Research on the Application of MEMS Sensors to Slope Monitoring Treated by Bolts

  • Wenlong Li ,
  • Yan Gao
Expand
  • 1. School of Earth Sciences and Engineering,Sun Yat-sen University,Guangzhou 510275,China
    2. Guangdong Province Key Laboratory of Geodynamics and Geohazards, Guangzhou 510275, China
Li Wenlong(1996-), male, Hulun Buir City, Inner Mongolia Autonomous Region, Master student. Research areas include engineering geology and geotechnical engineering. E-mail:liwl26@mail2.sysu.edu.cn|Li Wenlong(1996-), male, Hulun Buir City, Inner Mongolia Autonomous Region, Master student. Research areas include engineering geology and geotechnical engineering. E-mail:liwl26@mail2.sysu.edu.cn

Received date: 2018-11-16

  Revised date: 2019-02-27

  Online published: 2019-05-27

Supported by

Project supported by the National Key Research and Development Program “Integrated design technology for rail transit facing the whole life cycle cost”(No.2017YFB1201102);The Guangdong Natural Science Fund Program “Research on intelligent soil for metro tunnel deformation monitoring based on MEMS”(No.2018A0303130154)

Abstract

The landslide can destroy all kinds of constructions, and seriously hinder people's production and life as well as the development of national economy. Bolt is one of the main methods for slope treatment, but it is difficult to monitor its construction quality and anchoring effect directly. With the rise and development of MEMS (Micro-electro mechanical system) technology, MEMS sensors, with the advantages of small size, low cost and high precision, quickly come out from the conventional monitoring methods and provide new possibilities for the monitoring field in geological engineering. In this paper, based on MEMS sensors, a model test was designed to explore the stability of the slope after treatment by bolts. Natural river sands were used to prepare slopes with angle of 45° through the air-plluviation method. In addition, the tests were divided into two groups (with or without bolts). MEMS sensors were set up in the slope to wirelessly and continually capture the acceleration, angular velocity and angle of slope sliding triggered by simulated rainfall in real-time. It was found that: with no treatment, the acceleration and angle in the interior and the bottom of the slope gradually changed during rainfall, while those parameters in the rear and the surface of the slope had no significant change, which indicated that the slope creep mainly occurred in the interior and the bottom of the slope before failure. When landslides occurred, the movement monitoring indexes in the interior and the bottom of the slope suddenly changed, followed by those in the rear and the surface of the slope, which means that when the sandy slope slides, the interior and the bottom of the slope slides first, and then the rear and the surface of the slope surface fail. This is a typical retrogressive landslide. After the slope was treated by bolts, only creep could be observed during long-term rainfall, and the acceleration and angle in the bottom, interior and surface of the slope gradually changed, while almost no change was found in the rear of the slope, which shows that under rainfall conditions, overall creep occurs for the slope after reinforcement, the slope angle decreases, and there is no landside. The experimental results prove that MEMS sensors can realize low-cost, high-precision, continuous real-time monitoring of slope, and can capture gradual changes of movements before failure and the sudden change when landslide occurs. It should play a certain role in the study of landslide mechanism and landslide warning, and has a broad application in the field of geological engineering monitoring.

Cite this article

Wenlong Li , Yan Gao . Research on the Application of MEMS Sensors to Slope Monitoring Treated by Bolts[J]. Advances in Earth Science, 2019 , 34(4) : 439 -448 . DOI: 10.11867/j.issn.1001-8166.2019.04.0439

