Optimization of the Rock Physical Model in Tight Sandstone Reservoir

  • Lingyun Jia ,
  • Lin Li ,
  • Qianyao Wang ,
  • Jinfeng Ma ,
  • Daxing Wang
Expand
  • 1.National & Local Joint Engineering Research Center of Carbon Capture and Storage Technology, Department of Geology of Northwest University, Xi’an 710069, China;
    2.China Coal Technology Engineering Group Xi’an Research Institute, Xi’an 710077, China;
    3.Research Institute of Exploration and Development, Changqing Oil Field Company, PetroChina, Xi’an 710018,China;

First author:Jia Lingyun(1983-),female,Datong City,Shanxi Province,Ph. D student. Research areas include seismic data interpretation, inversion and others.E-mail:1027314266@qq.com

Received date: 2017-09-08

  Revised date: 2018-01-25

  Online published: 2018-05-24

Supported by

Project supported by the National High Technology Research and Development Program of China “Key technique for CO2 sequestration” (No.2012AA050103).

Copyright

地球科学进展 编辑部, 2018,

Abstract

Krief model, Nur model and Pride-Lee model are usually used to calculate dry rock modulus of sandstone reservoirs, but they are not effective for tight sandstone reservoirs. Based on Krief model and Nur model, and minimizing the difference between predicted P-wave or S-wave velocities and measured velocities, we acquireed lithologic index m in Krief model and critical porosity ?c in Nur model by Gassmann relationship. The empirical parameters used in the models are expressed as the values changing with depth, so the accuracy of Krief and Nur models to estimate the P-wave and S-wave velocities was improved, and these two models are called as the variable parameter Krief model and the variable parameter Nur model. In addition, comparing with prediction accuracy of P-wave and S-wave velocities under different constraints, we can see that the shear modulus formulas in the three models are more accurate and more suitable in the tight sandstone reservoir. Han’s relationship about Kdry and udry is not affected by porosity, lithology and other factors, and the paper established dry rock model by Han’s relationship and any one of the above three models. The new dry rock model was applied in the Gassmann relationship to predict S-wave velocity of H8 tight sandstone reservoir in Sulige Gas Filed, Ordos Basin, which improved the accuracy of predicting S-wave velocity. At the same time, lithology index m in Krief model, critical porosity ?c in Nur model and consolidation parameters c in Pride-Lee model which are corresponding to each sample can be obtained. The values of these parameters can reflect lithology difference, pore structure, compaction degree and other characteristics, which indicate the geological characteristics of the reservoir.

Cite this article

Lingyun Jia , Lin Li , Qianyao Wang , Jinfeng Ma , Daxing Wang . Optimization of the Rock Physical Model in Tight Sandstone Reservoir[J]. Advances in Earth Science, 2018 , 33(4) : 416 -424 . DOI: 10.11867/j.issn.1001-8166.2018.04.0416

