The Maximum Entropy Production Approach for Estimating Evapotranspiration: Principle and Applications
Received date: 2018-09-04
Revised date: 2019-05-10
Online published: 2019-07-05
Supported by
Foundation item: Project supported by the Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering “Multiscale indicators of climate induced hydrologic cycle change over China”(No. 2017490311);The National Natural Science Foundation of China “Nonparametric approach for estimating evapotranspiration with hysterestic effect”(No. 51879255)
This review introduces a novel method for modeling evapotranspiration and surface heat fluxes built on the theory of Maximum Entropy Production (MEP) as an application of the maximum entropy principle to non-equilibrium thermodynamic systems. The formulation of the MEP model uses the Bayesian probability theory, information theory through the concept of information entropy, and the similarity theory of the atmospheric boundary-layer turbulence. The MPE model provides simultaneous solution of latent, sensible and surface medium heat fluxes using only three input variables: net radiation, surface temperature and specific humidity. A unique feature of the MEP model is that the surface energy balance is closed at a range of space and time scales. The model does not require data of temperature and water vapor gradient, wind speed and surface roughness. It does not include empirical tunable parameters such as atmospheric and stomatal conductance. The MEP model is a promising new approach for the study of water and energy cycles of the Earth system across space-time scales.
Jingfeng Wang , Yuanbo Liu , Ke Zhang . The Maximum Entropy Production Approach for Estimating Evapotranspiration: Principle and Applications[J]. Advances in Earth Science, 2019 , 34(6) : 596 -605 . DOI: 10.11867/j.issn.1001-8166.2019.06.0596
1 | Henderson-Sellers A , Yang Z , Dickinson R . The project for intercomparison of land-surface parameterization schemes [J]. Bulletin of the American Meteorological Society, 1993, 74 (7): 1 335-1 349. |
2 | Wang J , Salvucci G , Bras R . An extremum principle of evaporation [J]. Water Resources Research, 2004, 40(9): W09303. DOI:10.1029/2004WR003087 . |
3 | Wang J , Bras R , Lerdau M , et al . A maximum hypothesis of transpiration [J]. Journal of Geophysical Research—Biogeosciences, 2007, 112(G3). DOI:10.1029/2006JG000255 . |
4 | Wang J , Bras R . Ground heat flux estimated from surface soil temperature [J]. Journal of Hydrology, 1999, 216(3/4): 214-226. |
5 | Wang Z , Bou-Zeid E . A novel approach for the estimation of soil ground heat flux [J]. Agricultural and Forest Meteorology, 2012, 154/155: 214-221. |
6 | Lu P , Liu Y , Hiyama T . Linking surface temperature based approaches for estimating soil heat flux with error propagation [J]. Atmosphere and Climate Science, 2012, 4(1): 29-41. |
7 | Jaynes E , Bretthorst G . Probability Theory—The Logic of Science [M]. New York: Cambridge University Press, 2003. |
8 | Bayes R . An essay toward solving a problem in the doctrine of chances [J]. Philosophical Transactions of the Royal Society, 1763,53:370-418. |
9 | Bernoulli J . Ars Conjectandi [M]. Basel: Thurnisiorum, 1713. |
10 | Laplace P . Mémoire sur la probabilité des causes par les événements[J]. Mémoires de l'Académie Royale des Sciences, 1774, 6: 621-656. |
11 | Cox R . Probability, frequency, and reasonable expectation [J]. American Journal of Physics, 1946, 14(1): 1-13. |
12 | Polya G . Mathematics and Plausible Reasoning [M]. New Jersey: Princeton University Press, 1954. |
13 | Jaynes E . Information theory and statistics mechanics [J]. Physical Review, 1957, 106(4): 620-630. |
14 | Shannon C . A mathematical theory of communication [J]. Bell System Technical Journal, 1948, 27(3): 379-423. |
15 | Tribus M . Thermostatics and Thermodynamics—An Introduction to Energy, Information and States of Matters, with Engineering Applications [M]. New Jersey: Van Nostrand Reinhold, 1961. |
16 | Paltridge G . Global dynamics and climate—A system of minimum entropy exchange [J]. Quarterly Journal of the Royal Meteorological Society, 1975, 101(429): 475-484. |
17 | Ozawa H , Ohmura A , Lorenz R , et al . The second law of thermodynamics and the global climate system: A review of the maximum entropy production principle [J]. Review of Geophysics, 2003, 41(4): 1 018. |