References

1 Goodman R E , Kieffer D S . Behavior of rock in slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering,2000,128(8):675-654.
2 Bjerrum D L . Progressive failure in slopes of over consolidated plastic clay and clay shales[J]. Journal of the Soil Mechanics and Foundations Division, 1967,93(SM1):1-14.
3 Chowdhury R N , Dimitri A G . Probabilitic model of progressice failure of slopes[J]. Journal of the Geotechnical Engineering Division, 1982, 108(GT6):803-819.
4 Chowdhury R N , Tang W H , Sidi I . Reliability model of progressive slope failure[J]. Geotechnique,1987,37(4):467-481.
5 Ye Genfei . Experimental Study on Load Transfer Law and Anchorage Characteristics of Rock-soil Anchorage [D]. Xi'an:Xi'an University of Science and Technology, 2012.
5 叶根飞 . 岩土锚固荷载传递规律与锚固特性试验研究[D].西安:西安科技大学,2012.
6 Hou Chaojiong . Roadway Surrounding Rock Control [M]. Xuzhou: China University of Mining and Technology Press, 2013.
6 侯朝炯 .巷道围岩控制[M].徐州:中国矿业大学出版社,2013.
7 Geng Weihong , Luo Chunhua . Geotechnical engineering and its application [J]. Exploration Engineering, 1997, (4): 8-10.
7 耿卫红,罗春华 .岩土锚固工程技术及其应用[J].探矿工程,1997,(4):8-10.
8 He Ruolan , Zhang Ping , Liu Baozhu . Theoretical and numerical analysis of bolt drawing test [J]. Geotechnical Mechanics, 2006, 27(Suppl.1): 855-859.
8 贺若兰,张平,刘宝珠 .锚杆拉拔试验的理论和数值分析[J].岩土力学,2006,27(增刊1):855-859.
9 Wei Lide , Ye Zhihua , Chen Congxin . A calculation model of bolt and its application in rock slope bolt support [J]. Chinese Journal of Geotechnical Engineering, 2008,30(5): 732-738.
9 韦立德,叶志华,陈从新 . 一种锚杆计算模型及其在岩坡锚杆支护中的应用[J].岩土工程学报,2008,30(5):732-738.
10 Wei Lide , Chen Congxin . Study on numerical simulation method of three-dimensional bolt [J]. Geotechnical Mechanics, 2007, 28(Suppl.1):315-320.
10 韦立德,陈从新 . 三维锚杆数值模拟方法研究[J].岩土力学,2007,28(增刊1):315-320.
11 He Siming , Li Xinpo . Study on the action mechanism of prestressed bolt [J]. Chinese Journal of Rock Mechanics and Engineering, 2006,25 (9): 1 876-1 880.
11 何思明,李新坡 .预应力锚杆作用机制研究[J]. 岩石力学与工程学报,2006,25(9): 1 876-1 880.
12 He Siming , Tian Jinchang , Zhou Jianting . Study on load transfer characteristics of cementing prestressed anchor cable anchorage section [J]. Chinese Journal of Rock Mechanics and Engineering, 2006,25(1):117-121.
12 何思明,田金昌,周建庭 .胶结式预应力锚索锚固段荷载传递特性研究[J].岩石力学与工程学报,2006,25(1):117-121.
13 Xu Jianqiang , Yang Jianguo , Yan Zongling , et al . Intelligent safety monitoring and on-site disaster warning technology of highway slope safety [J]. Soil Engineering and Foundation, 2017,31(2):240-243.
13 徐建强,杨建国,阎宗岭,等 .公路边坡危岩智能安全监测及现场灾害报警技术[J].土工基础,2017,31(2):240-243.
14 Sun Huafen . Study on the Monitoring and Prediction of the Slope of Jian-shan Phosphate Rock [D]. Kunming:Kunming University of Science and Technology, 2014.
14 孙华芬 . 尖山磷矿边坡监测及预测预报研究[D].昆明:昆明理工大学,2014.
15 Peng Dalei , Xu Qiang , Dong Xiujun , et al . Application of UAV low-altitude photogrammetry in loess landslide investigation and evaluation[J]. Advances in Earth Science, 2017,32(3):319-330.
15 彭大雷,许强,董秀军,等 .无人机低空摄影测量在黄土滑坡调查评估中的应用[J].地球科学进展,2017,32(3):319-330.
16 Yin Jianhua , Ding Xiaoli , Yang Yuwen , et al . Conventional instrument combined with GPS automatic remote control of the slope monitoring system [J]. Chinese Journal of Rock Mechanics and Engineering, 2004,23(3): 357-364.
16 殷建华,丁晓利,杨育文,等 .常规仪器与全球定位仪相结合的全自动化遥控边坡监测系统[J].岩石力学与工程学报,2004,23(3):357-364.
17 Liang Zhigang , Chen Yunmin , Chen Renpeng , et al . The coaxial cable of the electromagnetic wave reflection technique monitoring of landslide research [J]. Chinese Journal of Geotechnical Engineering, 2005, 27(4): 453-458.
17 梁志刚,陈云敏,陈仁朋,等 .同轴电缆电磁波反射技术监测滑坡研究[J].岩土工程学报,2005,27(4):453-458.
18 Wu Xiaolan , Tu Yaqing . A new method of landslide monitoring—TDR technology analysis [J]. Chinese Journal of Rock Mechanics and Engineering,2002,21(5):740-744.
18 邬晓岚,涂亚庆 .滑坡监测的一种新方法——TDR技术探析[J].岩石力学与工程学报,2002,21(5):740-744.
19 Qiu Dandan , Lu Xinhai , Li Pei . Monitoring and warning system of high and steep slope of DMCC based on GPS and GIS [J]. Journal of Wuhan Institute of Technology,2010,32(1):16-18.
19 邱丹丹,卢新海,李沛 .基于GPS和GIS的大冶铁矿高陡边坡监测预警系统[J].武汉工程大学学报,2010,32(1):16-18.
20 Yang Zhen . Research and Application of a New Type of Measurement Method [D]. Zhenjiang:Jiangsu University of Science and Technology, 2016.
