamic and thermodynamic roughness lengths[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D8).DOI:10.1029/2007JD009124 . |
4 | Xu F , Wang W , Wang J , et al . Area-averaged evapotranspiration over a heterogeneous land surface: Aggregation of multi-point EC flux measurements with high-resolution land-cover map and footprint analysis[J]. Hydrology and Earth System Sciences, 2017, 21(8): 4 037-4 051. |
5 | Sun G , Hu Z , Sun F , et al . An analysis on the influence of spatial scales on sensible heat fluxes in the north Tibetan Plateau based on Eddy covariance and large aperture scintillometer data[J]. Theoretical and Applied Climatology, 2016, 129(3): 965-976. |
6 | Cammalleri C , Anderson M C , Kustas W P . Upscaling of evapotranspiration fluxes from instantaneous to daytime scales for thermal remote sensing applications[J]. Hydrology and Earth System Sciences, 2014, 18(5): 1 885-1 894. |
7 | Zhou Yanzhao , Li Xin . Progress in the energy closure of eddy covariance systems[J]. Advance in Earth Sciences,2018, 33(9): 898-913. |
7 | 周彦昭,李新 . 涡动相关能量闭合问题的研究进展[J]. 地球科学进展, 2018, 33(9): 898-913. |
8 | Li Xin , Jin Rui , Liu Shaomin , et al . Upscaling research in HiWATER: Progress and prospects[J]. Journal of Remote Sensing,2016, 20(5): 921-932. |
8 | 李新,晋锐,刘绍民,等 . 黑河遥感试验中尺度上推研究的进展与前瞻[J]. 遥感学报, 2016, 20(5): 921-932. |
9 | Li Huaixiang , Liu Shaomin , Shi Shengjin , et al . Assessing the performance of domestic optical large aperture scintillometer under different environment conditions[J]. Plateau Meteorology,2017, 36(2): 575-585. |
9 | 李怀香,刘绍民,施生锦,等 . 国产光学型大孔径闪烁仪的技术性能分析[J]. 高原气象, 2017, 36(2): 575-585. |
10 | Zhang Gong , Zheng Ning , Zhang Jinsong , et al . Advances in the study of regional-averaged evapotranspiration using the scintillation method[J]. Acta Ecologica Sinica,2018, 38(8): 2 625-2 635. |
10 | 张功,郑宁,张劲松,等 . 光闪烁方法测算区域蒸散研究进展[J]. 生态学报, 2018, 38(8): 2 625-2 635. |
11 | Zhang Gong , Zhang Jinsong , Meng Ping , et al . Application of two-wavelength bichromatic correlation method to calculate the average surface energy and water vapor fluxes in plantation North China[J]. Chinese Journal of Agrometeorology,2018, 39(6): 380-389. |
11 | 张功,张劲松,孟平,等 . 双波长交互法测算华北人工林平均水热通量的应用分析[J]. 中国农业气象, 2018, 39(6): 380-389. |
12 | Liu S , Xu Z , Song L , et al . Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces[J]. Agricultural and Forest Meteorology, 2016, 230/231: 97-113. |
13 | Gioli B , Miglietta F , Martino B D , et al . Comparison between tower and aircraft-based eddy covariance fluxes in five European regions[J]. Agricultural and Forest Meteorology, 2004, 127(1/2): 1-16. |
14 | Vellinga O S , Gioli B , Elbers J A , et al . Regional carbon dioxide and energy fluxes from airborne observations using flight-path segmentation based on landscape characteristics[J]. Biogeosciences, 2010, 7(4): 1 307-1 321. |
15 | Kral T S , Reuder J , Vihma T , et al . Innovative strategies for observations in the Arctic atmospheric boundary layer (ISOBAR)—The Hailuoto 2017 campaign[J]. Atmosphere, 2018, 9(7):268. |
16 | Jacob D J , Chilson B P , Houston L A , et al . Considerations for Atmospheric Measurements with Small Unmanned Aircraft Systems[J]. Atmosphere, 2018, 9(7):268. |
17 | Witte B M , Mullen J , Thamann M A , et al . Fundamental turbulence measurement with unmanned aerial vehicles (invited)[C]//8th AIAA Atmospheric and Space Environments Conference. Washington DC, 2016. |
