Review of the Study on Generalized Computer Simulation of Land Surface Thermal Anisotropy

  • Yunhao Chen ,
  • Jiatong Wu ,
  • Dandan Wang
Expand
  • 1.Beijing Key Laboratory for Remote Sensing of Environment and Digital Cities, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
    2.School of Geography,Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China

First author: Chen Yunhao(1974-), male, Guzhen County, Anhui Province, Professor. Research areas include application of remote sensing in resource. E-mail:cyh@bnu.edu.cn

*Corresponding author:Wu Jiatong(1993- ), female, Anshan City, Liaoning Province, Master student. Research areas include application of remote sensing in resource and environment. E-mail:201521190029@mail.bnu.edu.cn

Received date: 2017-11-30

  Revised date: 2018-04-06

  Online published: 2018-07-23

Supported by

Project supported by the National Natural Science Foundation of China “A muli-scale geometric model for urban thermal anisotropy”(No.41471348) and “Surface-driven emissivity directivity difference nuclear drive model for urban scenes” (No.41771448).

Copyright

地球科学进展 编辑部, 2018,

Abstract

Land surface temperature reflects the energy change and exchange process of land surface, which is an important index of the study on Earth science. The differences of surface geometrical structure and morphology are the main reasons for directional thermal radiant anisotropy. Therefore, there is thermal radiant directionality on most land surfaces in some degrees. The research methods and research status of the generalized thermal radiation directivity computer model were introduced. The common models were evaluated from the characteristics of the model, simulation objects, simulation accuracy and time complexity. The coupled climate model, the surface radiation directivity model and the application of radiation directionality were reviewed. The unsolved problems and the future research direction in this field were pointed.

Cite this article

Yunhao Chen , Jiatong Wu , Dandan Wang . Review of the Study on Generalized Computer Simulation of Land Surface Thermal Anisotropy[J]. Advances in Earth Science, 2018 , 33(6) : 555 -567 . DOI: 10.11867/j.issn.1001-8166.2018.06.0555

