2018 , Vol. 33 >Issue 11: 1181 - 1192
DOI: https://doi.org/10.11867/j.issn.1001-8166.2018.11.1181.
Advances and Challenges in the Study on the Tropical Rainfall Changes Under Global Warming*
First author:Huang Ping (1982-), male, Zizhong County, Sichuan Province, Professor. Research areas include tropical air-sea interaction and climate change. E-mail: huangping@mail.iap.ac.cn
Received date: 2018-06-06
Revised date: 2018-10-10
Online published: 2018-12-21
Supported by
Foundation item:Project supported by the National Natural Science Foundation of China "Mechanisms of the response of tropical regional climate to global warming"(No.41722504);The Fundamental Research Funds for the Central Universities.
Copyright
Since tropical rainfall is important in the global energy and hydrologic cycle, the tropical rainfall changes under global warming have attracted extensive attention around the world in recent decades. The advances in the observational studies and model projection for the tropical rainfall changes under global warming were reviewed here. The frontiers in the mechanism of regional tropical rainfall changes and the approaches of rainfall change research are summarized. The large intermodel spread in the multi-model projections, the sources of uncertainty and the methods to reduce the uncertainty were also introduced. Finally, the challenges about the tropical rainfall changes were discussed.
Ping Huang , Shijie Zhou . Advances and Challenges in the Study on the Tropical Rainfall Changes Under Global Warming*[J]. Advances in Earth Science, 2018 , 33(11) : 1181 -1192 . DOI: 10.11867/j.issn.1001-8166.2018.11.1181.
[1] | Trenberth K E.Changes in precipitation with climate change[J]. Climate Research, 2011, 47(1): 123-138. |
[2] | Trenberth K E,Dai A,Rasmussen R O Y M, et al. The changing character of precipitation[J]. Bulletin of the American Meteorological Society, 2003, 84(9): 1205-1217. |
[3] | Li Donghuan,Zou Liwei,Zhou Tianjun.Changes of extreme indices over China in response to 1. 5 ℃ global warming projected by a regional climate model[J]. Advances in Earth Science, 2017, 32(4): 446-457. |
[3] | [李东欢, 邹立维, 周天军. 全球1.5 ℃温升背景下中国极端事件变化的区域模式预估[J]. 地球科学进展, 2017, 32(4): 446-457.] |
[4] | Zhang Jianyun,Wang Guoqing,Liu Jiufu, et al. Review on worldwide studies for impact of climate change on water[J]. Yangtze River, 2009,40(8): 39-40. |
[4] | [张建云, 王国庆, 刘九夫, 等. 国内外关于气候变化对水的影响的研究进展[J]. 人民长江, 2009,40(8): 39-40.] |
[5] | Li Fengping,Zhang Guangxin,Dong Liqin.Studies for impact of climate change on hydrology and water resources[J]. Scientia Geographica Sinica, 2013, 33(4): 457-464. |
[5] | [李峰平, 章光新, 董李勤. 气候变化对水循环与水资源的影响研究综述[J]. 地理科学, 2013, 33(4): 457-464.] |
[6] | Deng Wei,Zhao Wei,Liu Bintao, et al. Water security and the countermeasures in South Asia based on the "belt and road" initiative[J]. Advances in Earth Science, 2018, 33(7): 687-701. |
[6] | [邓伟, 赵伟, 刘斌涛, 等. 基于“一带一路”的南亚水安全与对策[J]. 地球科学进展, 2018, 33(7): 687-701.] |
[7] | Christensen J H,Kumar K K,Aldrian E,et al.Climate phenomena and their relevance for future regional climate change[M]∥Stocker T F, Qin D, Plattner G K,et al,eds. Climate Change 2013: The Physical Science Basis. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2013. |
[8] | Huang P.Regional response of annual-mean tropical rainfall to global warming[J]. Atmospheric Science Letters, 2014, 15(2): 103-109. |
[9] | Huang P,Xie S P.Mechanisms of change in ENSO-induced tropical Pacific rainfall variability in a warming climate[J]. Nature Geoscience, 2015, 8(12): 922-926. |
[10] | Huang P,Xie S P,Hu K, et al. Patterns of the seasonal response of tropical rainfall to global warming[J]. Nature Geoscience, 2013, 6(5): 357-361. |
[11] | Wentz F J,Ricciardulli L,Hilburn K A, et al. How much more rain will global warming bring[J]. Science, 2007, 317(5 835): 233-235. |
