Research Review and Significance of Lunar Water Originated from Solar Wind
First author:Zeng Xiandi(1992-), male, Guangzhou City, Guangdong Province, Master student. Research areas include lunar planetary science.E-mail:zengxiandi@mail.gyig.ac.cn
Received date: 2018-01-01
Revised date: 2018-04-10
Online published: 2018-06-13
Supported by
Project supported by the National Natural Science Foundation of China “Experimental comparison of the solar wind-produced water in lunar main silicates minerals”(No.41773066);Youth Innovation Promotion Association CAS.
Copyright
Water plays an important role in the evolution history of terrestrial planets and is also an indispensable resource for space exploration. The moon was used to be thought as “bone-dry”. However, this view was challenged by the latest achievements. Both the infrared remote sensing data and Apollo sample results have shown that some hydroxyl (and even H2O) can be produced by the reaction between the solar wind proton and regolith mineral on the Moon. A series of theoretical analysis and simulated ion implantation experiments have been carried out to discuss such processes. Many issues related to the solar wind-produced water have not been well understood yet, e.g., the formation mechanism, influencing factors, occurrence state, migration, and retention. To answer these questions, it is necessary to investigate the formation mechanism and migration of solar wind-produced water based on the Change’e-5 returned samples in the future. These studies can not only can provide clues for the exploitation and utilization of water on the Moon, but also help us to understand the origin and evolution of water on other airless terrestrial planets.
Key words: Lunar water; Solar wind; Infrared spectra; Lunar regolith; Ions implantation.
Xiandi Zeng , Hong Tang , Xiongyao Li , Ziyuan Ouyang , Shijie Wang . Research Review and Significance of Lunar Water Originated from Solar Wind[J]. Advances in Earth Science, 2018 , 33(5) : 473 -482 . DOI: 10.11867/j.issn.1001-8166.2018.05.0473
[1] | Watson K, Murray B C, Brown H.The behavior of volatiles on the lunar surface[J]. Journal of Geophysical Research, 1961, 66(9):3 033-3 045. |
[2] | Jolliff B L,Wieczorek M A, Shearer C K, et al. Review in Mineralogy and Geochemistry Vol.60: New Views of the Moon[M]. Chantilly V A: Mineralogical Society of America, 2006:365-518. |
[3] | Stacy N J S, Campbell D B, Ford P G. Arecibo radar mapping of the Lunar Poles: A search for ice deposits[J]. Science, 1997, 276(5 318):1 527-1 530. |
[4] | Nozette S, Lichtenberg C L, Spudis P, et al.The clementine bistatic radar experiment[J]. Science, 1996, 274(5 292):1 495-1 498. |
[5] | Weidenschilling S J, Nozette S, Shoemaker E M, et al.The possibility of ice on the moon[J]. Science, 1997, 278(5 335):144-145. |
[6] | Feldman W C, Maurice S, Binder A B, et al.Fluxes of fast and epithermal neutrons from Lunar Prospector: Evidence for water ice at the lunar poles[J]. Science, 1998, 281(5 382):1 496-1 500. |
[7] | Feldman W C, Lawrence D J, Elphic R C, et al.Polar hydrogen deposits on the Moon[J]. Journal of Geophysical Research Planets, 2000, 105(E2):4 175-4 195. |
[8] | Starukhina L V, Shkuratov Y G.The lunar poles: Water ice or chemically trapped hydrogen?[J]. Icarus, 2000, 147(2):585-587. |
[9] | Starukhina L.Water detection on atmosphereless celestial bodies: Alternative explanations of the observations[J]. Journal of Geophysical Research Planets, 2001, 106(E7):14 701-14 710. |
[10] | Goldstein D B, Nerem R S, Barker E S, et al.Impacting lunar prospector in a cold trap to detect water ice[J]. Geophysical Research Letters, 1999, 26(12):1 653-1 656. |
[11] | Clark R N.Detection of adsorbed water and hydroxyl on the Moon[J]. Science, 2009, 326(5 952):562-564. |
[12] | Pieters C M, Goswami J N, Clark R N, et al.Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan-1[J]. Science, 2009, 326(5 952):568-572. |
[13] | Sunshine J M, Farnham T L, Feaga L M, et al.Temporal and spatial variability of lunar hydration as observed by the deep impact spacecraft[J]. Science, 2009, 326(5 952):565-568. |
[14] | Spudis P D, Bussey D B J, Baloga S M, et al. Initial results for the north pole of the Moon from Mini-SAR, Chandrayaan-1 mission[J]. Geophysical Research Letters, 2010, 37(6):401-408. |