18 | Elston J , Argrow B , Stachura M , et al . Overview of Small Fixed-Wing Unmanned Aircraft for Meteorological Sampling[J]. Journal of Atmospheric and Oceanic Technology, 2015, 32(1): 97-115. |
19 | Bean B R , Gilmer R , Grossman R L , et al . An analysis of airborne measurements of vertical water vapor flux during BOMEX[J]. Journal of the Atmospheric Sciences, 1972, 29(5): 860-869. |
20 | Bean B R , Reinking R F . Marine turbulent boundary layer fluxes of water vapor, sensible heat and momentum during gate[M] //Turbulent Fluxes Through the Sea Surface, Dynamics Wave , and Prediction . Boston, MA: Springer US, 1978: 21-33. |
21 | Desjardins R L , Brach E J , Alvo P , et al . Aircraft monitoring of surface carbon dioxide exchange[J]. Science, 1982, 216 (4 547): 733-735. |
22 | Gioli B , Miglietta F , Vaccari F P , et al . The Sky Arrow ERA, an innovative airborne platform to monitor mass, momentum and energy exchange of ecosystems[J]. Annals of Geophysics, 2006, 49: 109-116. |
23 | Desjardins R L , Worth D E , MacPherson J I , et al . Flux measurements by the NRC Twin Otter atmospheric research aircraft: 1987-2011[J]. Advances in Science and Research, 2016(13): 43-49. |
24 | Daida J M , Russell P B , Crawford T L , et al . An unmanned aircraft vehicle system for boundary-layer flux measurements over forest canopies[C]//Proceedings of IGARSS ' 9 -1994 IEEE International Geoscience and Remote Sensing Symposium. |
24 | Pasadena, CA, USA , 1994. |
25 | van den Kroonenberg A , Martin T , Buschmann M , et al . Measuring the wind vector using the autonomous mini aerial vehicle M2AV[J]. Journal of Atmospheric and Oceanic Technology, 2008, 25(11): 1 969-1 982. |
26 | Thomas R M , Lehmann K , Nguyen H , et al . Measurement of turbulent water vapor fluxes using a lightweight unmanned aerial vehicle system[J]. Atmospheric Measurement Techniques, 2012, (5): 243-257. |
27 | Reineman B D , Lenain L , Statom N M , et al . Development and testing of instrumentation for UAV-Based flux measurements within terrestrial and marine atmospheric boundary layers[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(7): 1 295-1 319. |
28 | Anderson K , Gaston K J . Lightweight unmanned aerial vehicles will revolutionize spatial ecology[J]. Frontiers in Ecology and the Environment, 2013, 11(3): 138-146. |
29 | Reuder J , B?serud L , Jonassen M O , et al . Exploring the potential of the RPA system SUMO for multipurpose boundary-layer missions during the BLLAST campaign[J]. Atmospheric Measurement Techniques, 2016, 9(6): 2 675-2 688. |
30 | Thomas R M , Lehmann K , Nguyen H , et al . Measurement of turbulent water vapor fluxes using a lightweight unmanned aerial vehicle system[J]. Atmospheric Measurement Techniques, 2012, 5: 243-257. |
31 | Lothon M , Lohou F , Pino D , et al . The BLLAST field experiment: Boundary-Layer late afternoon and sunset turbulence[J]. Atmospheric Chemistry and Physics, 2014, 14(20): 10 931-10 960. |
32 | Ramanathan V , Ramana M V , Roberts G , et al . Warming trends in Asia amplified by brown cloud solar absorption[J]. Nature, 2007, 448: 575-578. |
33 | Sun Yibo . Study of Airborne Eddy Covariance Regional Turbulent Water and Heat Fluxes Measurements Methods [D]. Beijing: Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences, 2018. |