References

[1] Fang Yingbo, Zhan Wenfeng, Huang Fan, et al. Hourly variation of surface urban heat island over the Yangtze River delta urban agglomeration[J]. Advances in Earth Science, 2017, 32(2): 187-198.
[1] [方迎波,占文凤,黄帆,等. 长三角城市群表面城市热岛日内逐时变化规律[J]. 地球科学进展, 2017, 32(2): 187-198.]
[2] Monteith J L, Szeicz G.Radiative temperature in the heat balance of natural surfaces[J]. Quarterly Journal of the Royal Meteorological Society, 1962, 88(378): 496-507.
[3] Kimes D S, Idso S B, Pinter Jr P J, et al.View angle effects in the radiometric measurement of plant canopy temperatures[J]. Remote Sensing of Environment,1980, 10(4): 273-284.
[4] Kimes D S.Dynamics of directional reflectance factor distributions for vegetation canopies[J]. Applied Optics, 1983, 22(9): 1 364.
[5] Lagouarde J P, Kerr Y H, Brunet Y.An experimental study of angular effects on surface temperature for various plant canopies and bare soils[J]. 1995, 77(3/4): 167-190.
[6] Lagouarde J, Dayau S, Moreau P, et al. Directional anisotropy of brightness surface temperature over vineyards: Case study over the medoc region (SW France)[J]. IEEE Geoscience & Remote Sensing Letters, 2013, 11(2): 574-578.
[7] Pinheiro A C T, Privette J L, Guillevic P. Modeling the observed angular anisotropy of land surface temperature in a Savanna[J]. IEEE Transactions on Geoscience & Remote Sensing, 2006, 44(4): 1 036-1 047.
[8] Liu Qiang, Chen Liangfu, Liu Qinhuo, et al. Thermal infrared radiation transmission model of crop canopy[J]. Remote Sensing, 2003, 7(3): 161-167.
[8] [刘强,陈良富,柳钦火,等. 作物冠层的热红外辐射传输模型[J]. 遥感学报, 2003, 7(3): 161-167.]
[9] Du Y, Liu Q, Chen L, et al. Modeling directional brightness temperature of the winter wheat canopy at the ear stage[J]. IEEE Transactions on Geoscience & Remote Sensing, 2007, 45(11): 3 721-3 739.
[10] Bian Z, Cao B, Li H, et al. An analytical four-component directional brightness temperature model for crop and forest canopies[J]. Remote Sensing of Environment, 2018, 209:731-746.
[11] Soux A, Voogt J A, Oke T R.A model to calculate what a remote sensor sees' of an urban surface[J]. Boundary-Layer Meteorology, 2004, 111(1): 109-132.
[12] Voogt J A.Assessment of an Urban sensor view model for thermal anisotropy[J]. Remote Sensing of Environment, 2008, 112(2): 482-495.
[13] Sun Hao, Chen Yunhao, Zhan Wenfeng, et al. A directional nucleus-driven nuclear model and uncertainty analysis for the application of high-emissivity urban surface infrared equivalent emissivity[J]. Journal of Infrared Millimeter Waves, 2015, 34(1): 66-73.
[13] [孙灏,陈云浩,占文凤,等. 一种近似用于高发射率城市地表热红外等效发射率的方向性变异核驱动模型及其不确定性分析[J]. 红外与毫米波学报, 2015, 34(1): 66-73.]
[14] Yu Tao, Tian Qiyan, Gu Xingfa, et al. Research on the simple target directional radiance temperature of city[J]. Remote Sensing, 2006, 10(5): 661-669.
[14] [余涛,田启燕,顾行发,等. 城市简单目标方向亮温研究[J]. 遥感学报, 2006, 10(5): 661-669.]
[15] Ma Wei, Chen Yunhao, Zhan Wenfeng, et al. 3D thermal radiation directional model of urban simulation target[J]. Remote Sensing, 2013, 17(1): 62-76.
[15] [马伟,陈云浩,占文凤,等. 城市模拟目标的3维热辐射方向性模型[J]. 遥感学报, 2013, 17(1): 62-76.]
[16] Li X, Strahler A H.Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: Effect of crown shape and mutual shadowing[J]. IEEE Transactions on Geoscience & Remote Sensing, 1992, 30(2):276-292.
[17] Ermida S L, Trigo I F, Dacamara C C, et al. Validation of remotely sensed surface temperature over an oak woodland landscape—The problem of viewing and illumination geometries[J]. Remote Sensing of Environment, 2014, 148: 16-27.
[18] Cao B, Liu Q, Du Y, et al. Modeling directional brightness temperature over mixed scenes of continuous crop and road: A case study of the Heihe River Basin[J]. IEEE Geoscience & Remote Sensing Letters, 2014, 12(2): 234-238.
[19] Zhan Wenfeng, Chen Yunhao, Ma Wei, et al. Analysis of the field of view effect of bright temperature observation in urban target direction[J]. Remote Sensing, 2010, 14(2): 372-395.
[19] [占文凤,陈云浩,马伟,等. 城市目标方向亮温观测的视场效应分析[J]. 遥感学报, 2010, 14(2): 372-395.]
[20] Qin W, Gerstl S A W. 3-D scene modeling of semidesert vegetation cover and its radiation regime[J]. Remote Sensing of Environment, 2000, 74(1): 145-162.
[21] Suits G H.The calculation of the directional reflectance of a vegetative canopy[J]. Remote Sensing of Environment, 1971, 2: 117-125.
[22] Verhoef W.Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model[J]. Remote Sensing of Environment, 1984, 16(2): 125-141.
[23] Yang Guijun, Liu Qinhuo, Liu Qiang, et al.3D radiation transmission model of vegetation canopy and simulation of thermal radiation directionality[J]. Journal of Infrared Millimeter Waves, 2010, 29(1): 38-44.
[23] [杨贵军,柳钦火,刘强,等. 植被冠层3D辐射传输模型及热辐射方向性模拟[J]. 红外与毫米波学报, 2010, 29(1): 38-44.]
[24] Verhoef W, Jia L, Xiao Q, et al. Unified optical-thermal four-stream radiative transfer theory for homogeneous vegetation canopies[J]. IEEE Transactions on Geoscience & Remote Sensing, 2007, 45(6): 1 808-1 822.