[15] | Mitrofanov I G, Sanin A B, Boynton W V, et al.Hydrogen mapping of the lunar south pole using the LRO neutron detector experiment LEND[J]. Science, 2010, 330(6 003):483-486. |
[16] | Colaprete A, Schultz P, Heldmann J, et al.Detection of water in the LCROSS ejecta plume[J]. Science, 2010, 330(6 003):463-468. |
[17] | Saal A E, Hauri E H, Cascio M L, et al.Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior[J]. Nature, 2008, 454(7 201):192-195. |
[18] | Boyce J W, Liu Y, Rossman G R, et al.Lunar apatite with terrestrial volatile abundances[J]. Nature, 2010, 466(7 305):466-469. |
[19] | Hui Hejiu, Peslier A H, Zhang Youxue, et al.Water in lunar anorthosites and evidence for a wet early Moon[J]. Nature Geoscience, 2013, 6(3):177-180. |
[20] | Liu Yang, Guan Yunbin, Zhang Youxue, et al.Direct measurement of hydroxyl in the lunar regolith and the origin of lunar surface water[J]. Nature Geoscience, 2012, 5(11):779-782. |
[21] | Hauri E H, Orman J A V. High pre-eruptive water contents preserved in lunar melt inclusions[J]. Science, 2011, 333(6 039):213-215. |
[22] | Greenwood J P, Itoh S, Sakamoto N, et al.Hydrogen isotope ratios in lunar rocks indicate delivery of cometary water to the Moon[J]. Nature Geoscience, 2011, 4(2):79-82. |
[23] | Arnold J R.Ice in the lunar polar regions[J]. Journal of Geophysical Research, 1979, 84(B10):5 659-5 668. |
[24] | Lucey P G.A lunar ater world[J]. Science, 2009, 326(5 952):531-532. |
[25] | Anand M.Lunar water: A brief review[J]. Earth Moon & Planets, 2010, 107(1):65-73. |
[26] | Barnes J J, Kring D A, Tartèse R, et al.An asteroidal origin for water in the Moon[J]. Nature Communications, 2016, 7:11 684. |
[27] | Stewart B D, Pierazzo E, Goldstein D B, et al.Simulations of a comet impact on the Moon and associated ice deposition in polar cold traps[J]. Icarus, 2011, 215(1):1-16. |
[28] | Butler B J.The migration of volatiles on the surfaces of Mercury and the Moon[J]. Journal of Geophysical Research Planets, 1997, 102(E8):19 283-19 291. |
[29] | Schorghofer N, Taylor G J.Subsurface migration of H2O at lunar cold traps[J]. Journal of Geophysical Research: Planets, 2007, 112(E2). DOI:10.1029/2006JE002779. |
[30] | Rayman M D, Fraschetti T C, Raymond C A, et al.Dawn: A mission in development for exploration of main belt asteroids Vesta and Ceres[J]. Acta Astronautica, 2006, 58(11):605-616. |
[31] | De Sanctis M C, Combe J P, Ammannito E, et al. Detection of widespread hydrated materials on vesta by the VIR imaging spectrometer on board the dawn mission[J]. Astrophysical Journal Letters, 2012, 758(2):L36. |
[32] | Farrell W M, Hurley D M, Zimmerman M I.Solar wind implantation into lunar regolith: Hydrogen retention in a surface with defects[J]. Icarus, 2015, 255:116-126. |
[33] | Delitsky M L, Paige D A, Siegler M A, et al.Ices on mercury: Chemistry of volatiles in permanently cold areas of Mercury’s north polar region[J]. Icarus, 2016, 281:19-31. |
[34] | Bradley J P, Ishii H A, Gillis-Davis J J, et al. Detection of solar wind-produced water in irradiated rims on silicate minerals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(5):1 732. |
[35] | Djouadi Z, Robert F, Sergeant D’Hendecourt L L, et al. Hydroxyl radical production and storage in analogues of amorphous interstellar silicates: A possible “wet” accretion phase for inner telluric planets[J]. Astronomy & Astrophysics, 2011, 531:725-734. |
[36] | Vattuone L, Rocca M.Accretion disc origin of the Earth’s water[J]. Philosophical Transactions: Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371(1 994):1-11. |
[37] | Brown R H, Baines K H, Bellucci G, et al.The cassini visual and infrared mapping spectrometer (Vims) investigation[J]. Space Science Reviews, 2004, 115(1/4):111-168. |
[38] | Green R O, Pieters C, Mouroulis P, et al.The Moon Mineralogy Mapper (M3) imaging spectrometer for lunar science: Instrument description, calibration, on-orbit measurements, science data calibration and on-orbit validation[J]. Journal of Geophysical Research Planets, 2011, 116(E10):1 241-1 249. |
[39] | Hampton D L, Baer J W, Huisjen M A, et al.An overview of the instrument suite for the deep impact mission[J]. Space Science Reviews, 2005, 117(1/2):43-93. |
[40] | Chen Lin, Tang Hong, Li Xiongyao, et al.The quantitative IR spectroscopic determination of OH in Apatite based on 1.4 μm[J]. Advances in Earth Science, 2016,31(4):403-408. |