18 | Kleidon A , Fraedrich K . Biotic entropy production and global atmosphere-biosphere interaction [M]//Kleidon A, Lorenz R,eds. Non-equilibrium Thermodynamics and the Production of Entropy. Heidelberg: Springer, 2004: 173-189. |
19 | Juretic D , Zupanovic P . Photosynthetic models with maximum entropy production in irreversible charge transfer steps [J]. Computational Biology and Chemistry, 2003, 27(6): 541-553. |
20 | Dewar R . Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states [J]. Journal of Physics A: Mathematical and General, 2003, 36(3): 631-641. |
21 | Dewar R . Maximum entropy production and the fluctuation theorem [J]. Journal of Physics A: Mathematical and General, 2005, 38(21): L371-L381. |
22 | Dewar R , Maritan A . A theoretical basis for maximum entropy production [M]//Dewar R,ed. Beyond the Second Law: Entropy Production and Non-Equilibrium Systems. Berlin Heidelberg: Springer, 2014: 49-71. |
23 | Kleidon A , Schymanski S . Thermodynamics and optimality of the water budget on land: A review [J]. Geophysical Research Letters, 2008, 35(20). DOI:10.1029/2008GL035393 . |
24 | Wang J , Bras R . A model of surface heat fluxes based on the theory of maximum entropy production [J]. Water Resources Research, 2009, 45(11). DOI:10.1029/2009WR007900 . |
25 | Monin A , Obukhov A . Basic turbulence mixing laws in the atmospheric surface layer [J]. Trudy Geologicheskogo Instituta Akademiya Nauk, Svaz Sovetskych Socialistickych Republik, 1954, 24(151): 163-187. |
26 | Wang J , Bras R . An extremum solution of the Monin-Obukhov similarity equations [J]. Journal of Atmospheric Science, 2010, 67(2): 485-499. |
27 | Edelfsen N , Anderson B . Thermodynamics of soil moisture [J]. Hilgardia, 1943, 15 (2): 31-298. |
28 | Wang J , Bras R . A model of evapotranspiration based on the theory of maximum entropy production [J]. Water Resources Research, 2011, 47(3). DOI:10.1029/2010WR009392 . |
29 | Huang S , Wang J . A coupled force-restore model of surface temperature and soil moisture using the maximum entropy production model of heat fluxes [J]. Journal of Geophysical Research-Atmosphere, 2016, 121(13): 7 528-7 547. |
30 | Hajji I , Nadeau D , Music B , et al . Application of the maximum entropy production model of evapotranspiration over partially vegetated water-limited land surfaces [J]. Journal of Hydrometeorology, 2018, 19(6): 989-1 005. |
31 | Priestley C . Turbulent Transfer in the Lower Atmosphere[M]. Chicago: University of Chicago Press, 1959. |
32 | Hajji I , Nadeau D , Music B , et al . Maximum Entropy Production Model of water vapor fluxes over a seasonal snowpack [J]. Journal of Hydrology,2019,in review. |
33 | Wang J , Bras R , Nieves V , et al . A model of energy budgets over water, snow and ice surfaces [J]. Journal of Geophysical Research—Atmosphere, 2014, 119(10): 6 034-6 051. |
34 | Li Zhiwei , Yang Dawen , Lei Huimin . Evapotranspiration model based on the maximum entropy production principle [J]. Journal of Tsinghua University(Science and Technology), 2012, 52(6): 785-790. |
34 | 李志威,杨大文,雷慧闽 .基于最大熵增原理的蒸发蒸腾量模型应用[J]. 清华大学学报:自然科学版, 2012, 52(6): 785-790. |
35 | Wang H , Tetzlaff D , Soulsby C . Testing the maximum entropy production approach for estimating evapotranspiration from closed canopy shrub land in a low‐energy humid environment [J]. Hydrological Processes, 2017, 31(25): 4 613-4 621. |
36 | Xu D , Agee E , Wang J , et al . Estimation of evapotranspiration of Amazon rainforest using the maximum entropy production method [J]. Geophysical Research Letters, 2019, 46(3): 1 402-1 412. |
37 | McMahon T , Peel M , Lowe L , et al . Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: A pragmatic synthesis [J]. Hydrology and Earth Systtem Sciences, 2013, 17(4): 1 331-1 363. |
38 | Huang S , Deng Y , Wang J . Revisiting the global surface energy budgets with maximum-entropy-production model of surface heat fluxes [J]. Climate Dynamics, 2017, 49(5/6): 1 531-1 545. |
39 | Nearing G , Moran M , Scott R , et al . Coupling diffusion and maximum entropy models to estimate thermal inertia [J]. Remote Sensing Environment, 2012, 119: 222-231. |
40 | Chen J , Deng Y , Wang J , et al . Hindcasting the Madden-Julian oscillation with a new parameterization of surface heat fluxes [J]. Journal of Advances in Modeling Earth Systems, 2017, 9(7): 2 696-2 709. |
/
〈 |
|
〉 |