[12] | Collins M,Knutti R,Arblaster J,et al.Long-term climate change: Projections, commitments and irreversibility[M]∥Stocker T F, Qin D, Plattner G K,et al,eds. Climate Change 2013: The Physical Science Basis. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2013. |
[13] | Lau W K M,Wu H T,Kim K M. A canonical response of precipitation characteristics to global warming from CMIP5 models[J]. Geophysical Research Letters, 2013, 40(12): 3 163-3 169. |
[14] | Westra S,Fowler H J,Evans J P, et al. Future changes to the intensity and frequency of short-duration extreme rainfall[J]. Reviews of Geophysics, 2014, 52(3): 522-555. |
[15] | Chou C,Chen C,Tan P, et al. Mechanisms for global warming impacts on precipitation frequency and intensity[J]. Journal of Climate, 2012, 25(9): 3 291-3 306. |
[16] | Xie S P,Deser C,Vecchi G A, et al. Global warming pattern formation: Sea surface temperature and rainfall[J]. Journal of Climate, 2010, 23(4): 966-986. |
[17] | Chou C,Neelin J D,Chen C A, et al. Evaluating the "rich-get-richer" mechanism in tropical precipitation change under global warming[J]. Journal of Climate, 2009, 22(8): 1 982-2 005. |
[18] | Held I M,Soden B J.Robust responses of the hydrological cycle to global warming[J]. Journal of Climate, 2006, 19: 5 686-5 699. |
[19] | Adler R F,Huffman G J,Chang A, et al. The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979-present)[J]. Journal of Hydrometeorology, 2003, 4(6): 1 147-1 167. |
[20] | Chou C,Chiang J C H,Lan C W, et al. Increase in the range between wet and dry season precipitation[J]. Nature Geoscience, 2013, 6(4): 263-267. |
[21] | Allan R P,Soden B J,John V O, et al. Current changes in tropical precipitation[J]. Environmental Research Letters, 2010, 5(2). DOI:10.1088/1748-9326/5/2/025205. |
[22] | Marvel K,Bonfils C.Identifying external influences on global precipitation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(48): 19 301-19 306. |
[23] | Vecchi G A, Soden B J.Global warming and the weakening of the tropical circulation[J]. Journal of Climate, 2007, 20(17): 4 316-4 340. |
[24] | Greve P,Orlowsky B,Mueller B, et al. Global assessment of trends in wetting and drying over land[J]. Nature Geoscience, 2014, 7(10): 716-721. |
[25] | Hegerl G C,Black E,Allan R P, et al. Challenges in quantifying changes in the global water cycle[J]. Bulletin of the American Meteorological Society, 2015, 96(7): 1 097-1 115. |
[26] | Neelin J D,Münnich M,Su H, et al. Tropical drying trends in global warming models and observations[J]. Proceedings of the National Academy of Sciences, 2006, 103(16): 6 110-6 115. |
[27] | Chadwick R, Good P, Martin G, et al. Large rainfall changes consistently projected over substantial areas of tropical land[J]. Nature Climate Change, 2015, 6(2): 177-181. |
[28] | Zhang X, Zwiers F W, Hegerl G C, et al. Detection of human influence on twentieth-century precipitation trends[J]. Nature, 2007, 448(7 152): 461-465. |
[29] | Ma J, Xie S P.Regional patterns of sea surface temperature change: A source of uncertainty in future projections of precipitation and atmospheric circulation[J]. Journal of Climate, 2013, 26(8): 2 482-2 501. |
[30] | Ma J,Chadwick R,Seo K H, et al. Responses of the tropical atmospheric circulation to climate change and connection to the hydrological cycle[J]. Annual Review of Earth and Planetary Sciences, 2018, 46(1): 549-580. |
[31] | Allan R P, Soden B J.Atmospheric warming and the amplification of precipitation extremes[J]. Science, 2008, 321(5 895): 1 481-1 484. |
[32] | Lenderink G, Van Meijgaard E.Increase in hourly precipitation extremes beyond expectations from temperature changes[J]. Nature Geoscience, 2008, 1(8): 511-514. |
[33] | Trenberth K E.Atmospheric moisture residence times and cycling: Implications for rainfall rates and climate change[J]. Climatic Change, 1998, 39(4): 667-694. |
[34] | Boer G J.Climate change and the regulation of the surface moisture and energy budgets[J]. Climate Dynamics, 1993, 8(5): 225-239. |
[35] | Allen M R,Ingram W J.Constraints on future changes in climate and the hydrologic cycle[J]. Nature, 2002, 419(6 903): 224-232. |
