The State of Arts: Sources, Microbial Processes and Ecological Effects of Iron in the Marine Environment

  • Shibo Feng ,
  • Yuelu Jiang ,
  • Zhonghua Cai ,
  • Yanhua Zeng ,
  • Jin Zhou
Expand
  • 1. School of Environment, Tsinghua University, Beijing 100084 China
    2. Division of Ocean Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 China
Feng Shibo(1994-), male, Dingzhou City, Hebei Province, Master student. Research areas include marine microbial ecology.E-mail:fsb17@mails.tsinghua.edu.cn

Received date: 2018-09-11

  Revised date: 2019-01-27

  Online published: 2019-07-04

Supported by

Project supported by the National Natural Science Foundation of China “Regulation of quorum sensing mediated colony behavior on algae production and elimination”(No. 41476092)

Abstract

Iron is the fourth most abundant element in the earth's crust, and it often appears as a trace element in the ocean. Iron has a variable valence and diverse functions, and is an important force to regulate marine primary productivity and drive the geochemical cycle in the ocean. Previous studies have shown that iron plays an important role in maintaining primary productivity, coupling matter cycles, and regulating the transformation of biogenic factors. In recent years, with the development of microbial ecology, iron research has enter more in-depth levels, including microbial-driven iron oxidation-reduction behavior, metabolic processes, and interactions with other major elements(C/N/P). This paper attempts to review the latest progress of iron, focusing on the published literatures of the past fifteen years. Firstly, we explained the sources and occurrence states of iron in the ocean (such as dissolved, colloidal, granular and organic state); Secondly, we reviewed the types and process mechanisms of microbial-mediated iron redoxbehavior (for example nitrate oxidation, and biological reduction, etc.); Finally, we summarized the coupling relationship between iron and C/N/P cycle. Additionally, the ecological roles of iron in specific ecological event (for instance algal bloom) has also been described. Furthermore, the "chemical-biological-physical" theoretical framework for marine iron research is also discussed. The purpose of this paper is to provide more information for marine microecological research and their effects on iron cycle under changing environment, such as global change.

Cite this article

Shibo Feng , Yuelu Jiang , Zhonghua Cai , Yanhua Zeng , Jin Zhou . The State of Arts: Sources, Microbial Processes and Ecological Effects of Iron in the Marine Environment[J]. Advances in Earth Science, 2019 , 34(5) : 513 -522 . DOI: 10.11867/j.issn.1001-8166.2019.05.0513

