Global Ocean Data Assimilation System Design and Algorithm Acceleration Based on Local Ensemble Transform Kalman Filter
Received date: 2019-01-21
Revised date: 2019-04-02
Online published: 2019-07-04
Supported by
Project supported by the National Key R&D Program of China “Development and evaluation of seamless climate prediction system based on high resolution climate system model”(No. 2016YFA0602100)
An integrated analysis about computational time complexity of the Local Ensemble Transform Kalman Filter (LETKF) was performed. It is found that the calculation step of inverse matrix of the error covariance in ensemble space is the most computationally intensive and time consuming. In a parallel computing environment, the uneven distribution of CPU calculations in this step directly leads to low computational efficiency. To solve this problem, a new load balancing strategy was designed based on the "greedy algorithm". A high-performance parallel ocean data assimilation system based on the LETKF was developed and tested using this strategy. This system was based on the Parallel Ocean Program 2 (POP2) of the Community Earth System Model (CESM). The optimal interpolated sea surface temperature data (OISST) and Argo temperature profile data from January to February, 2004 were assimilated into the POP2. The results show that data assimilation effectively reduces the root mean square error of temperature and salinity. Using the new strategy, the exact same results are obtained but the computation time is reduced by half. At higher resolution (0.1°×0.1°),the computing performance is still doubled, indicating that this load balancing scheme is stable and reliable. In addition, the new method has high scalability and portability with great potential to be applied in operational forecasting.
Zheng Fan , Hong Li , Xiangwen Liu , Fanghua Xu . Global Ocean Data Assimilation System Design and Algorithm Acceleration Based on Local Ensemble Transform Kalman Filter[J]. Advances in Earth Science, 2019 , 34(5) : 531 -539 . DOI: 10.11867/j.issn.1001-8166.2019.05.0531
1 | Shen Zheqi , Tang Youmin , Gao Yanqiu . The theoretical framework of the ensemble-based data assimilation method and its prospect in oceanic data assimilation[J]. Acta Oceanologica Sinica, 2016, 38(3):1-14. |
1 | 沈浙奇, 唐佑民, 高艳秋 . 集合资料同化方法的理论框架及其在海洋资料同化的研究展望[J]. 海洋学报, 2016, 38(3):1-14. |
2 | Wang Shihong , Zhao Yiding , Yin Xunqiang , et al . Current status of global ocean reanalysis datasets [J]. Advances in Earth Science, 2018, 33(8):794-807. |
2 | 王世红,赵一丁,尹训强,等 . 全球海洋再分析产品的研究现状[J]. 地球科学进展, 2018, 33(8):794-807. |
3 | Le Dimet F X , Talagrand O . Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects[J]. Tellus A: Dynamic Meteorology and Oceanography, 1986, 38(2):97-110. |
4 | Li Hong , Xu Jianping . Development of data assimilation and its application in ocean science[J]. Marine Science Bulletin, 2011, 30(4):463-472. |
4 | 李宏, 许建平 . 资料同化技术的发展及其在海洋科学中的应用[J]. 海洋通报, 2011, 30(4):463-472. |
5 | Kalman R E . A new approach to linear filtering and prediction problems[J]. Journal of Fluids Engineering, 1960,81(1):35-45. |
6 | Evensen G . Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics[J]. Journal of Geophysical Research: Oceans, 1994, 99(C5):10 143-10 162. |
7 | Hunt B R , Kostelich E J , Szunyogh I . Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter[J]. Physica D, 2007, 230(1/2):112-126. |
8 | Miyoshi T , Aranami K . Applying a four-dimensional local ensemble transform Kalman filter (4D-LETKF) to the JMA nonhydrostatic model (NHM)[J]. Sola, 2006, 2: 128-131. |