33 | 孙义博 . 机载涡动相关区域湍流水热通量观测方法研究[D]. 北京: 中国科学院大学, 2018. |
34 | Vellinga O S , Dobosy R J , Dumas E J , et al . Calibration and quality assurance of flux observations from a small research aircraft[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(2): 161-181. |
35 | Alaoui-Sosse S , Durand P , Medina P , et al . OVLI-TA: An Unmanned Aerial System for measuring profiles and Turbulence in the Atmospheric Boundary Layer[J]. Sensors, 2019, 19(3): 581. |
36 | Rautenberg A , Graf S M , Wildmann N , et al . Reviewing wind measurement approaches for fixed-wing unmanned aircraft[J]. Atmosphere, 2018, 9(11):422. |
37 | Rautenberg A , Allgeier J , Jung S , et al . Calibration procedure and accuracy of wind and turbulence measurements with five-hole probes on fixed-wing unmanned aircraft in the atmospheric boundary layer and wind turbine wakes[J]. Atmosphere, 2019, 10(3):124. |
38 | Calmer R , Roberts G C , Preissler J , et al . Vertical wind velocity measurements using a five-hole probe with remotely piloted aircraft to study aerosol-cloud interactions[J]. Atmospheric Measurement Techniques, 2018, 11(5): 2 583-2 599. |
39 | Drüe C , Heinemann G . A review and practical guide to in-flight calibration for aircraft turbulence sensors[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(12): 2 820-2 837. |
40 | Crawford T L , Mcmillen R T , Dobosy R J , et al . Correcting airborne flux measurements for aircraft speed variation[J]. Boundary-Layer Meteorology, 1993, 66(3): 237-245. |
41 | Mayer S , Jonassen M O , Sandvik A , et al . Profiling the Arctic stable boundary layer in advent valley, Svalbard: Measurements and simulations[J]. Boundary-Layer Meteorology, 2012, 143(3): 507-526. |
42 | Reuder J , Jonassen M O , ólafsson H . The small unmanned meteorological observer SUMO: Recent developments and applications of a micro-UAS for atmospheric boundary layer research[J]. Acta Geophysica, 2012, 60(5): 1 454-1 473. |
43 | B?serud L , Reuder J , Jonassen M O , et al . Proof of concept for turbulence measurements with the RPAS SUMO during the BLLAST campaign[J]. Atmospheric Measurement Techniques, 2016, 9(10): 1-22. |
44 | B?serud L , Flügge M , Bhandari A , et al . Characterization of the SUMO turbulence measurement system for wind turbine wake assessment[J]. Energy Procedia, 2014, 53: 173-183. |
45 | Subramanian B , Chokani N , Abhari R S . Drone-based experimental investigation of three-dimensional flow structure of a multi-megawatt wind turbine in complex terrain[J]. Journal of Solar Energy Engineering, 2015, 137(5): 51 007. |
46 | Frew E W , Elston J , Argrow B , et al . Sampling severe local storms and related phenomena: Using unmanned aircraft systems[J]. IEEE Robotics & Automation Magazine, 2012, 19(1): 85-95. |
47 | Wildmann N , Hofs?? M , Weimer F , et al . MASC — A small Remotely Piloted Aircraft (RPA) for wind energy research[J]. Advances in Science and Research, 2014, 11(1): 55-61. |
48 | Spiess T , Bange J , Buschmann M , et al . First application of the meteorological Mini-UAV 'M2AV'[J]. Meteorologische Zeitschrift, 2007, 16(2): 159-169. |
49 | Martin S , Bange J , Beyrich F . Meteorological profiling of the lower troposphere using the research UAV “M2AV Carolo”[J]. Atmospheric Measurement Techniques, 2011, (4): 705-716. |