[25] Huang Huaguo, Dou Baocheng, Hu Ni.Effect of tassel on the directionality of corn canopy heat radiation[J]. Journal of Infrared Millimeter Waves, 2011, 30(2): 120-123.
[25] [黄华国,窦宝成,胡妮. 雄穗对玉米冠层热辐射方向性的影响分析[J]. 红外与毫米波学报, 2011, 30(2): 120-123.]
[26] Liu Q, Huang H, Qin W, et al. An extended 3-D radiosity-graphics combined model for studying thermal-emission directionality of crop canopy[J]. IEEE Transactions on Geoscience & Remote Sensing, 2007, 45(9): 2 900-2 918.
[27] Gastelluetchegorry J P, Demarez V, Pinel V, et al. Modeling radiative transfer in heterogeneous 3-D vegetation canopies[J]. Remote Sensing of Environment, 1996, 58(2): 131-156.
[28] Guillevic P, Gastellu-Etchegorry J P, Demarty J, et al. Thermal infrared radiative transfer within three-dimensional vegetation covers[J]. Journal of Geophysical Research Atmospheres, 2003, 108(D8):4 248.
[29] Norman J M.Bidirectional Reflectance Modeling of Non-homogeneous Plant Canopies[R]. Lincoln,Nebraska: University of Nebraska, 1987.
[30] Yan Guangjian, Jiang Lingmei, Wang Jindi, et al. Model and validation of radiated radiated rejected rate for row crops[J]. Science in China (Series D), 2002, 32(10): 857-863.
[30] [阎广建,蒋玲梅,王锦地,等. 行播作物热辐射双向间隙率模型及验证[J]. 中国科学:D辑, 2002, 32(10): 857-863.]
[31] Li X, Strahler A H.Modeling the gap probability of a discontinuous vegetation canopy[J]. IEEE Transactions on Geoscience & Remote Sensing, 1988, 26(2): 161-170.
[32] Chen Liangfu, Liu Qinhuo, Fan Wenjie, et al. Thermo-directional directional porosity model of row crops[J]. Science in China (Series D), 2002, 32(4): 290-298.
[32] [陈良富,柳钦火,范闻捷,等. 行播作物热辐射方向性孔隙率模型[J]. 中国科学:D辑, 2002, 32(4): 290-298.]
[33] Huang H, Qin W, Liu Q.RAPID: A radiosity applicable to porous indivi dual objects for directional reflectance over complex vegetated scenes[J]. Remote Sensing of Environment, 2013, 132(10):221-237.
[34] Ma Hongzhang, Liu Sumei, Sun Genyun, et al. Three-dimensional simulation model for thermal radiation directivity of nonuniform canopy: A case study of corn canopy[J]. Remote Sensing, 2016, 20(3): 374-381.
[34] [马红章,刘素美,孙根云,等. 非匀一冠层热辐射方向性3维模型构建——以玉米冠层为例[J]. 遥感学报, 2016, 20(3): 374-381.]
[35] Zhao Feng, Gu Xingfa, Liu Qiang, et al. Modeling of 3D canopy’s radiation transfer in the VNIR and TIR domains[J]. Journal of Remote Sensing, 2006, 10(5):670-675.
[35] [赵峰, 顾行发, 刘强,等. 基于3D真实植被场景的全波段辐射传输模型研究[J]. 遥感学报, 2006, 10(5):670-675.]
[36] Yin T, Lauret N, Gastellu-Etchegorry J P. Simulating images of passive sensors with finite field of view by coupling 3-D radiative transfer model and sensor perspective projection[J]. Remote Sensing of Environment, 2015, 162:169-185.
[37] Yu T, Gu X, Tian G, et al. Modeling directional brightness temperature over a maize canopy in row structure[J]. IEEE Transactions on Geoscience & Remote Sensing, 2004, 42(10): 2 290-2 304.
[38] Coudert B, Ottlé C, Boudevillain B, et al. Contribution of thermal infrared remote sensing data in multiobjective calibration of a dual-source SVAT model[J]. Journal of Hydrometeorology, 2006, 7(3):404-420.
[39] Peng Zhixing, Zhou Ji, Li Mingsong.Review of methods for simulating land surface temperature at the pixel scale based on ground measurements over heterogeneous surface[J]. Advances in Earth Science, 2016, 31(5): 471-480.
[39] [彭志兴,周纪,李明松. 基于地面观测的异质性下垫面像元尺度地表温度模拟研究进展[J]. 地球科学进展, 2016, 31(5): 471-480.]
[40] Zhan Wenfeng,Zhou Ji,Ma Wei.Computer simulating of land surface thermal anisotropy based on realistic structure: A review[J]. Advances in Earth Science, 2009, 24(12): 1 309-1 317.
[40] [占文凤,周纪,马伟. 基于真实结构的地表热辐射方向性计算机模拟研究进展[J]. 地球科学进展, 2009, 24(12): 1 309-1 317.]
[41] Chehbouni A, Nouvellon Y, Kerr Y H, et al. Directional effect on radiative surface temperature measurements over a semiarid grassland site[J]. Remote Sensing of Environment, 2001, 76(3):360-372.
[42] Guillevic P, Gastellu-Etchegorry J P, Demarty J, et al. Thermal infrared radiative transfer within three-dimensional vegetation covers[J]. Journal of Geophysical Research Atmospheres, 2003, 108(D8).DOI:10.1029/2002JD00247.
[43] Krayenhoff E, Voogt J.Daytime thermal anisotropy of urban neighbourhoods: Morphological causation[J]. Remote Sensing, 2016, 8(2): 108.
[44] Jie Weijia.Dynamics Simulation of Angular Effects on the Forest Canopy Temperature Observed by Remote Sensing Methods[D]. Beijing: Beijing Forestry University, 2016.
[44] [解潍嘉. 遥感观测林冠温度的角度效应动态模拟研究[D]. 北京:北京林业大学, 2016.]
[45] Huang Huaguo, Liu Qinhuo, Liu Qiang, et al. Simulation of time effect on thermal emission directionality measurement[J]. Journal of System Simulation, 2007, 19(15): 3 586-3 590.
[45] [黄华国,柳钦火,刘强,等. 热辐射方向性测量中的时间效应模拟[J]. 系统仿真学报, 2007, 19(15): 3 586-3 590.]
[46] Huang H, Liu Q, Qin W.Thermal emission hot-spot effect of crop canopies—Part I: Simulation[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2010, 3(3): 313-322.
Outlines

/