[40] | [陈林, 唐红, 李雄耀,等. 基于1.4 μm红外光谱测量磷灰石结构水的定量方法探讨[J]. 地球科学进展, 2016, 31(4):403-408.] |
[41] | Clarence K.Infrared and Raman Spectroscopy of Lunar and Terrestrial Minerals[M]. New York: Academic Press, 1975. |
[42] | Mccord T B, Taylor L A, Combe J P, et al.Sources and physical processes responsible for OH/H2O in the lunar soil as revealed by the Moon Mineralogy Mapper (M3)[J]. Journal of Geophysical Research Atmospheres, 2011, 116(4). DOI:10.1029/2010JE003711. |
[43] | W?hler C, Grumpe A, Berezhnoy A A, et al.Temperature regime and water/hydroxyl behavior in the crater Boguslawsky on the Moon[J]. Icarus, 2017, 285:118-136. |
[44] | Bandfield J L, Poston M J, Klima R L,et al.Widespread distribution of OH/H2O on the lunar surface inferred from spectral data[J]. Nature Geosciece, 2018, 11(3):173-177. |
[45] | W?hler C, Grumpe A, Berezhnoy A A,et al.Time-of-day-dependent global distribution of lunar surficial water/hydroxyl[J]. Science Advances, 2017, 3(9):e1701286. |
[46] | Li Shuai, Milliken R E.Water on the surface of the Moon as seen by the Moon Mineralogy Mapper: Distribution, abundance, and origins[J]. Science Advance, 2017, 3(9):e1701471. |
[47] | Housley R M, Grant R W, Paton N E.Origin and characteristics of excess Fe metal in lunar glass welded aggregates[C]//Proceedings of the Lunar Science Conference 4th. Houston: Lunar and Planetary Institute, 1973:2 737-2 749. |
[48] | Housley R M, Cirlin E H, Paton N E, et al.Solar wind and micrometeorite alteration of the lunar regolith[C]//Lunar and Planetary Science Conference 5th. New York: Lunar and Planetary Institute, 1974:2 623-2 642. |
[49] | Izawa M R M, Cloutis E A, Applin D M, et al. Laboratory spectroscopic detection of hydration in pristine lunar regolith[J]. Earth & Planetary Science Letters, 2014, 390(4):157-164. |
[50] | Brandt J C, ?pik E J.Introduction to the Solar Wind[M]. San Francisco: Astronomy and Astrophysics Series, 1970:73-74. |
[51] | Starukhina L V.Computer simulation of sputtering of lunar regolith by solar wind protons: Contribution to change of surface composition and to hydrogen flux at the lunar poles[J]. Solar System Research, 2003, 37(1):36-50. |
[52] | Barabash S, Bhardwaj A, Wieser M, et al.Investigation of the solar wind-Moon interaction onboard Chandrayaan-1 mission with the SARA experiment[J]. Current Science, 2009, 96(4):526-532. |
[53] | McKay D S, Heiken G, Basu A, et al. The lunar regolith[M]∥Heiken G, ed. Lunar Source Book. Cambridge: Cambridge University Press, 1991:285-356. |
[54] | Keller L P, Mckay D S.The nature and origin of rims on lunar soil grains[J]. Geochimica et Cosmochimica Acta, 1997, 61(11):2 331-2 341. |
[55] | Johnson R E.Energetic Charged-Particle Interactions with Atmospheres and Surfaces[M]. Berlin Heidelberg:Springer, 1990. |
[56] | Zeller E J, Ronca L B, Levy P W.Proton-induced hydroxyl formation on the lunar surface[J]. Journal of Geophysical Research Atmospheres, 1966, 71(20):4 855-4 860. |
[57] | Zent A P, Ichimura A I, Mccord T B, et al.Production of OH/H2O in lunar samples via proton bombardment[C]//Lunar and Planetary Science Conference 41st.Texas: Lunar and Planetary Institate, 2010:2 665. |
[58] | Managadze G G, Cherepin V T, Shkuratov Y G, et al.Simulating OH/H2O formation by solar wind at the lunar surface[J]. Icarus, 2011, 215(1):449-451. |
[59] | Ichimura A S, Zent A P, Quinn R C, ,et al. Hydroxyl (OH) production on airless planetary bodies: Evidence from H+/D+ ion-beam experiments[J]. Earth & Planetary Science Letters, 2012, 345/348:90-94. |
[60] | Burke D J, Dukes C A, Kim J H, et al.Solar wind contribution to surficial lunar water: Laboratory investigations[J]. Icarus, 2011, 211(2):1 082-1 088. |
[61] | Schaible M J, Baragiola R A.Hydrogen implantation in silicates: The role of solar wind in Si-OH bond formation on the surfaces of airless bodies in space[J]. Journal of Geophysical Research Planets, 2015, 119(9):2 017-2 028. |
[62] | Crider D H, Vondrak R R.The solar wind as a possible source of lunar polar hydrogen deposits[J]. Journal of Geophysical Research Planets, 2000, 105(E11):26 773-26 782. |
[63] | Crider D H, Vondrak R R.Hydrogen migration to the lunar poles by solar wind bombardment of the moon[J]. Advances in Space Research, 2002, 30(8):1 869-1 874. |
/
〈 |
|
〉 |