9 | Miyoshi T .Ensemble data assimilation for idealized California current system with ROMS-LETKF[C]//14th Symposium on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Surface Land . 2010. |
10 | Xu F H , Oey L Y . State analysis using the Local Ensemble Transform Kalman Filter (LETKF) and the three-layer circulation structure of the Luzon Strait and the South China Sea[J]. Ocean Dynamics, 2014, 64(6):905-923. |
11 | Mcphaden M J , Busalacchi A J , Cheney R , et al . The Tropical Ocean‐Global Atmosphere observing system: A decade of progress[J]. Journal of Geophysical Research: Oceans, 1998,103(C7). DOI:10.1029/97JC0926 . |
12 | Riser S C , Freeland H J , Roemmich D , et al . Fifteen years of ocean observations with the global Argo array[J]. Nature Climate Change, 2016, 6(2):145-153. |
13 | Miyoshi T , Yamane S , Enomoto T . Localizing the error covariance by physical distances within a local ensemble transform Kalman filter (LETKF)[J]. Sola, 2007, 3: 89-92. |
14 | Bonavita M , Torrisi L , Marcucci F . The ensemble Kalman filter in an operational regional NWP system: Preliminary results with real observations[J]. Quarterly Journal of the Royal Meteorological Society, 2008, 134(636): 1 733-1 744. |
15 | Miyoshi T , Sato Y , Kadowaki T . Ensemble Kalman filter and 4D-Var intercomparison with the Japanese operational global analysis and prediction system[J]. Monthly Weather Review, 2010, 138(7): 2 846-2 866. |
16 | Wan Xiuquan , Liu Zedong , Shen Biao , et al . Introduction to the Community Earth System Model and application to high performance computing [J]. Advances in Earth Science, 2014, 29(4):482-491. |
16 | 万修全,刘泽栋,沈飙,等 . 地球系统模式CESM及其在高性能计算机上的配置应用实例[J]. 地球科学进展, 2014, 29(4):482-491. |
17 | Reynolds R W , Smith T M , Liu C , et al . Daily high-resolution-blended analyses for sea surface temperature[J]. Journal of Climate, 2007, 20(22):5 473-5 496. |
18 | Penny S G , Kalnay E , Carton J A , et al . The local ensemble transform Kalman filter and the running-in-place algorithm applied to a global ocean general circulation model[J]. Nonlinear Processes in Geophysics, 2013, 20(6):1 031-1 046. |
19 | Xu F H , Oey L Y , Miyazawa Y , et al . Hindcasts and forecasts of Loop Current and eddies in the Gulf of Mexico using local ensemble transform Kalman filter and optimum-interpolation assimilation schemes[J]. Ocean Modelling, 2013, 69: 22-38. |
20 | Penny S G . Data Assimilation of the Global Ocean Using the 4D Local Ensemble Transform Kalman Filter (4D-LETKF) and the Modular Ocean Model (MOM2)[D]. Maryland:University of Maryland, 2011. |
21 | Hayes B . Computing science: The easiest hard problem[J]. American Scientist, 2002, 90(2):113-117. |
22 | Korf R E . Multi-way number partitioning[C]//International Joint Conference on Ijcai. DBLP, 2009. |
23 | Ahmed M S , Nisha T A . Solving K-Set Partition Problem Using Genetic Algorithm[R]. Chicago:East West University, 2014. |
24 | Karmarker N , Karp R M . The Differencing Method of Set Partitioning[M]. Campbell Hall:Berkeley California University of California at Berkeley, 1983. |
25 | Cormen T H , Leiserson C E , Rivest R L , et al . Introduction to Algorithms (original book third edition)[J]. Computer Education, 2013(10):237, 161-192. |
25 | Cormen T H , Leiserson C E , Rivest R L ,等 . 算法导论(原书第3版)[J]. 计算机教育, 2013(10):237, 161-192. |
26 | Large W G , Yeager S G . Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies[J]. National Center for Atmospheric Research, 2004. DOI:10.5065/D6KK98Q6 . |
/
〈 |
|
〉 |