The Genesis, Classification, Problems and Prospects of Microbial Carbonates:Implications from the Cambrian Carbonate of North China Platform

  • Long Wang ,
  • Latif Khalid ,
  • Riaz Muhammad ,
  • Xiaoye Liu
Expand
  • 1.School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
    2.National Centre of Excellence in Geology, University of Peshawar, Peshawar 25130, Pakistan

First author:Wang Long(1990-),male,Huining County,Gansu Province, Ph.D student. Research areas include sedimentology and petroleum geology. E-mail:wanglong1127@163.com

Received date: 2018-04-12

  Revised date: 2018-09-04

  Online published: 2018-11-16

Supported by

Project supported by the National Natural Science Foundation of China "Study on the diversity of sedimentary fabrics of cambrian microbial mound on the northern margin of the North China Platform"(No.41472090).

Copyright

地球科学进展 编辑部, 2018,

Abstract

Currently, sedimentologists focus on the challenging issue of microbial carbonates, which are regarded as "one of the sedimentary rocks most difficult to study", having complicated sedimentary fabric. Their characteristic features closely related to microbial activity, distributed over a long period of geological time, and formed in diversified sedimentary environments. The main research concentrations are the calcified microbial mats and biofilms in geological records as the products of lithification and diagenesis. Starting from the origin, this paper systematically reviewed and explained the processes dwelling within two types of microbial communities, the thinner biofilm and the thicker microbial mat, which enabled them to convert into microbial carbonates through biomineralization and lithification. This study proposed that the existence of multiple microbial mats was another important cause for the diversification and complexity of microbial carbonates in addition to its complex depositional process. Moreover, the sedimentary characteristics and classification of different types of microbial carbonates were reviewed, exemplifying the Cambrian microbial carbonates in the North China Platform. These microbial carbonates are suggested to be placed under "bindstone" after Embry and Kloven, which can be further divided into 5 types, stromatolites, thrombolites, oncolites, laminites and leiolites. Dendrolite is not categorized as a separate class, instead attributed to thrombolites. The microbial carbonates may possess good source rock potential because of the enriched organic content, and may also serve as hydrocarbon reservoirs because of certain microbial textures and fabrics leading to significant porosity and permeability. Because of their biomineralization processes related to microbial activity, the microbial carbonates are not only an important window to understand the evolution of the earth's surface environment, but also capable of forming large-scale reservoirs, and their scientific and economic values are self-evident.

Cite this article

Long Wang , Latif Khalid , Riaz Muhammad , Xiaoye Liu . The Genesis, Classification, Problems and Prospects of Microbial Carbonates:Implications from the Cambrian Carbonate of North China Platform[J]. Advances in Earth Science, 2018 , 33(10) : 1005 -1023 . DOI: 10.11867/j.issn.1001-8166.2018.10.1005.