[36] | Stephens G L,Ellis T D.Controls of global-mean precipitation increases in global warming gcm experiments[J]. Journal of Climate, 2008, 21(23): 6 141-6 155. |
[37] | Stephens G L,Li J,Wild M, et al. An update on Earth's energy balance in light of the latest global observations[J]. Nature Geoscience, 2012, 5(10): 691-696. |
[38] | Richter I,Xie S P.Muted precipitation increase in global warming simulations: A surface evaporation perspective[J]. Journal of Geophysical Research, 2008, 113(D24). DOI:10.1029/2008JD010561. |
[39] | Vecchi G A,Soden B J,Wittenberg A T, et al. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing[J]. Nature, 2006, 441(7 089): 73-76. |
[40] | Chou C,Neelin J D.Mechanisms of global warming impacts on regional tropical precipitation[J]. Journal of Climate, 2004, 17: 2 688-2 701. |
[41] | Seager R, Naik N, Vecchi G A.Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming[J]. Journal of Climate, 2010, 23(17): 4 651-4 668. |
[42] | Long S M, Xie S P.Intermodel variations in projected precipitation change over the North Atlantic: Sea surface temperature effect[J]. Geophysical Research Letters, 2015, 42(10): 4 158-4 165. |
[43] | Neelin J D,Battisti D S,Hirst A C, et al. ENSO theory[J]. Journal of Geophysical Research, 1998, 103(C7): 14 261-14 290. |
[44] | Alexander M A, Blade I, Newman M, et al. The atmospheric bridge: The influence of ENSO teleconnections on air-sea interaction over the global oceans[J]. Journal of Climate, 2002, 15(16): 2 205-2 231. |
[45] | Deser C, Alexander M A, Xie S, et al. Sea surface temperature variability: Patterns and mechanisms[J]. Annual Review of Marine Science, 2010, 2(1): 115-143. |
[46] | Mcphaden M J, Zebiak S E, Glantz M H.ENSO as an integrating concept in earth science[J]. Science, 2006, 314(5 806): 1 740-1 745. |
[47] | Power S, Delage F, Chung C, et al. Robust twenty-first-century projections of El Ni?o and related precipitation variability[J]. Nature, 2013, 502(7 472): 541-545. |
[48] | Chung C T Y,Power S B,Arblaster J M, et al. Nonlinear precipitation response to El Ni?o and global warming in the Indo-Pacific[J]. Climate Dynamics, 2013, 42(7/8): 1 837-1 856. |
[49] | Seager R,Naik N,Vogel L.Does global warming cause intensified interannual hydroclimate variability?[J]. Journal of Climate, 2012, 25(9): 3 355-3 372. |
[50] | Cai W,Borlace S, Lengaigne M, et al. Increasing frequency of extreme El Ni?o events due to greenhouse warming[J]. Nature Climate Change, 2014, 4(2): 111-116. |
[51] | Zhou Z Q,Xie S P,Zheng X T, et al. Global warming-induced changes in El Ni?o teleconnections over the North Pacific and North America[J]. Journal of Climate, 2014, 27(24): 9 050-9 064. |
[52] | Kug J S,An S I,Ham Y G, et al. Changes in El Ni?o and La Ni?a teleconnections over North Pacific-America in the global warming simulations[J]. Theoretical and Applied Climatology, 2009, 100(3/4): 275-282. |
[53] | DiNezio P N,Clement A C,Vecchi G A, et al. Climate response of the equatorial Pacific to global warming[J]. Journal of Climate, 2009, 22(18): 4 873-4 892. |
[54] | Kent C,Chadwick R,Rowell D P.Understanding uncertainties in future projections of seasonal tropical precipitation[J]. Journal of Climate, 2015, 28(11): 4 390-4 413. |
[55] | Shepherd T G.Atmospheric circulation as a source of uncertainty in climate change projections[J]. Nature Geoscience, 2014, 7(10): 703-708. |
[56] | Bony S,Bellon G,Klocke D, et al. Robust direct effect of carbon dioxide on tropical circulation and regional precipitation[J]. Nature Geoscience, 2013, 6(6): 447-451. |
[57] | Hawkins E,Sutton R.The potential to narrow uncertainty in projections of regional precipitation change[J]. Climate Dynamics, 2011, 37(1/2): 407-418. |
[58] | Lau W K M,Kim K M. Robust Hadley circulation changes and increasing global dryness due to CO2 warming from CMIP5 model projections[J]. Proceedings of the National Academy of Sciences, 2015, 112(12): 3 630-3 635. |