50 | Lampert A , P?tzold F , Jiménez M A , et al . A study of local turbulence and anisotropy during the afternoon and evening transition with an unmanned aerial system and mesoscale simulation[J]. Atmospheric and Chemistry and Physics, 2016, 16(12): 8 009-8 021. |
51 | Martin S , Beyrich F , Bange J . Observing entrainment processes using a small unmanned aerial vehicle: A feasibility study[J]. Boundary-Layer Meteorology, 2014, 150(3): 449-467. |
52 | Hesselbarth H , Neininger B . UAV-platform UMARS2 for environmental research[C]//First Conference for Atmospheric Research Using Remotely-Piloted Aircraft. Palma de Mallorca,Balearic Islands, Spain, 2013. |
53 | Reineman B D , Lenain L , Melville W K . The use of ship-launched fixed-wing UAVs for measuring the marine atmospheric boundary layer and ocean surface processes[J]. Journal of Atmospheric and Oceanic Technology, 2016, 33(9): 2 029-2 052. |
54 | Altst?dter B , Platis A , Wehner B , et al . ALADINA — An unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer[J]. Atmospheric Measurement Techniques, 2015,(8): 1 627-1 639. |
55 | B?rfuss K , P?tzold F , Altst?dter B , et al . New setup of the UAS ALADINA for measuring boundary layer properties, Atmospheric particles and solar radiation[J]. Atmosphere, 2018, 9(1):28. |
56 | Metzger S , Junkermann W , Butterbach-Bahl K , et al . Measuring the 3-D wind vector with a weight-shift microlight aircraft[J]. Atmospheric Measurement Techniques, 2011, 4(7): 1 421-1 444. |
57 | Wildmann N , Ravi S , Bange J . Towards higher accuracy and better frequency response with standard multi-hole probes in turbulence measurement with Remotely Piloted Aircraft (RPA)[J]. Atmospheric Measurement Techniques, 2014, 6(6): 9 783-9 818. |
58 | Garman K E , Hill K A , Wyss P , et al . An airborne and wind tunnel evaluation of a wind turbulence measurement system for aircraft-based flux measurements[J]. Journal of Atmospheric and Oceanic Technology, 2006, 23: 1 696-1 708. |
59 | Sun Y , Jia L , Chen Q , et al . Optimizing window length for turbulent heat flux calculations from airborne eddy covariance measurements under near neutral to unstable atmospheric stability conditions[J]. Remote Sensing, 2018, 5(10): 670. |
60 | Sun J , Howell J F , Esbensen S K , et al . Scale dependence of air-sea fluxes over the western equatorial Pacific[J]. Journal of the Atmospheric Sciences, 1996, 53(21):2 997-3 012. |
61 | Mahrt L , Macpherson J I , Desjardins R . Observations of fluxes over heterogeneous surfaces[J]. Boundary-Layer Meteorology, 1994, 4(67): 345-367. |
62 | Mahrt L . Flux sampling errors for aircraft and towers[J]. Journal of Atmospheric and Oceanic Technology, 1998, 15(2): 416-429. |
63 | Witte M B , Singler F R , Bailey C S . Development of an unmanned Aerial vehicle for the measurement of turbulence in the atmospheric boundary layer[J]. Atmosphere, 2017, 8(10): 195. |
64 | Finkelstein P L , Sims P F . Sampling error in eddy correlation flux measurements[J]. Journal of Geophysical Research, 2001, 106(D4): 3 503-3 509. |
65 | Aubinet M . Eddy covariance CO2 flux measurements in nocturnal conditions: an analysis of the problem[J]. Ecological Applications, 2008, 18(6): 1 368-1 378. |
66 | Mitic C M , Schuepp P H , Desjardins R L , et al . Flux association in coherent structures transporting CO2, H2O, heat and ozone over the code grid site[J]. Agricultural and Forest Meteorology, 1997, 87(1): 27-39. |
/
〈 |
|
〉 |