References

[1] Burne R V, Moore L S.Microbialites, organosedimentary deposits of benthic microbial communities[J]. Palaios, 1987, 2(3):241-254.
[2] Riding R.Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology, 2000, 47(Suppl.1): 179-214.
[3] Riding R.Structure and composition of organic reefs and carbonate mud mounds: Concepts and categories[J]. Earth Science Reviews, 2002, 58(1):163-231.
[4] Mei Mingxiang.Revised classification of microbial carbonates: Complementing the classification of limestones[J]. Earth Science Frontiers, 2007, 14(5):222-234.
[4] [梅冥相. 微生物碳酸盐岩分类体系的修订:对灰岩成因结构分类体系的补充[J]. 地学前缘, 2007, 14(5):222-234.]
[5] Nutman A P, Bennett V C, Friend C R L, et al. Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures[J]. Nature, 2016, 537(7 621):535.
[6] Grotzinger J P, Knoll A H.Stromatolites in Precambrian carbonates: Evolutionary mileposts or environmental dipsticks?[J]. Annual Review of Earth & Planetary Sciences, 1999, 27(1):313.
[7] Bosence D, Gibbons K, Heron D P L, et al. Microbial carbonates in space and time: Introduction[J]. Geological Society London Special Publications, 2015, 418(1):437-454.
[8] Dupraz C, Reid R P, Braissant O, et al. Processes of carbonate precipitation in modern microbial mats[J]. Earth Science Reviews, 2009, 96(3):141-162.
[9] Mei Mingxiang.Feature and nature of microbial-mat: Theoretical basis of microbial-mat sedimentology[J]. Journal of Palaeogeography, 2014, 16(3):285-304.
[9] [梅冥相. 微生物席的特征和属性:微生物席沉积学的理论基础[J]. 古地理学报, 2014, 16(3):285-304.]
[10] Luo Ping, Wang Shi, Li Pengwei, et al. Review and prospectives of microbial carbonate reservoirs[J]. Acta Sedimentologica Sinica, 2013, 31(5):807-823.
[10] [罗平,王石,李朋威,等. 微生物碳酸盐岩油气储层研究现状与展望[J]. 沉积学报, 2013, 31(5):807-823.]
[11] Tucker M E, Wright V P, Dickson J A D. Carbonate sedimentology[J]. Environmental & Engineering Geoscience, 2009, 18(4):401-402.
[12] Kalkowsky E.Oolith and Stromatolith im norddeutschen Buntsandstein[J]. Zeitschrift Der Deutschen Geologischen Gesellschaft, 1908, 60:68-125.
[13] Thompson E F.Journal of researches into the geology and natural history of the various countries visited by H.M.S. Beagle[J]. Yale Journal of Biology & Medicine, 1953, 26(1):99.
[14] Logan B W, Rezak R, Ginsburg R N.Classification and environmental significance of algal stromatolites[J]. Journal of Geology, 1964, 72(1):68-83.
[15] Brock T D, Madigan M T, Martinko J M,et al. Biology of Microorganisms(7th edition)[M]. New Jersey: Prentice Hall,1994.
[16] Tice M M, Lowe D R.Photosynthetic microbial mats in the 3,416-Myr-old ocean[J]. Nature, 2004, 431(7 008):549-552.
[17] Tice M M, Lowe D R.Hydrogen-based carbon fixation in the earliest known photosynthetic organisms[J]. Geology, 2006, 34(1): 37-40.
[18] Farmer J.Hydrothermal systems: Doorways to early biosphere evolution[J]. Gsa Today, 2000, 10(7): 1-9.
[19] Kasting J F, Howard M T.Atmospheric composition and climate on the early Earth[J]. Philosophical Transactions of the Royal Society of London, 2006, 361(1 474):1 733-1 742.
[20] Gerdes G.What are microbial mats?[M]∥Microbial Mats. Dordrecht: Springer,2010:3-25.
[21] Mei Mingxiang, Gao Jinhan, Meng Qingfen.Frommat ground structures to the primary sedimentary structures of a fifth category: Significant concepts on sedimentology[J]. Geoscience, 2006, 20(3):413-422.
[21] [梅冥相, 高金汉, 孟庆芬. 从席底构造到第五类原生沉积构造:沉积学中具有重要意义的概念[J]. 现代地质, 2006, 20(3):413-422.]
[22] Seilacher A.Biomats, biofilms, and bioglue as preservational agents for arthropod trackways[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2009, 270(3):252-257.
[23] Krumbein W E, Brehm U, Gerdes G, et al. Biofilm, biodictyon, biomat microbialites, oolites, stromatolites geophysiology, global mechanism, parahistology[M]∥Fossil and Recent Biofilms. Dordrecht: Springer, 2003: 1-27.
[24] Costerton J W, Dr C D K, Lappinscott H M, et al. Microbial biofilms[J]. Annual Review of Microbiology, 1995, 49:711-745.
[25] Characklis W G,Wilderer P A.Structure and Function of Biofilms (Dahlem Workshop Reports. Life Sciences Research Report 46)[M]. Chichester: Wiley, 1989.