References

1 Birchill A J , Hartner N T , Kunde K , et al . The eastern extent of seasonal iron limitation in the high latitude North Atlantic Ocean [J]. Scientific Reports, 2019, 9(1): 1 435.
2 Tu Xiaoxia . The effect of iron to the primary production in the ocean[J]. Journal of Agricultural Mechanization Research, 2007, (3): 18-20.
2 屠霄霞 . 铁对海洋初级生产力的影响[J]. 农机化研究, 2007, (3): 18-20.
3 Martin J H , Gordon M , Fitzwater S E . The case for iron [J]. Limnology & Oceanography, 1991, 36(8): 1 793-1 802.
4 Hogle S L , Barbeau K A , Gledhill M . Heme in the marine environment: From cells to the iron cycle [J]. Metallomics, 2014, 6(6): 1 107-1 120.
5 Emerson D . Biogenic iron dust: A novel approach to ocean iron fertilization as a means of large scale removal of carbon dioxide from the atmosphere [J]. Frontiers in Marine Science, 2019, 6: 22.
6 Watson A J , Bakker D C E , Ridgwell A J , et al . Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2 [J]. Nature, 2000, 407(6 805): 730.
7 Zhou L , Tan Y , Huang L , et al . Aluminum effects on marine phytoplankton: Implications for a revised iron hypothesis (Iron-Aluminum Hypothesis) [J]. Biogeochemistry, 2018, 139(2): 123-137.
8 Tagliabue A , Bowie A R , Boyd P W , et al . The integral role of iron in ocean biogeochemistry [J]. Nature, 2017, 543(7 643): 51-59.
9 Norman L , Cabanesa D J , Blanco-Ameijeiras S , et al . Iron biogeochemistry in aquatic systems: From source to bioavailability [J]. Chimia International Journal for Chemistry, 2014, 68(11): 764-771.
10 Havens S M , Hassler C S , North R L , et al . Iron plays a role in nitrate drawdown by phytoplankton in Lake Erie surface waters as observed in lake-wide assessments [J]. Canadian Journal of Fisheries & Aquatic Sciences, 2012, 69(2): 369-381.
11 Qin Yanwen , Zhang Manping . Iron sources, existing forms and their limiting action on the primary productivity of phytoplankton in seawater[J]. Advances in Marine Science, 1998,16(3): 67-75.
11 秦延文, 张曼平 . 海洋中铁的来源、形态和对初级生产力的限制作用[J]. 海洋科学进展, 1998,16(3): 67-75.
12 Birchill A J , Hartner N T , Kunde K , et al . The eastern extent of seasonal iron limitation in the high latitude North Atlantic Ocean [J]. Scientific Reports, 2019, 9(1): 1 435.
13 Naito K , Matsui M , Imai I . Ability of marine eukaryotic red tide microalgae to utilize insoluble iron [J]. Harmful Algae, 2005, 4(6): 1 021-1 032.
14 McRose D L , Seyedsayamdost M R , Morel F M M . Multiple siderophores: Bug or feature? [J]. Journal of Biological Inorganic Chemistry, 2018, 23(7): 983-993.
15 Kazamia E , Sutak R , Paz-Yepes J , et al . Endocytosis-mediated siderophore uptake as a strategy for Fe acquisition in diatoms [J]. Science Advances, 2018, 4(5):eaar4 536.
16 Blain S , Tagliabue A . Iron Cycle in Oceans[M]. Hoboken,New Jersey: John Wiley & Sons, 2016.
17 Wells M L , Trick C G , Cochlan W P , et al . Domoic acid: The synergy of iron, copper, and the toxicity of diatoms [J]. Limnology and Oceanography, 2005, 50(6): 1 908-1 917.
18 Decho A W , Gutierrez T . Microbial Extracellular Polymeric Substances (EPSs) in ocean systems [J]. Frontiers in Microbiology, 2017, 8: 922.
19 Hassler C S , Schoemann V , Nichols C M , et al . Saccharides enhance iron bioavailability to Southern Ocean phytoplankton [J]. Proceedings of the National Academy of Sciences, 2011, 108(3): 1 076-1 081.
20 Tortell P D , Maldonado M T , Price N M . The role of heterotrophic bacteria in iron-limited ocean ecosystems [J]. Nature, 1996, 383(6 598): 330-332.
21 Bonnain C , Breitbart M , Buck K N . The ferrojan horse hypothesis: Iron-virus interactions in the ocean [J]. Frontiers in Marine Science, 2016, 3: 82.
22 Mackey K R , Post A F , Mcilvin M R , et al . Divergent responses of Atlantic coastal and oceanic Synechococcus to iron limitation [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(32): 9 944-9 949.