References

[1] Zou Caineng, Tao Shizhen, Hou Lianhua, et al.Unconventional Oil and Gas Geology[M]. Beijing: Geological Publishing House, 2011.
[1] [邹才能,陶士振,侯连华,等. 非常规油气地质[M]. 北京:地质出版社, 2011.]
[2] Mao Keyu.Logs fluid typing methods and adaptive analysis of tight sandstone reservoir of Yingcheng formation in Lishu Fault[J]. Advances in Earth Science, 2016, 31(10):1 056-1 066.
[2] [毛克宇. 梨树断陷营城组致密砂岩测井流体识别方法及其适应性分析[J]. 地球科学进展, 2016, 31(10):1 056-1 066.]
[3] Gassmann F.Elastic waves through a packing of spheres[J]. Geophysics, 1951, 16(3): 673-682.
[4] Yang Yang, Ma Jinfeng, Li Lin.Research progress of carbon dioxide capture and storage technique and 4D seismic monitoring technique[J]. Advances in Earth Science, 2015, 30(10): 1 119-1 126.
[4] [杨扬,马劲风,李琳. CO2地质封存四维多分量地震监测技术进展[J]. 地球科学进展, 2015, 30(10): 1 119-1 126.]
[5] Wang Peng, Zhong Guangfa.Application of rock physics models to the deep-sea sediment drift at ODP site 1144, northern South China Sea[J]. Advances in Earth Science, 2012, 27(3): 359-366.
[5] [汪鹏,钟广法.南海ODP1144站深海沉积牵引体的岩石物理模型研究[J]. 地球科学进展, 2012, 27(3): 359-366.]
[6] Brown R, Korringa J.On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid[J]. Geophysics, 1975, 40(4): 608-616.
[7] Mavko G, Mukerji T.Seismic pore space compressibility and Gassmann’s relation[J]. Geophysics, 1995, 60(6):1 743-1 749.
[8] Krief M, Garat J, Stellingwerff J, et al. A petrophysical interpretation using the velocities of P and S waves (full-waveform sonic)[J]. Log Analyst, 1990, 31:355-369.
[9] Biot M A.Theory of propagation of elastic waves in a fluid saturated porous solid. Ⅰ. Low-frequency range[J]. Journal of Acoustical Society of America, 1956, 28(2):168-178.
[10] Nur A.Critical porosity and the seismic velocities in rocks[J]. Eos Transactions American Geophysical Union, 1992, 73(1): 43-66.
[11] Nur A, Mavko G.Critical porosity: A key to relating physical properties to porosity in rocks[J]. The Leading Edge, 1998, 17(3): 357-362.
[12] Pride S R.Relationships between seismic and hydrological properties[M]∥Hydrogeophysics. New York:Kluwer Academy, 2005: 217-255.
[13] Lee M W.A simple method of predicting S-wave velocity[J]. Geophysics, 2006, 69(5):161-164.
[14] Knackstedt M A, Arns C H.Velocity-porosity relationships, 1: Accurate velocity model for clean consolidated sandstones[J]. Geophysics, 2003, 68(6): 1 822-1 834.
[15] Arns C H, Knackstedt M A, Pinczewski W V, et al. Computation of linear elastic properties from microtomographic images: Methodology and agreement between theory and experiment[J]. Geophysics, 2002, 67(5):1 396-1 405.
[16] Zhang Jiajia, Li Hongbing, Liu Huaishan, et al. Accuracy of dry frame models in the study of rock physics[J]. Progress in Geophysics, 2010, 25(5): 1 697-1 702.
[16] [张佳佳,李宏兵,刘怀山,等.几种岩石骨架模型的适用性研究[J].地球物理学进展,2010, 25(5): 1 697-1 702.]
[17] Raymer L L, Hunt E R, Gardner J S.An improved sonic transit time to porosity transform[C]∥Transactions of the SPWLA 21st Annual Logging Symposium, 1980: 1-13.
[18] Zhang Jinzhong.The physical basis and simplified form of the acoustic formation factor formula[C]∥Third Annual Logging Conference, 1988.
[18] [张金钟. 声波地层因素公式的物理基础及其简化形式[C]∥全国第三届测井年会论文,1988.]
[19] Zhang Jinzhong.Matrix lithology exponent of porous formation versus porosity exponent[J]. Journal of Xian Shiyou University, 1989, 4(4): 1-8.
[19] [张金钟. 多孔地层的骨架岩性指数和孔隙结构指数[J].西安石油学院学报,1989,4(4):1-8.]
[20] Han D H, Nur A.Effects of porosity and clay content on wave velocities in sandstones[J]. Geophysics, 1986, (51):2 093-2 107.
[21] Brie A, Pampuri F, Marsala A F, et al. Shear sonic interpretation in gas-bearing sands[C]∥SPE Annual Technical Conference and Exhibition. Dallas, Texas: SPE. 1995: 701-710.
[22] Blangy J P, Strandenes S, Moos D, et al. Ultrasonic velocities in sands- revisited[J]. Geophysics, 1993, 58(3): 344-356.
[23] Yin H, Han D H, Nur A.Study of Velocities and Compaction on Sand-clay Mixture[R]. S. R. B. Report, Stanford University, 1988: 33.
[24] Pickett G R.Acoustic character log and their application in formation evaluation[J]. Journal of Petroleum Technology, 1963, 15(6): 659-667.
[25] Murphy W F, Schwartz L M, Hornby B.Interpretation physics of Vp and Vs in sedimentary rocks[C]∥Transactions SPWLA 32nd Annual Logging Symposium, 1991: 1-24.
[26] Han D H.Estimate shear velocity based on dry P-wave and shear modulus relationship[C]∥SEG Int’l Exposition and 74th Annual Meeting, 2004: 10-15.
[27] Batzle M, Wang Z.Seismic properties of pore fluids[J]. Geophysics, 1992, 57(1):1 396-1 468.
[28] Wang Daxing.Study on the rock physics model of gas reservoirs in tight sandstone[J]. Chinese Journal of Geophysics, 2016, 59(12): 4 603-4 622.
[28] [王大兴. 致密砂岩气储层的岩石物理模型研究[J].地球物理学报,2016,59(12): 4 603-4 622.]
[29] Fu Bin, Lin Jinbu, Chen Long, et al. The gas/water identification method and its application in tight sandstone reservoir in the west of sulige gas field[J]. Special Oil and Gas Reservoirs, 2014, 21(3): 66-69.
[29] [付斌,李进步,陈龙,等. 苏里格气田西区致密砂岩气水识别方法与应用[J]. 特种油气藏,2014,21(3):66-69.]
[30] Jia Peifeng, Yang Zhengming, Xiao Qianhua, et al. A new method to evaluate tight oil reservoirs[J]. Special Oil and Gas Reservoirs, 2015,22(4): 33-36.
[30] [贾培锋,杨正明,肖前华,等. 致密油藏储层综合评价新方法[J]. 特种油气藏,2015,22(4): 33-36.]
[31] Li Lin, Ma Jinfeng.Study of shear wave velocity prediction during CO2-EOR and sequestration in Gao 89 area of Shengli Oilfield[J]. Applied Geophysics, 2017,14(3): 372-380.
Outlines

/