[59] | Tao L,Hu Y,Liu J.Anthropogenic forcing on the Hadley circulation in CMIP5 simulations[J]. Climate Dynamics, 2015, 46(9/10): 3 337-3 350. |
[60] | Hu Y,Fu Q.Observed poleward expansion of the Hadley circulation since 1979[J]. Atmospheric Chemistry and Physics, 2007, 7(19): 5 229-5 236. |
[61] | Fu Q,Johanson C M,Wallace J M, et al. Enhanced mid-latitude tropospheric warming in satellite measurements[J]. Science, 2006, 312(5 777): 1 179. |
[62] | Schneider T,Bischoff T,Haug G H.Migrations and dynamics of the intertropical convergence zone[J]. Nature, 2014, 513(7 516): 45-53. |
[63] | Hu Y,Li D,Liu J.Abrupt seasonal variation of the ITCZ and the Hadley circulation[J]. Geophysical Research Letters, 2007, 34(18): L18814. DOI: 10.1029/2007GL030950. |
[64] | Chadwick R,Boutle I,Martin G.Spatial patterns of precipitation change in CMIP5: Why the rich do not get richer in the tropics[J]. Journal of Climate, 2013, 26(11): 3 803-3 822. |
[65] | Su H, Jiang J H,Zhai C, et al. Weakening and strengthening structures in the Hadley circulation change under global warming and implications for cloud response and climate sensitivity[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(10): 5 787-5 805. |
[66] | Lin J L.The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean-atmosphere feedback analysis[J]. Journal of Climate, 2007, 20(18): 4 497-4 525. |
[67] | Bayr T,Dommenget D.The tropospheric land-sea warming contrast as the driver of tropical sea level pressure changes[J]. Journal of Climate, 2013, 26(4): 1 387-1 402. |
[68] | Xie S P,Deser C,Vecchi G A, et al. Towards predictive understanding of regional climate change[J]. Nature Climate Change, 2015, 5(10): 921-930. |
[69] | IPCC. Climate Change 2013: The Physical Science Basis[M]. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press,2013. |
[70] | Goddard L M,Kumar A,Solomon A, et al. A verification framework for interannual-to-decadal predictions experiments[J]. Climate Dynamics, 2013, 40(1): 245-272. |
[71] | Deser C,Phillips A S,Alexander M A.Twentieth century tropical sea surface temperature trends revisited[J]. Geophysical Research Letters, 2010, 37(10). DOI:10.1029/2010GL043321. |
[72] | Brown J N,Sen Gupta A,Brown J R, et al. Implications of CMIP3 model biases and uncertainties for climate projections in the western tropical Pacific[J]. Climatic Change, 2013, 119(1): 147-161. |
[73] | Cox P M,Pearson D,Booth B B, et al. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability[J]. Nature, 2013, 494(7 437): 341-344. |
[74] | Bracegirdle T J,Stephenson D B.On the robustness of emergent constraints used in multimodel climate change projections of Arctic warming[J]. Journal of Climate, 2013, 26(2): 669-678. |
[75] | Collins M,Chandler R E,Cox P M, et al. Quantifying future climate change[J]. Nature Climate Change, 2012, 2(6): 403-409. |
[76] | Huang P,Ying J.A multimodel ensemble pattern regression method to correct the tropical Pacific SST change patterns under global warming[J]. Journal of Climate, 2015, 28(12): 4706-4 723. |
[77] | Hall A.Projecting regional change[J]. Science, 2014, 346(6216): 1 461-1 462. |
[78] | Collins M,Minobe S,Barreiro M, et al. Challenges and opportunities for improved understanding of regional climate dynamics[J]. Nature Climate Change, 2018, 8(2): 101-108. |
[79] | Luan Yihua,Yu Yongqiang,Zheng Weipeng.Review of development and application of high resolution global climate system model[J]. Advances in Earth Science, 2016, 31(3): 258-268. |
[79] | [栾贻花, 俞永强, 郑伟鹏. 全球高分辨率气候系统模式研究进展[J]. 地球科学进展, 2016, 31(3): 258-268.] |
[80] | Ying J,Huang P.Cloud-radiation feedback as a leading source of uncertainty in the tropical Pacific SST warming pattern in CMIP5 models[J]. Journal of Climate, 2016, 29(10): 3 867-3 881. |
[81] | Zhou Z,Xie S.Effects of climatological model biases on the projection of tropical climate change[J]. Journal of Climate, 2015, 28(24): 9 909-9 917. |
/
〈 |
|
〉 |