[26] Neu T R, Marshall K C.Bacterial polymers: Physicochemical aspects of their interactions at interfaces[J]. Journal of Biomaterials Applications, 1990, 5(2):107.
[27] Cohen Y.Photosynthesis in cyanobacterial mats and its relation to the sulfur cycle: A model for microbial sulfur interactions[M]∥Cohen Y, Rosenberg E, eds. Microbial Mats: Physiological Ecology of Benthic Microbial Communities. Washington: ASM,1989:22-36.
[28] Krumbein W E.The year of the slime[M]∥KrumbeinW E, Paterson D M, StalL J,ed. Biostabilization of Sediments. Oldenburg:Bibliotheks-Informations System (BIS).Verlag, 1994:1-7.
[29] Wachend?rfer V, Krumbein W E, Schellnhuber H J.Bacteriogenic porosity of marine sediments—A case of biomorphogenesis of sedimentary rocks[M]∥Krumbein W E,Paterson D M,Stal L J,eds. Biostabilization of Sediments. Oldenburg: Bibliotheks-Informations System(BIS), 1994:203-220.
[30] Decho A W. Extracellular Polymeric Substances (EPS)[M]∥Reitner J, Thiel V,eds. Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Dordrecht: Springer Netherlands, 2011.
[31] Flemming H C, Neu T R, Wozniak D J.The EPS matrix: The "house of biofilm cells"[J]. Journal of Bacteriology, 2007, 189(22): 7 945-7 947.
[32] Bouton A, Vennin E, Pace A, et al. External controls on the distribution, fabrics and mineralization of modern microbial mats in a coastal hypersaline lagoon, Cayo Coco (Cuba)[J]. Sedimentology, 2016, 63(4):972-1 016.
[33] Reitner J, Quéric N V, Arp G.Advances in stromatolite geobiology[J]. Springer Berlin, 2011, 131:157-173.
[34] Decho A W, Visscher P T, Reid R P.Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2005, 219(1):71-86.
[35] Riding R.Calcified cyanobacteria[M]∥Reitner J, Thiel V,eds. Encyclopedia of Geobiology. Encyclopedia of Earth Science Series. Heidelberg: Springer, 2011: 211-223.
[36] Herrero A, Flores E.The Cyanobacteria: Molecular biology, genomics and evolution[M]∥The Cyanobacteria: Molecular Biology, Genomics, and Evolution. Caister Academic Press, 2008.
[37] Raven J A.The evolution of cyanobacterial symbioses[J]. Biology & Environment Proceedings of the Royal Irish Academy, 2002, 102B(1):3-6.
[38] Riding R.Calcified cyanobacteria[M]∥Calcareous Algae and Stromatolites. Heidelberg: Springer Berlin, 1990:211-223.
[39] Mei Mingxiang, Meng Qingfen.Composition diversity of modern stromatolites: A key and window for further understanding of the formation of ancient stromatolites[J]. Journal of Palaeogeography, 2016, 18(2):127-146.
[39] [梅冥相, 孟庆芬. 现代叠层石的多样化构成:认识古代叠层石形成的关键和窗口[J]. 古地理学报, 2016, 18(2):127-146.]
[40] Riding R.The nature of stromatolites: 3,500 million years of history and a century of research[J]. Advances in Stromatolite Geobiology, 2011, 131:29-74.
[41] Mei Mingxiang.Organomineralization derived from the biomineralization: An important theme within the framework of geobiology[J]. Geological Review, 2012, 58(5):937-951.
[41] [梅冥相. 从生物矿化作用衍生出的有机矿化作用:地球生物学框架下重要的研究主题[J]. 地质论评, 2012, 58(5):937-951.]
[42] Schulz H N, Schulz H D.Large sulfur bacteria and the formation of phosphorite[J]. Science, 2005, 307(5 708):416-418.
[43] Scholle P A, Ulmerscholle D S.A Color Guide to the Petrography of Carbonate Rocks: Grains, Textures, Porosity, Diagenesis, AAPG Memoir 77[M]. Tulsa: American Association of Petroleum Geologists, 2003.
[44] Riding R.Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic-Cambrian changes in atmospheric composition[J]. Geobiology, 2006, 4(4):299-316.
[45] Couradeau E, Benzerara K, Gérard E, et al. An early-branching microbialite cyanobacterium forms intracellular carbonates[J]. Science, 2012, 336(6 080):459.
[46] Miller A G, Colman B.Evidence for $HCO_{3}^{-}$ transport by the Blue-Green Alga (Cyanobacterium) Coccochloris peniocystis[J]. Plant Physiology, 1980, 65(2):397-402.
[47] Kah L C, Riding R.Mesoproterozoic carbon dioxide levels inferred from calcified cyanobacteria[J]. Geology, 2007, 35(9):799.
[48] Thompson J B, Ferris F G.Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water[J]. Geology, 1990, 18(10):995.