23 Hogle S L , Bianca B , Barbeau K A . Direct heme uptake by phytoplankton-associated roseobacter bacteria [J]. Msystems, 2017, 2(1): e00124-16.
24 Maldonado M T , Price N M . Utilization of iron bound to strong organic ligands by plankton communities in the subarctic Pacific Ocean [J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 1999, 46(11/12): 2 447-2 473.
25 Johnson K S , Gordon R M , Coale K H . What controls dissolved iron concentrations in the world ocean?[J]. Marine Chemistry, 1997, 57(3/4): 137-161.
26 Chen Lei , Zhang Hongxia , Li Ying , et al . The role of microorganisms in the geochemical iron cycle[J]. Scientia Sinica Vitae, 2016, 46(9): 1 069-1 078.
26 陈蕾,张洪霞,李莹,等 .微生物在地球化学铁循环过程中的作用[J]. 中国科学:生命科学, 2016, 46(9): 1 069-1 078.
27 Straub K L , Benz M , Schink B . Iron metabolism in anoxic environments at near neutral pH [J]. Fems Microbiology Ecology, 2000, 34(3): 181-186.
28 Makita H . Iron-oxidizing bacteria in marine environments: Recent progresses and future directions [J]. World Journal of Microbiology and Biotechnology, 2018, 34(8): 110.
29 Emerson D . The role of iron-oxidizing bacteria in biocorrosion: A review [J]. Biofouling, 2018,34(9):989-1 000.
30 Nelson Y M , Lion L W , Ghiorse W C , et al . Production of biogenic Mn oxides by leptothrix discophora SS-1 in a chemically defined growth medium and evaluation of their Pb adsorption characteristics [J]. Applied and Environmental Microbiology, 1999, 65(1): 175-180.
31 Makita H . Iron-oxidizing bacteria in marine environments: Recent progresses and future directions [J]. World Journal of Microbiology and Biotechnology, 2018, 34(8): 110.
32 Bryce C , Blackwell N , Schmidt C , et al . Microbial anaerobic Fe(II) oxidation-ecology, mechanisms and environmental implications [J]. Environmental Microbiology, 2018,20(10):3 462-3 483.
33 Kappler A , Schink B , Newman D K . Fe(III) mineral formation and cell encrustation by the nitrate-dependent Fe(II)-oxidizer strain BoFeN1 [J]. Geobiology, 2010, 3(4):235-245.
34 Chakraborty A , Picardal F . Neutrophilic, nitrate-dependent, Fe(II) oxidation by a dechloromonas species [J]. World Journal of Microbiology Biotechnology, 2013, 29(4): 617-623.
35 Fleming E J , Langdon A E , Martinez-Garcia M , et al . What's new is old: Resolving the identity of leptothrix ochracea using single cell genomics, pyrosequencing and fish [J]. PLoS ONE, 2011, 6(3): e17769.
36 Hu Min , Li Fangbai . Soil microbe mediated iron cycling and its environmental implication[J]. Acta Pedologica Sinica, 2014,5(14): 683-698.
36 胡敏,李芳柏 .土壤微生物铁循环及其环境意义[J]. 土壤学报, 2014,5(14): 683-698.
37 Luo Hailin , Tang Jia , Zhou Puxiong , et al . Influence of secondary iron-oxide mineralization induced by dissimilatory iron reduction bacteria on fraction transformation of heavy metals in soil[J]. Chinese Journal of Ecology, 2018, 37(6): 1 620- 1 627.
37 罗海林, 汤佳, 周普雄, 等 . 异化铁还原诱导次生铁矿对土壤重金属形态转化的影响[J]. 生态学杂志, 2018, 37(6): 1 620-1 627.
38 Lovley D R . Dissimilatory Fe(III) and Mn(IV) reduction [J]. Advances in Microbial Physiology, 2004, 49(2): 259-287.
39 Ebrahiminezhad A , Manafi Z , Berenjian A , et al . Iron-reducing bacteria and iron nanostructures [J]. Journal of Advanced Medical Sciences and Applied Technologies, 2017, 3(1): 9-16.
40 Lovley D R . Microbial Fe(III) reduction in subsurface environments [J]. Fems Microbiology Reviews, 2010, 20(3/4): 305-313.
41 Newsome L , Lopez Adams R , Downie H F , et al . NanoSIMS imaging of extracellular electron transport processes during microbial iron (III) reduction [J]. FEMS Microbiology Ecology, 2018, 94(8):fiy104.
42 Shi L , Richardson D J , Wang Z , et al . The roles of outer membrane cytochromes of Shewanella and Geobacter in extracellular electron transfer [J]. Environmental Microbiology Reports, 2009, 1(4): 220-227.