20 杨振 . 一种新型的索力测量方法研究及应用[D].镇江:江苏科技大学,2016.
21 Sun Jian . Application of fiber Bragg grating displacement sensor in slope monitoring [J]. Industry and Mine Automation,2014,40(2):95-98.
21 孙健 .光纤光栅位移传感器在边坡监测中的应用研究[J].工矿自动化,2014,40(2):95-98.
22 Shi Bin , Xu Hongzhong , Zhang Dan , et al . Feasibility study on application of BOTDR strain monitoring technology in health diagnosis of large-scale foundation works [J]. Chinese Journal of Rock Mechanics and Engineering, 2004,23(3):493-499.
22 施斌,徐洪钟,张丹,等 . BOTDR应变监测技术应用在大型基础工程健康诊断中的可行性研究[J].岩石力学与工程学报,2004,23(3):493-499.
23 Song Xiaoyu , Gao Jun , Li Xin , et al . Urban sustainability evaluation based on remote sensing and network data support: Progress and prospect [J]. Advances in Earth Science, 2018,33(10):1 075-1 083.
23 宋晓谕,高峻,李新,等 .遥感与网络数据支撑的城市可持续性评价:进展与前瞻[J].地球科学进展,2018,33(10):1 075-1 083.
24 Wang Shuhua . Current status and application of MEMS sensors [J]. Microelectronic Technology, 2011,48(8):516-522.
24 王淑华 .MEMS传感器现状及应用[J].微纳电子技术,2011,48(8):516-522.
25 Bachiochi J . What's the slope? Use an accelerometer to measure slope[J]. Circuit Cellar, 2007,202:72-77.
26 Abdoun T , Bennett V , Thevanayagam S , et al . Wireless MEMS-based system for real-time geotechnical instrumentation of active slopes[J]. Safety and Security Engineering III,2009(108):617-624.
27 Bennett V , Abdoun T , Shantz T , et al . Design and characterization of a compact array of MEMS accelerometers for geotechnical instrumentation[J]. Smart Structures and Systems, 2009,5(6):663-679.
28 Ooi G L , Wang Y H , Wong T W , et al . An exploratory study on using miniature sensors to monitor landslide motion[C]// 7th International Conference on Physical Modelling in Geotechnics (ICPMG 2010),
28 Zurich, Switzerland , 2010:367-372.
29 Chang D T T , Li L G , Kai C Y , et al . Study of Wireless Sensor Network (WSN) using for slope stability monitoring[C]// 2011 International Conference on Electric Technology and Civil Engineering. Lushan: IEEE, 2011: 6877-6 880.
30 Wang L , Shunsaku N , Taro U , et al . An early warning system of unstable slopes by multi-point MEMS tilting sensors and water contents[C]// Workshop on World Landslide Forum. Cham: Springer, 2017: 147-154.
31 Wang L , Shunsaku N , Ichiro S , et al . Case histories of slope failure and landslide disaster prevention by using a low cost tilt sensor monitoring system[M]// Engineering Geology for Society and Territory-Volume 2. Cham: Springer, 2015: 631-635.
32 Wang L , Shunsaku N , Taro U , et al . Distributed tilt sensors for an early warning monitoring of Earthquake-induced landslides and slope failures[C]// New Advances in Geotechnical Engineering. 2018:346-352.
33 Ikuo T , Taro U , Ichiro S , et al . Monitoring of unstable slopes by MEMS tilting sensors and its application to early warning[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2015, 26(1): 012049.
34 Mao L M , Bian J R . Design and implementation of a certain kind of long-span continuous displacement measurement system based on MEMS acceleration sensors' array shaped as a line[J]. Measurement & Control Technology, 2015(34):8-11.
35 Murakami S , Dairaku A , Komine H , et al . Monitoring system for slope stability under rainfall by using MEMS acceleration sensor IC tags[C]// IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2013, 16(1): 012024.
36 Wang C C , Chang W J , Huang A B , et al . Simplified monitoring and warning system against rainfall-induced shallow slope failures[J]. Canadian Geotechnical Journal, 2018(55):1 421-1 432.
37 Yang Z J , Shao W , Qiao J P , et al . A multi-source early warning system of MEMS based wireless monitoring for rainfall-induced landslides[J]. Applied Sciences-Basel, 2017(7). DOI: 10.3390/app7121234.
38 Li Xunchang . Experimental Study on Large-scale Physical Model of Landslide and Bolt Anti-slide Pile Interaction [D]. Xi'an:Chang 'an University,2011.
38 李寻昌 . 滑坡与锚杆抗滑桩相互作用的大型物理模型试验研究[D].西安:长安大学,2011.
39 Lu Yingfa , Huang Xuebin , Liu Defu . Progressive failure mechanism and stability analysis of progressive landslide [J]. Chinese Journal of Rock Mechanics and Engineering, 2016,35(2):1-48.
39 卢应发,黄学斌,刘德富 .推移式滑坡渐进破坏机制及稳定性分析[J].岩石力学与工程学报,2016,35(2):1-48.
Outlines

/