[49] Han Zuozhen, Chen Jitao, Chi Naijie, et al. Microbial carbonates: A review and perspectives[J]. Marine Geology & Quaternary Geology, 2009, 29(4): 29-38.
[49] [韩作振, 陈吉涛, 迟乃杰,等. 微生物碳酸盐岩研究:回顾与展望[J]. 海洋地质与第四纪地质, 2009,29(4):29-38.]
[50] Dai Yongding, Liu Tiebing.Bio-ore formation and biomineralization[J]. Journal of Paleontology, 1994,33(5):575-592.
[50] [戴永定, 刘铁兵. 生物成矿作用与生物矿化作用[J]. 古生物学报, 1994,33(5):575-592.]
[51] Lowenstam H A, Weiner S.On Biomineralization[M]. New York: Oxford University Press, 1989.
[52] Trichet J, Défarge C.Non-biologically supported organomineralization[J]. Bulletin de Institu Oceanographique Monaco, 1995,14(2): 203-236.
[53] Perry R S, Mcloughlin N, Lynne B Y,et al. Defining biominerals and organominerals: Direct and indirect indicators of life[J]. Sedimentary Geology, 2007, 201(1):157-179.
[54] Drews G.Function, structure and composition of cell walls and external layers[M]∥Carr N G, Whittnm B A, eds. The Biology of Cyanobacteria. Oxford: Blackwell, 1982: 333-358.
[55] Teske A, Nelson D C. The Genera Beggiatoa,Thioploca[M]∥The Prokaryotes. New York, NY: Springer, 2006: 784-810.
[56] Visscher P, Stolz J.Microbial mats as bioreactors: Populations, processes, and products[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2005, 219(1):87-100.
[57] Visscher P T, Rogers D R, Reid R P, et al. Microelectrode measurements in stromatolites: Unraveling the Earth's past?[J]. Environmental Electrochemistry Analyses of Trace Element Biogeochemistry, 2002, 811: 265-282.
[58] Jorgensen B B.Biogeochemistry: Space for hydrogen[J]. Nature, 2001, 412(6 844): 286.
[59] Arp G, Reimer A, Reitner J.Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic Oceans[J]. Science, 2001, 292(5 522):1 701-1 704.
[60] Braissant O, Decho A W, Dupraz C, et al. Exopolymeric substances of sulfate-reducing bacteria: Interactions with calcium at alkaline pH and implication for formation of carbonate minerals[J]. Geobiology, 2010, 5(4):401-411.
[61] Wright V P.A revised classification of limestones[J]. Sedimentary Geology, 1992, 76(3/4):177-185.
[62] Folk R L.Spectral subdivision of limestone type[M]∥Ham W E,ed. Classification of Carbonate Rocks, A symposium, AAPG Geological Memoir 1. 1962, 1: 62-84.
[63] Dunham R J.Classification of carbonates rocks according to Deposicional texture[J]. Aapg Memoir, 1962, 1:108-121.
[64] Embry A F, Klovan J E.A late Devonian reef tract on northeastern Banks Island, N.W.T[J]. Bulletin of Canadian Petroleum Geology, 1971, 19(4):730-781.
[65] Shapiro R S.A comment on the systematic confusion of thrombolites[J]. Palaios, 2000, 15(2):166-169.
[66] Chen J, Lee J H, Woo J.Formative mechanisms, depositional processes, and geological implications of Furongian (late Cambrian) reefs in the North China Platform[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2014, 414:246-259.
[67] Lee J H, Chen J, Chough S K.The middle-late Cambrian reef transition and related geological events: A review and new view[J]. Earth-Science Reviews, 2015, 145:66-84.
[68] Pomar L, Hallock P.Carbonate factories: A conundrum in sedimentary geology[J]. Earth Science Reviews, 2008, 87(3):134-169.
[69] Walter M R.Stromatolites[M]. Amsterdam: Elsevier,1976.
[70] Semikhatov M A, Gebelein C D, Cloud P, et al.Stromatolite morphogenesis: Progress and problems[J]. Canadian Journal of Earth Sciences, 1979, 16: 992-1 015.
[71] Awramik S M.Respect for stromatolites[J]. Nature, 2006, 441: 700-701.
[72] Aitken J D.Classification andenvironmental significance of cryptalgal Limestones and dolomites, with illustrations from the cambrian and ordovician of southwestern Alberta[J]. Journal of Sedimentary Research, 1967, 37(4):1 163-1 178.
[73] Du Rulin.Paleontology and Geohistory of Precambrian[M].Beijing: Geological Publish Press, 1992.
[73] [杜汝霖. 前寒武纪古生物学及地史学[M]. 北京:地质出版社, 1992.]
[74] Wang Zhaopeng.Characteristic and Geological Significance of Dendrolite from Zhangxia Formation,Cambrian, Jiulongshan Section[D]. Qingdao:Shandong University of Science and Technology, 2011.