43 Wang Wenyan , Quan Xiangchun , He Mengchang , et al . Review on the mechanism and development of ferric iron microbial reduction[J]. Environmental Pollution & Control, 2006, 28(2): 116-120.
43 王文燕,全向春,何孟常,等 . Fe(Ⅲ)微生物还原机理及其研究进展[J]. 环境污染与防治, 2006, 28(2): 116-120.
44 Conway T M , John S G . Quantification of dissolved iron sources to the North Atlantic Ocean [J]. Nature, 2014, 511(7 508): 212-215.
45 Gruber N . Elusive marine nitrogen fixation [J]. Proceedings of the National Academy of Sciences, 2016, 113(16): 4 246-4 248.
46 Weber T , Deutsch C . Local versus basin-scale limitation of marine nitrogen fixation [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(24): 8 741-8 746.
47 Kopf S H , Henny C , Newman D K . Ligand-enhanced abiotic iron oxidation and the effects of chemical versus biological iron cycling in anoxic environments [J]. Environmental Science and Technology, 2013, 47: 2 602-2 611.
48 Slomp C P , Mort H P , Jilbert T , et al . Coupled dynamics of iron and phosphorus in sediments of an oligotrophic coastal basin and the impact of anaerobic oxidation of methane [J]. PLoS ONE, 2013, 8(4): e62386.
49 Eberlein T , Van de Waal D B , Brandenburg K M , et al . Interactive effects of ocean acidification and nitrogen limitation on two bloom-forming dinoflagellate species [J]. Marine Ecology Progress Series, 2016, 543: 127-140.
50 Hayes C T , Wallace D J . Exploring records of Saharan dust transport and hurricanes in the Caribbean and Gulf of Mexico over recent millennia [C]//AGU Fall Meeting. AGU Fall Meeting Abstracts, 2017.
51 Lin Xiaojuan , Gao Shan , Zhang Tianyu , et al . Research progress and application status of seawater eutrophication evaluation methods[J]. Advances in Earth Science, 2018, 33(4): 373-384.
51 林晓娟,高姗,仉天宇,等 . 海水富营养化评价方法的研究进展与应用现状[J]. 地球科学进展, 2018, 33(4): 373-384.
52 Boyd P W , Strzepek R F , Ellwood M J , et al . Why are biotic iron pools uniform across high-and low-iron pelagic ecosystems? [J]. Global Biogeochemical Cycles, 2015, 29(7): 1 028-1 043.
53 Firme G F , Rue E L , Weeks D A , et al . Spatial and temporal variability in phytoplankton iron limitation along the California coast and consequences for Si, N, and C biogeochemistry [J]. Global Biogeochemical Cycles, 2003, 17(1).DOI:10.1029/2001GB001824 .
54 Schlosser C , Klar J K , Wake B D , et al . Seasonal ITCZ migration dynamically controls the location of the (sub)tropical Atlantic biogeochemical divide [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(4): 1 438-1 442.
55 Hutchins D A , Boyd P W . Marine phytoplankton and the changing ocean iron cycle [J]. Nature Climate Change, 2016, 6(12): 1 072-1 079.
56 Weng Huanxin , Sun Xiangwei , Chen Jingfeng , et al . Limitation and synergistic effect of iron and phosphorus on the fulminant proliferation of prodinoflagellates and cryptophyta [J]. Progress in Natural Science, 2006, 16(6): 705-711.
56 翁焕新, 孙向卫, 陈静峰,等 .铁和磷对原甲藻和隐藻暴发性增殖的限制与协同影响[J]. 自然科学进展, 2006, 16(6): 705-711.
57 Fonseca-Batista D , Dehairs F , Riou V , et al . Nitrogen fixation in the eastern Atlantic reaches similar levels in the Southern and Northern Hemisphere [J]. Journal of Geophysical Research: Oceans, 2017, 122(1): 587-601.
58 Boyd P W , Ellwood M J . The biogeochemical cycle of iron in the ocean [J]. Nature Geoscience, 2010, 3(10): 675-682.
59 Tagliabue A , Williams R G , Rogan N , et al . A ventilation- based framework to explain the regeneration-scavenging balance of iron in the ocean [J]. Geophysical Research Letters, 2015, 41(20): 7 227-7 236.
60 Holzer M , DeVries T , Bianchi D , et al . Objective estimates of mantle 3He in the ocean and implications for constraining the deep ocean circulation [J]. Earth and Planetary Science Letters, 2017, 458: 305-314.
61 Emilie L R , Virginie S , Charette M A , et al . The Ra-226-Ba relationship in the North Atlantic during GEOTRACES-GA01 [J]. Biogeosciences, 2018, 15(9): 3 027-3 048.
Outlines

/