[74] [王兆鹏. 莱芜九龙山寒武系张夏组树形石特征及地质意义[D]. 青岛:山东科技大学, 2011.]
[75] Cherchi A, Schroeder R.Remarks on the systematic position of Lithocodium, Elliott, a problematic microorganism from the Mesozoic carbonate platforms of the Tethyan realm[J]. Facies, 2006, 52(3):435-440.
[76] Schmid D U, Leinfelder R R.The jurassic Lithocodium aggregatum-Troglotella incrustans foraminiferal consortium[J]. Palaeontology, 1996, 39(1):21-52.
[77] Mei Mingxiang, Zhang Rui, Li Yiyao, et al. Calcified cyanobacterias within the stromatolotic bioherm for the Cambrian Furongian Series in the northeastern margin of the North-China Platform[J]. Acta Petrologica Sinica, 2017, 33(4):1 073-1 093.
[77] [梅冥相, 张瑞, 李屹尧,等. 华北地台东北缘寒武系芙蓉统叠层石生物丘中的钙化蓝细菌[J]. 岩石学报, 2017, 33(4):1 073-1 093.]
[78] Cloud P E, Semikhatov M A.Proterozoic stromatolite zonation[J]. American Journal of Science, 1969, 267(9):1 017-1 061.
[79] Schopf J W.Earth's Earliest Biosphere: Its Origin and Evolution[M]. Princeton: Princeton University Press, 1983.
[80] Baumgartner L K, Reid R P, Dupraz C, et al. Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries[J]. Sedimentary Geology, 2006,185: 131-145.
[81] Castanier S, Métayer-Levrel G L, Perthuisot J P. Bacterial roles in the precipitation of carbonate minerals[M]∥Microbial Sediments. Heidelberg:Springer Berlin, 2000:32-39.
[82] Visscher P T, Reid R P, Bebout Brad M.Microscale observations of sulfate reduction: Correlation of microbial activity with lithified micritic laminae in modern marine stromatolites[J]. Geology, 2000, 28(10):919-922.
[83] Andrews J E, Brasier A T.Seasonal records of climatic change in annually laminated tufas: Short review and future prospects[J]. Journal of Quaternary Science, 2010, 20(5):411-421.
[84] Vasconcelos C, Dittrich M, Mckenzie J A.Evidence of microbiocoenosis in the formation of laminae in modern stromatolites[J]. Facies, 2014, 60(1):3-13.
[85] Stolz J F, Reid R P, Visscher P T, et al. The microbial communities of the modern marine stromatolites at Highborn Cay, Bahamas[J]. Atoll Research Bulletin, 2009, 567: 1-29.
[86] Andersen D T, Sumner D Y, Hawes I, et al. Discovery of large conical stromatolites in Lake Untersee, Antarctica[J]. Geobiology, 2011,9(3): 280-293.
[87] Mei Mingxiang.Brief introduction on new advances on the origin of oids[J]. Acta Sedimentologica Sinica, 2012, 30(1):20-32.
[87] [梅冥相. 鲕粒成因研究的新进展[J]. 沉积学报, 2012, 30(1):20-32.]
[88] Berelson W M,Corsetti F A,Pepe-Ranney C, et al. Hot spring siliceous stromatolites from Yellowstone National Park: Assessing growth rate and laminae formation[J]. Geobiology, 2011,9:411-424.
[89] Cao Ruiji, Yuan Xunlai.Brief history and current status of stromatolite study in China[J]. Acta Micropalaeontologica Sinica, 2003, 20(1):5-14.
[89] [曹瑞骥, 袁训来. 中国叠层石研究的历史和现状[J]. 微体古生物学报, 2003, 20(1):5-14.]
[90] Addadi L, Raz S, Weiner S.Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization[J]. Cheminform, 2003, 34(33):959-970.
[91] Mann S.Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry[M]. New York: Oxford University Press, 2001.
[92] Demicco R V, Hardie L A.The "Carbonate Factory" revisited: A reexamination of sediment production functions used to model deposition on carbonate platforms[J]. Journal of Sedimentary Research, 2002, 72(6):849-857.
[93] Harris M T.The carbonate factory of Middle Triassic buildups in the Dolomites, Italy: A quantitative analysis[J]. Sedimentology, 2010, 41(6):1 147-1 159.
[94] James N P, Reid C M, Bone Y, et al. The macroalgal carbonate factory at a cool-to-warm temperate marine transition, Southern Australia[J]. Sedimentary Geology, 2013, 291:1-26.
[95] Schlager W.Benthic carbonate factories of the Phanerozoic[J]. International Journal of Earth Sciences, 2003, 92(4):445-464.
[96] Playford P E.Geology of the Shark Bay area, Western Australia[R]∥Berry P F, Bradshaw S D, Wilson B R, eds. Research in Shark Bay: Report of the France-Australe Bicentenary Expedition Committee. Perth: Western Australian Museum, 1990: 13-33.
Outlines

/